EFFECT OF PRINT SCREEN INK ON PROPERTIES OF RE -EXTRUDED HIGH DENSITY POLYETHYLENE (HDPE)

Ms. Chuthamas Nandidarbha

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2001

ISBN 974-13-0713-6

119650329 77 A.A. 2546

Thesis Title

: Effect of Print Screen Ink on Properties of Re-Extruded

High Density Polyethylene (HDPE)

By

: Chuthamas Nandidarbha

Program

: Petrochemical Technology

Thesis Advisors: Prof. John F. Scamehorn

Dr. Pitt Supaphol

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

K. Bunyahint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Prof. John F. Scamehorn)

(Dr. Pitt Supaphol)

(Assoc. Prof. Anuvat Sirivat)

บทคัดย่อ

จุฑามาศ นันทิทรรภ: ผลกระทบของหมึกพิมพ์ต่อสมบัติของโพลีเอทที่ลีนชนิดความ หนาแน่นสูงที่ผ่านกระบวนการผลิตซ้ำ (Effect of Print Screen Ink on properties of Re-Extruded High Density Polyethylene (HDPE)) อ. ที่ปรึกษา: ศ. จอห์น เอฟ สแกมีฮอร์น (Prof. John F. Scamehorn) และ คร. พิชญ์ ศุภผล 56 หน้า ISBN 974-13-0713-6

โพลีเอทที่ลีนชนิคความหนาแน่นสูงเป็นพลาสติกที่มีนิยมใช้แพร่หลาย แต่การบริโภค พลาสติกชนิคนี้จำนวนมาก ก่อให้เกิดผลกระทบจากขยะที่ใช้แล้วของผลิตภัณฑ์ที่เพิ่มขึ้นด้วย การ นำพลาสติกชนิคนี้กลับมาใช้ใหม่สามารถลดปัญหานี้ลงได้ แต่คุณภาพของผลิตภัณฑ์ที่ได้จากการ นำพลาสติกมาหลอมใช้ใหม่นั้น ไม่สามารถเทียบกับผลิตภัณฑ์ที่ได้จากพลาสติกที่ยังไม่ได้ผ่าน กระบานการผลิตมาก่อน สาเหตุสำคัญคือมีสิ่งเจือปนในพลาสติกที่นำกลับมาใช้ใหม่ เช่น หมึก พิมพ์ที่พิมพ์ลงบนผิวพลาสติก วัตถุประสงค์ของงานวิจัยนี้คือ ศึกษาผลกระทบที่เกิดจากหมึกพิมพ์ ที่ปนเปื้อนมากับโพลีเอทที่ลีนชนิดความหนาแน่นสูง ต่อสมบัติทางความร้อน สมบัติเชิงกล และ สมบัติของสีของพลาสติกที่ผ่านกระบวนการอัครีดซ้ำ พลาสติกที่ใช้ในการทดลองผ่านการแขก หมึกออกที่ระดับการแยกต่างๆ โดยใช้สารลดแรงตึงผิวที่มีขั้วบวก ในงานวิจัยนี้ใช้สารซิติ้วไตร เมททิลแอมโมเนียมโบรไมด์ในการแยกหมึกจากผิวชิ้นงาน จากการทดลองพบว่าหมึกพิมพ์ไม่ทำ ให้เกิดการเปลี่ยนแปลงที่สังเกตุได้ชัดเจนในด้านสมบัติเชิงกล และสมบัติทางความร้อนของ พลาสติก แต่ก่อให้เกิดการเปลี่ยนแปลงสมบัติด้านโครงสร้างผลึกและสีของพลาสติกอย่างชัดเจน

ABSTRACT

4271003063 : PETROCHEMICAL TECHNOLOGY PROGRAM

Ms. Chuthamas Nandidarbha: Effect of Print Screen Ink on

properties of Re-Extruded High Density Polyethylene(HDPE)

