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ABSTRACT

4181002063 PETROCHEMICAL TECHNOLOGY PROGRAM
Ms. Korada Supat: Methane Conversion to Synthesis Gas in
Corona Discharge
Thesis Advisors: Prof. Richard G. Mallinson and Assoc. Prof.
maeth Chavade], 146 pp. ISBN 974-17-2264-8
Keywords Corona, Plasma, Partial Oxidation, Methane Reforming, Carbon
Dioxide Reforming, Steam Reforming

Synthesis gas is a versatile feedstock for many synthesis processes. There are
several conventional reactions to produce synthesis gas i.e. steam reforming, partial
oxidation, and carbon dioxide reforming but these catalytic processes have to be
operated at high temperatures. Because of non-equilibrium property of low
temperature plasma, it is thought to be an alternative way to drive the methane
reforming reaction to synthesis gas instead of high temperature catalytic processes.
In this study, synthesis gas production from methane using an ac corona discharge
was conducted with and without catalysts. To study partial oxidation of methane, air
was used as feed gas for reducing investment and operating cost as compared to pure
oxygen. The methane conversion dropped dramatically but oxygen conversion
increased with addition of ethane to the feed gas. The nitrogen in air not only acts as
a dilute gas but also affects the reactions. The results show that oxygen is the most
effective active species to reduce carbon formation and increases methane
conversion as well as lower the specific energy consumption. For this reason, steam
reforming could not be operated alone under corona discharge to convert methane
into synthesis gas hecause of the carbon formation. For carbon dioxide reforming
with methane in low temperature plasmas, methane and carbon dioxide conversions
both increased with increasing voltage, gap width, and carbon dioxide to methane
feed mole ratio but decreased with increasing frequency and flowrate. Under the
studied conditions, methane conversion was always higher than carbon dioxide
conversion. Sinusoidal and square waveforms gave negligibly different results of the



reactant conversions and the product distribution of partial oxidation of methane with
air and carbon dioxide reforming with methane.

To find the way to increase the efficiency of producing synthesis gas, the
partial oxidation of methane with carbon dioxide was carried out in the presence and
absence of Pt loaded KL zeolite (Pt/KL) and Pt/Zro2. The results showed that the
combination of catalyst and electric discharge gave a higher oxygen conversion but a
little bit lower methane conversion. The presence of catalyst did not show the
synergetic effect on both partial oxidation and carbon dioxide reforming.

The challenging method to improve synthesis gas production efficiency by
introducing water in feed steam was investigated. Combined carbon dioxide and
steam reforming with methane produced higher methane conversion and CO/C- ratio
than either carbon dioxide or steam reforming. In case of the combined partial
oxidation and steam reforming, the energy consumed to convert a methane molecule
decreased dramatically from es to 13 eV/mcwith increasing the percentage of water-
vapor from o to 50% at a CH4/Ox ratio of 2 ;1.
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