A5 08UIUTWASUNTLUIUNIS DL NDUDAG NS UMY NTLRUN UM IBTUNBUIDLEALELADS

Implementation of diagonalization for overlap matrix via householder algorithm

YYUINT AnSuuade

51amuﬁlﬂumwﬁwaqmﬁﬁﬂmmwé’ﬂqm
UsygyivenanansUadin
Medvuall ANYINEIAIENS
PHAIN TNV

YnnsAnwn 2557

Jolasans A5 08 UIUTHATUNTLUIUNST LADENBUDAF NS UL NS NTTUNEAI8TUN BT LA LELADS
Jatanlulasanig UNYUANT avSuunde SAUTEINe 5433084023
21915971U5 w1 S09ANERNS19158 M5.3TR 2T59ANIU

MAY 1l AnINeIAEns Pnansaluvininetae Insfine 2557

UNANED

ASAIUIUAT DN ULAL LN ULINLABS I NLUNSNDFOUNEVDIFUNTSHLIAIBSNIWALAIDUFN LUNSNTFUNETIUIA

Ingiuazinnududouduegivrunvesssuulianawaziudaenifnw nMswidymisdesedunssuinnisinesinuelawy

Y

|
o aa a

Fuifiuszansnm eagldmleinunaznnmesleinuisiuduazgnies Fedlawneiuisinns wvdnddounsliegned
UsgAvsnmuardiaruududilumssiun dafu idelahedlamosiiaulugiuuunadeulvsunsudond siued
FanmsruwmazihluIeuiisuiumailénnnlsunss GAMESS Sadulusunsumnnsgiuiluifeuld naveslusunsuiivng
fideldamundloFouiivunadiliainlusunsu GAMESS nui mleinuuagleinunnnesiilsannlusunsudiimuniienlaiwindu

fuAaINlUsUNTI GAMESS tlaeann TUsunsu GAMESS Taisnsmlainunnmesanlasinesnausadisnainlsunsuveside

Ifashetu Jelusunsudseglusenitmasimuinaidiolmuiasaauysalaildasifieuwiniulusunsy GAMESS

a ¢

AdALY: lvsndgouny, lendlaines

Title Implementation of diagonalization for overlap matrix via householder algorithm
Student name Mr. Napat Sitthimonchai ID 5433084023
Advisor Assoc. Prof. Dr. Viwat Vchirawongkwin

Department of Chemistry, Faculty of Science, Chulalongkorn University, Academic year 2014

Abstract

Calculations of eigenvalues and eigenvectors are evaluated through overlap matrix from Schrodinger
equation in quantum chemistry. The overlap matrix is complexity and large matrix depending on the stage of
molecule and the selected basis set. This problem can be solved effectively by using a diagonalization method.
The householder is a method that it is able to diagonalize the overlap matrix, which shows a high potential and
accuracy for calculation. Thus, we selected the householder method, developed by C language. The results of
program are eigenvalues and eigenvectors compared with those values obtained from the GAMESS package. The
developed program and GAMESS have given the differences of eigenvalues and eigenvectors, according to the
developed program has used different methods to calculate the results. The program is under the development

stage at the moment. If the program succeeds, the results will be comparable with the GAMESS package.

Keyword: Overlap matrix, Householder

Acknowledgement

This senior project was successfully finished with the tremendous support from our senior
project advisor, Assoc. Prof. Dr. Viwat Vchirawongkwin who always gives me his advice
encouragement for my academic study.

Secondly, I would like to special thank Assoc. Prof. Dr. Vudhichai Parasuk and Assist.
Prof. Dr. Boosayarat Tomapatanaget, who acted as the senior project exam committee members.

Thirdly, I heartily thank our internal project guide, Mr. Chokchai Pornpiganon, for his
guidance and suggestions during this project work.

Finally, I would like to thank Department of Chemistry, Faculty of Science, Chulalongkorn
University for the support of the infrastructure for the calculations.

Abstract (Thai)
Abstract (English)
Acknowledgement
List of Figures
List of table
Chapter 1: Introduction
Chapter 2: Theories and
2.1 Electronic structure calculation
2.2 Diagonalization
2.3 Householder method
2.4 Overview program
Chapter 3: Result and Discussions
Chapter 4: Conclusion
Appendix
Bibliography
Vitae

Contents

i
i1

v

© o0 »n K~ D N -

13
24
25

List of Figures

2.1 Example form of overlap matrix for Li* with STO-3G basis set.

2.2 A diagram of the first step transformation for 4 x 4 matrix.

2.3 The process of program.

3.1 The 10 x 10 matrix of CO with STO-3G, basis set, for test the calculation.

3.2 Eigenvalues and eigenvectors of the matrix of CO are calculated on our program

3.3 Eigenvalues and eigenvectors of the matrix of CO are calculated on GAMESS.

O o0 O W

11

List of Table

3.1 The coordinate of tested carbon and oxygen atom listed in Angstroms (A).

Chapter 1

Introduction

Molecules contain several atoms and generate the various molecular shapes. A basis set is a set
of functions, which are combined in linear combinations to create the molecular orbitals. The geometry
and basis set are explained with mathematics by the overlap matrix. If molecular shape changed, the
elements of overlap matrix' are also modified.

Schrodinger equation' explains the moving of electrons in the molecular shape, but the is equation
cannot be calculated in computer. Thus, we will use Roothaan-Hall ? equation to solve on the computer
program.

The standard procedure to solve the molecular problem in computational chemistry is the
transformation the molecular space into the orthogonal space. A number of methods is diagonalization,
e.g., Jacobi, householder®, QR, LR and further. The diagonalization of each method shows an equality
only eigenvalues.