Thesis Advisors: Prof. John F. Scamehorn and Dr. Pitt

Supaphol, 56 pp ISBN 974-13-0713-6

Keywords : HDPE/ Plastic Recycling/ Deinking

HDPE is widely used and its consumption has increased continually: this translates into a large amount of solid waste produced. Recycling of such a waste has been perceived as a means for dealing with this environmental problem. It is however easier said than done, since properties of recycled HDPE articles are inferior to those produced from virgin resins. The worsening of the properties is a result of the included contaminants. One of the contaminants is the ink used in printing HDPE bottles. The main objective of this work is to study the effect of residual ink on the color characteristics, thermal and mechanical properties of re-extruded HDPE articles. A cationic surfactant, cetyltrimethylammonium bromide, was used to prepare samples with different degrees deinking: namely, 50% and 100%, respectively. The results showed that the presence of small amounts of residual ink had no significant effect on thermal and mechanical properties of re-extruded HDPE. However, presence of residual ink affected the color characteristics and the percent of crystallinity of re-extruded HDPE.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Prof. John F. Scamenorn for his invaluable guidance and assistance towards to the completion of thesis. I would like to tend my sincere thanks to Dr. Pitt Supaphol for being my mentor, and for his support, patience and kindness, Mr. John Ellis, the polymer man, who gave invaluable suggestions to my research. I sincere thank Dr. Kavee SriKulkij for allowing me to use the spectrophotometer. I tend my sincere thank to Assoc. Prof. Anuvat Sirivat for being my committee. I am also greatly indebted to the Petroleum and Petrochemical college for providing me with a partial scholarship and teachers and all staff members of the Petroleum and Petrochemical college for all assistance they provide.

I would like to thank Ms. Arubol Chotipan for her suggestions.

Special "thank you" to my lovely friends, both Petrochemical technology and Polymer technology as well as all Ph.D. students, who taught me the meaningful and unforgettable words; friendship love and care.

My greatest gratitude to Papa, Mamee and L for my life I received, for infinity of love and care I can touch, and for everything made me being myself.

Finally, I would like to dedicate this thesis to my beloved grand mom, Udom McIntyre.

TABLE OF CONTENTS

CHAPTER		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgement	V
	Table of Contents	vi
	List of Tables	X
	List of Figures	xi
I	INTRODUCTION	1
II	LITERATURE SURVEY	4
	2.1 High Density Polyethylene	4
	2.2 Recycling of HDPE	4
	2.3 Print Screen Ink	5
	2.4 Surfactant	7
	2.4.1 The Natural of surfactant	7
	2.4.2 Mechanism of Deinking	9
	2.4.2.1 Roll-backed (Roll-up) Mechanism	9
	2.4.2.2 Solubilization	11
	2.5 Related Work	13
III	EXPERIMENTAL DETAILS	16
	3.1 Materials and Chemicals	16
	3.1.1 High Density Polyethylene	16
	3.1.2 Cationic Surfactant	16

CHAPTER		PAGE
	3.1.3 pH Adjustment Chemicals	16
	3.1.4 Water	16
	3.2 Experimental Procedure	17
	3.2.1 Deinking Part	17
	3.2.1.1 Sample Preparation	17
	3.2.1.2 Analysis of % Ink Removed	17
	3.2.1.2 Analysis of 76 link Removed 3.2.1.3 Experiment	17
	3.2.2 Processing Part	18
	3.2.3 Sample Preparation for Mechanical Testing	19
	3.3 Testing Procedure and Analytical	19
	3.3.1 Tensile Strength	19
	3.3.2 Impact Resistance	19
	3.3.3 Hardness	20
	3.3.4 Differential Scanning Calorimeter (DSC)	20
		20
	3.3.5 Thermogravimetric Analyzer (TGA)	20
	3.3.6 Spectrophotometer	20
IV	RESULTS AND DISCUSSION	21
	4.1 Thermal Properties	21
	4.1.1 Melting Temperature	21
	4.1.2 Percent of Crystallinity	23
	4.1.3 Decomposition Temperature	25
	4.2 Mechanical Properties	28
	4.2.1 Tensile Strength	28
	4.2.2 Impact Resistance	30
	4.2.3 Hardness	32

CHAPTER		PAGE
	4.3 Color Characteristics	34
V	CONCLUSIONS AND RECOMMENDATIONS	37
	REFERENCES	38
	APPENDICES	40
	CURRICULUM VITAE	56

