EPOXIDATION OF PROPYLENE USING GOLD CATALYSTS

Mr. Seksit Jungchaiveerayanon

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan. The University of Oklahoma,
and Case Western Reserve University

2001

ISBN 974-13-0684-9

I19519366 . 7 118, 2544

Thesis Title : Epoxidation of Propylene using Gold Catalysts

By : Mr. Seksit Jungchaiveerayanon

Program : Petrochemical Technology

Thesis Advisors: Prof. Erdogan Gulari

Prof. Somchai Osuwan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyawat. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Prof. Erdogan Gulari)

(Prof. Somchai Osuwan)

(Asst. Prof. Thirasak Rirksomboon)

บทคัดย่อ

เสกสิทธิ์ จังชัยวีระยานนท์: การศึกษาปฏิกิริยาอิพอกซิเดชันของโพรพิลีนโดยใช้ทอง เป็นตัวเร่งปฏิกิริยา (Epoxidation of Propylene using Gold Catalysts) อ. ที่ปรึกษา: ศ. เออโดแกน กูลารี และ ศ. สมชาย โอสุวรรณ 46 หน้า ISBN 974-13-0684-9

โพรพิลีนออกไซค์เป็นสารผลิตผลระหว่างกระบวนการผลิตที่สำคัญของกระบวนการใน อุตสาหกรรมเคมี โดยทั่วไปสามารถผลิตได้โดยปฏิกิริยาอิพอกซิเดชันของโพรพิลีนในกระบวน การไฮโดรเปอร์ออกไซด์ หรืออิพิคลอโรไฮดริน ปฏิกิริยาออกซิเดชันของโพรพิลีนโดยใช้ ออกซิเจนและไฮโดรเจนเป็นสารตั้งต้นในการออกซิไดชโดยตรงเป็นปฏิกิริยาที่ไม่เป็นพิษต่อสิ่ง แวดล้อม มีการศึกษาการเลือกเกิดของโพรพิลีนออกไซค์ โดยใช้ทองเป็นตัวเร่งปฏิกิริยาบนตัวรอง รับอลูมินา สังกะสืออกไซค์ และไททาเนีย ในงานวิจัยนี้ได้เตรียมตัวเร่งปฏิกิริยาโดยวิธีโซลเจล (Sol-gel) การตกตะกอนของโลหะบนตัวรองรับ (Deposition-precipitation) และการตก ตะกอนร่วมกันระหว่างโลหะและตัวรองรับ (Co-precipitation) ซึ่งทำปฏิกิริยาที่อุณหภูมิ ระหว่าง 40 – 200 องศาเซลเซียส โดยใช้ส่วนประกอบของก๊าซตั้งต้นในการทำปฏิกิริยาต่างกัน และใช้วิธีการวัดค่าพื้นผิว การศึกษาลักษณะรูปแบบของผลึก และการวัดปริมาณโลหะบนตัวรอง รับในการวิเคราะห์ตัวเร่งปฏิกิริยา

ผลการศึกษา พบว่าตัวรองรับอลูมินาให้ค่าพื้นผิวสูงสุดคือ 450 ตารางเมตรต่อกรัม ส่วน ตัวรองรับไททาเนีย และสังกะสืออกไซค์ให้ค่าพื้นผิวเป็น 70 และ 50 ตารางเมตรต่อกรัม ตามลำคับ การทคลองพบว่าตัวเร่งปฏิกิริยาทองบนตัวรองรับอลูมินา และสังกะสืออกไซค์ ไม่ช่วยเร่งปฏิกิริยา ในการเกิดโพรพิลีนออกไซค์ ผลิตภัณฑ์ส่วนใหญ่ที่เกิดขึ้นมีเพียงคาร์บอนไดออกไซค์ และโพร เพน ส่วนตัวเร่งปฏิกิริยาทองบนตัวรองรับไททาเนียที่เตรียมโดยวิธีโซลเจลนั้นช่วยในการเลือกเกิด โพรพิลีนออกไซค์ได้ดีที่อุณหภูมิ 80 องศาเซลเซียส

ABSTRACT

4271020063 : PETROCHEMICAL TECHNOLOGY PROGRAM

Seksit Jungchaiveerayanon: Epoxidation of Propylene using

Gold Catalysts. Thesis Advisors: Prof. Erdogan Gulari and

Prof. Somchai Osuwan 46 pp ISBN 974-13-0684-9

Keywords : Au/Al₂O₃/ Au/TiO₂/ Au/ZnO Propylene/ Propylene Oxide/

Sol-gel/ Deposition-precipitation/ Co-precipitation/

Epoxidation

Propylene oxide (PO) is an important industrial intermediate, which has traditionally been produced by the epoxidation of propylene using hydroperoxide or epichlorohydrin processes. The direct vapor-phase epoxidation of propylene, in the presence of oxygen and hydrogen, is the more environmentally friendly process. The selectivity to PO over gold supported on alumina, zinc oxide, and titania catalysts were investigated. The catalysts were prepared by sol-gel, deposition-precipitation, and co-precipitation methods. The reactions were carried out between 40 and 200°C with different feed compositions. The catalysts were characterized by BET, XRD, and AAS measurements. The result showed the highest surface area of about 450 m²/g for gold supported on alumina catalysts, while the gold supported on titania and zinc oxide catalysts were about 70 and 50 m²/g respectively. The Au/Al₂O₃ and Au/ZnO catalysts showed almost no selectivity to PO and produced only CO₂ and propane as major products. Au/TiO₂ catalysts prepared by sol-gel method showed high selectivity and production rate of PO at the reaction temperature of 80°C.

ACKNOWLEDGEMENTS

This research work would not be definitely completed without the valuable contribution and suggestion of the following generous individuals and organizations. I would like to express my deep gratitude to their assistance.

I would like to express the deepest thankfulness to Professor Somchai Osuwan and Professor Erdogan Gulari, my advisors, for their extensive suggestion throughout this research work.

I propose my special thank to Mr. Paisan Lorpongpaiboon who continually provided a lot of beneficial knowledge, recommendation, and support in all ways. Most of all, I was touched for his kindness and encouragement when I became troubled.

For my family, my enormous appreciation is preserved for my family who has given me the unconditional love, support, and understanding.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	ix
	List of Figures	X
CHAPTE	R	
I	INTRODUCTION	1
II	LITERATURE SURVEY	3
	2.1 Partial Oxidation of Propylene	3
	2.2 Reactions Using Gold Catalysts	6
	2.3 Gold Catalysts for Epoxidation	8
	2.4 Catalyst Preparation	9
	2.4.1 Deposition-precipitation Method	9
	2.4.2 Co-precipitation Method	11
	2.4.3 Sol-gel Method	12
III	EXPERIMENTAL	15
	3.1 Materials	15
	3.1.1 Reactant Gases	15
	3.1.2 Chemicals	15
	3.2 Experimental Setup	16
	3.2.1 Gas Blending System	18

CHAPTER	0		PAGE
	3.2.2	Catalytic Reactor	18
	3.2.3	Analytical Instrument	18
	3.3 Cataly	st Preparation	19
	3.3.1	Sol-gel Method	19
	3.3.2	Co-precipitation Method	20
	3.3.3	Deposition-precipitation Method	20
	3.4 Cataly	st Characterization	21
	3.4.1	Surface Area Measurement (BET)	21
	3.4.2	X-ray Diffraction (XRD)	21
	3.4.3	Atomic Absorption Spectroscopy (AAS)	22
	3.5 Cataly	rtic Activity Measurement	22
IV	RESULT	S AND DISCUSSION	24
	4.1 Catal	yst Characterization	24
	4.1.1	Surface Area Measurement	24
	4.1.2	X-ray Diffraction Analysis	27
	4.1.3	Percentage of Gold Loading	31
	4.2 Catal	yst Activity Testing	32
	4.2.1	Activity of Gold Catalysts on	
		Various Supports	32
		4.2.1.1 Gold Supported on Zinc Oxide	
		Catalysts (Au/ZnO)	32
		4.2.1.2 Gold Supported on Alumina	
		Catalysts (Au/Al ₂ O ₃)	33
		4.2.1.3 Gold Supported on Titania	
		Catalysts (Au/TiO ₂)	33

CHAPTER		PAGE
	4.2.2 Comparison of Au/TiO ₂ catalysts prepared by	
	SG and DP Methods	35
	4.2.2.1 Calcination Temperature	35
	4.2.2.2 Hydrogen in Feed Stream	35
	4.2.2.3 Oxygen in Feed Stream	37
	4.3 Comparison with Other Workers	38
V	CONCLUSIONS AND RECOMMENDATIONS	40
	REFERENCES	42
	CURRICULUM VITAE	46

LIST OF TABLES

TABL	E	PAGE
4.1	Surface area of Au/ZnO catalysts prepared by CP method	
	calcined at 400°C	24
4.2	Surface area of Au/Al ₂ O ₃ catalysts prepared by SG method	
	calcined at 400°C	25
4.3	Surface area of Au/TiO ₂ catalysts prepared by SG method	26
4.4	Surface area of Au/TiO ₂ catalysts prepared by DP method	26
4.5	Percentage of gold loading on supports	31
4.6	Effect of gold loading on Au/ZnO (CP) catalysts	
	calcined at 400°C, at the reaction temperature of 80°C	33
4.7	Effect of gold loading on Au/Al ₂ O ₃ (SG) catalysts	
	calcined at 400°C, at the reaction temperature of 80°C	34
4.8	Effect of gold loading on Au/TiO ₂ (SG) catalysts	
	calcined at 400°C, at the reaction temperature of 80°C	34
4.9	Comparison with other workers for 1% Au/TiO ₂ catalysts	39

LIST OF FIGURES

FIGURE		PAGE
3.1	Schematic flow diagram of the experimental apparatus	17
4.1	XRD patterns of Au/ZnO (CP) catalysts	
	calcined at 400°C	28
4.2	XRD patterns of Au/Al ₂ O ₃ (SG) catalysts	
	calcined at 400°C	28
4.3	XRD patterns of Au/Al ₂ O ₃ (SG) catalysts	
	calcined at 400°C	29
4.4	XRD patterns of Au/TiO ₂ (SG) catalysts	
	calcined at 400°C	29
4.5	XRD patterns of 1% Au/TiO ₂ (SG) catalysts	
	at various calcination temperatures	30
4.6	XRD patterns 1% of Au/TiO ₂ (DP) catalysts	
	at various calcination temperatures	30
4.7	Effect of calcination temperature on selectivity to PO and	
	PO production rate for 1%Au/TiO ₂ (at 10% C ₃ H ₆ , 10% O ₂ ,	
	and 10% H ₂)	36
4.8	Effect of % hydrogen in feed stream on selectivity to	
	PO and PO production rate for 1%Au/TiO ₂	
	(at 10% C ₃ H ₆ and 10% O ₂)	36
4.9	Effect of % oxygen in feed stream on selectivity to	
	PO and PO production rate for 1%Au/TiO ₂	
	(at 10% C ₃ H ₆ and 10% H ₂)	38