LIST OF TABLES

TABLE		PAGE
2.1	Print screen inks formula.	6
4.1	Color difference of re-extruded HDPE at 0. 50 and 100%	35
	100% ink removal from surfaces.	
4.1	Color difference of virgin and printed samples without	36
	deinking after 5 passes of re-extrusion.	
D1	Melting temperature data of re-extruded HDPE at	51
	0, 50 and 100% ink removal from surfaces.	
D2	Melting temperature data of the virgin and the printed	51
	samples after 5 times of re-extrusion.	
D3	Percent of crystallinity data of re-extruded HDPE at 0, 50 and	52
	100% ink removal from surfaces.	
D4	Percent of crystallinity data of the virgin and the printed	52
	samples after 5 times of re-extrusion.	
D5	Tensile strength data of re-extruded HDPE at 0, 50 and	53
	100% ink removal from surfaces.	
D6	Tensile strength data of the virgin and the printed	53
	samples after 5 times of re-extrusion.	
D7	Impact resistance data of re-extruded HDPE at 0, 50	54
	and 100% ink removal from surfaces.	
D8	Impact resistance data of the virgin and the printed	54
	samples after 5 times of re-extrusion.	
D9	Hardness data of re-extruded HDPE at 0, 50 and	55
	100% ink removal from surfaces.	

TABLE	
D10 Hardness data of the virgin and the printed samples	55
after 5 times of re-extrusion.	

46

LIST OF FIGURES

FIGURE		PAGE
1.1	Plastics recycling in the USA, 1997.	2
2.1.	Surfactant molecule/ion, and a presentation of a surfactant	8
	micelle in a surfactant solution some what above the	
	critical micelle.	
2.2	Detachment of ink from a polymer surface by the	10
	Roll-up mechanism.	
2.3	Detachment of ink from a polymer surface by the.	12
	Solubilization mechanism.	
3.1	Processing condition at the twin screw extruder.	18
4.1	Melting temperature of re-extruded HDPE at	22
	0, 50 and 100% ink removal from surfaces.	
4.2	Melting temperature of the virgin and the printed	23
	samples after 5 times of re-extrusion.	
4.3	Percent of crystallinity of re-extruded HDPE at 0, 50 and	24
	100% ink removal from surfaces.	
4.4	Percent of crystallinity of the virgin and the printed	25
	samples after 5 times of re-extrusion.	
4.5	Decomposition temperature of re-extruded HDPE	26
	at 0, 50 and 100% ink removal from surfaces.	
4.6	Decomposition temperature of the virgin and the	27
	printed samples after 5 times of re-extrusion.	
4.7	Tensile strength of re-extruded HDPE at 0, 50 and	29
	100% ink removal from surfaces.	

FIGURE		PAGE
4.8	Tensile strength of the virgin and the printed	29
	samples after 5 times of re-extrusion.	
4.9	Impact resistance data of re-extruded HDPE at 0,	31
	50 and 100% ink removal from surfaces.	
4.10	Impact resistance of the virgin and the printed	31
	samples after 5 times of re-extrusion.	
4.11	Hardness data of re-extruded HDPE at 0, 50	32
	and 100% ink removal from.	
4.12	Hardness of the virgin and the printed samples	32
	after 5 times of re-extrusion.	
Bl	Selection of the specified color (blue).	43
B2	Histogram and data values showing the distribution of	43
	Blue ink on printed plastic sheet before ink removal	
	process.	
В3	Histogram and data values showing the distribution of	44
	Blue ink on printed plastic sheet after ink completely	
	Removed.	
C1	Shaking time for ink removal from surfaces process at	45
	5 mM of CTAB, pH12, 30°C, 2 hrs of soaking times.	
C2	TGA data of the re-extruded virgin HDPE without	46
	deinking from surfaces.	
C3	TGA data of the re-extruded printed HDPE without	46
	deinking from surfaces.	
C4	TGA data of the re-extruded virgin HDPE at 50%	47
	deinking from surfaces.	

FIGURE		PAGE
C5	TGA data of the re-extruded printed HDPE at 50%	47
	deinking from surfaces.	
C6	TGA data of the re-extruded virgin HDPE at 100%	48
	deinking from surfaces.	
C7	TGA data of the re-extruded printed HDPE at 100%	48
	deinking from surfaces.	
C8	TGA data of the re-extruded virgin HDPE after 5	49
	passes of re-extrusion.	
C9	TGA data of the re-extruded printed HDPE after 5	49
	passes of re-extrusion	