Householder method was developed for a high effectiveness of diagonalization. This method
shows the accuracy than other methods, because this one is unlimited size of matrix for calculation. The
method can solve an overlap matrix having a large size. Moreover, householder method was developed
into the effective method, which is the popular one at this moment. According to, the eigenvectors from
householder method can increase the accuracy value.

The overlap matrix explains a molecular form in each element of the matrix. It is able to calculate
the bonding, energy and further. The overlap matrix is a symmetric matrix, which is a square matrix [n X
n]. It is a complicated problem for calculation. As a result of this problem, it needs a computer program
to solve. Generally, the program is compiled through General Atomic and Molecular Electronic Structure
System (GAMESS)’. GAMESS was a program for ab initio molecular quantum chemistry. The
program can compute the method of approximation for the determination of the wavefunction and the
energy, but the program is coded with FORTRAN language.

We are developing the program for computational chemistry, namely Molecular Orbital
calculation with CUDA (MOCCA)®. MOCCA have been developed with C/C++ languageand utilize the
parallel feature of the graphics processing unit (GPU). The process diagonalization of MOCCA use
Jacobi for this time. So, my program of project work is wrote using C language and is prepared to
implement on GPU in the future.

We are interested in the developing the program and calculation methods based on the
householder effectively with C language. The method will be applied to MOCCA, when the program is
successful.

Chapter 2

Theories and Programing

2.1 Electronic structure calculation

Electronic structure describes the motion of electrons in atoms or molecules. A molecular shape
determines the molecular orbitals (MOs) or wavefunction, contracted from the atomic orbitals (AOs).

Schrodinger proposed the equation (eq. (2.1))
fiyy = Ey, @.1)

where H is Hamiltonian operator, 1 is wavefunction, and E is the energy (eigenvalue) for the system.
However, the equation is unable to calculate energy system directly. Thus, the equation needs to
transformation for solving.

_ JyHydv
B = e

The variable, dv, indicates an integration with respect to the spatial coordinates (x, y, z, in
Cartesian coordinate system), integrated over all of space is implied.

(2.2)

For example, two s orbitals (¢, and¢,) of hydrogen molecule (Hz) are approximated by the linear
combination of atomic orbital (LCAO) to be the molecular orbitals,

Y=g+ 020, (2.3)
where ¢;and c; are coefficients, and ¢, and ¢, are basis set on each atom.

Eq. (2.3) takes the value, 1, into eq. (2.2).

— f(cl ¢1+C2 ¢2)H(C1¢1+C2 ¢2)dv

E (2.4)
J(c1¢,+c24,)%dv
Eq. (2.4) is multiplied and changed variable into eq. (2.5)
2 2
ciH{1+2c1c2Hip+Cc5H
_ CGiH1114C1CH 215 Hpp 2.5)

C%511+ZC1C2512 +C22522 ’

where

f¢1l:l¢1dv = Hllo

f¢1H¢2dU = HlZ = f ¢2ﬁ¢1dv = H21’

f¢2H¢2dU = HZZ)

f¢idv = 5117

f¢1¢2dv = 512 = f¢2¢1dv = 5219

f¢§dv = 5229

Hij are not operators, but they are the integrals involving H and basis functions. Eq. (2.5) is transformed
to Roothaan-Hall equation (eq. (2.6)) that is a simple equation for solving.

HC = SCeg,
where the four matrix

H = (Hn H12)

Hyy Hyy)
_ (€11 C12

C= (Cz1 sz)’

S = (511 512)
Sa1 S22)°

(2.6)

The H matrix is an energy-element matrix, called the Fock matrix. The coefficient matrix C contains
elements of the weighting factors (Cj), determining the extension of each basis function ¢ within each
atomic orbital on an atom that contributes in each MO. The S matrix is the overlap matrix, whose
elements are the overlap integral Sij measuring of how well pair of basis function, atomic orbitals,
overlap. Perfect overlap between the identical function on the same atom corresponds to Sji = 1, while
zero overlap between different functions on the same atom or well-separated functions on different atoms
corresponds to Sjj = 0. The diagonal € matrix is an energy-levels matrix, whose diagonal elements are the

MO energy level, corresponding to the MOs.

The overlap matrix is a square matrix containing a matrix size of n X n, where n is the number of
atomic orbitals modulate by basis functions ,For example, the overlap matrix is fig. 2.1.

[1 0.241137
0.241137 1

0 0

0 0

0 0

(=N e R)

0
0
0
1

0

0
0

Tsys

Figure 2.1 Example form of overlap matrix for Li" with STO-3G basis set.

4

Overlap matrix can use to calculate the energy, bonding and further, which are showed on the
eigenvalues and eigenvectors from the diagonalization matrix. But, eq. (2.6) is unable to calculate
directly, it needs the transformation process or orthogonalization to eq. (2.10) form.

Eq. (2.7) to eq.(2.10) show the Lowdin transformation procedure for eq. (2.6) into eq. (2.10).
The definition of a matrix C' is
1 1
C'=S2C ie C=S72C. (2.7)
1
Substituting C = S™2C' from eq. (2.7) into eq. (2.6), getting
1 L 1
ST2HSz2C’ = S728S2C'e. (2.8)
Let
L1
S2HSz=H' (2.9)
1 1 1 1
and note that S 2SS 2 = S 25 2 = 1. Finally, the eq. (2.6) is transformed into the orthogonal space as

H'C' = Ce, (2.10)

where H' is the Fock matrix in orthogonal dimension, C' is the matrix of coefficients ¢’, and ¢ is
eigenvalue matrix.

1
The orthogonalizing matrix S 2 is calculated from S. The symmetric orthogonalization treats all the

wave functions on an equal footing.
The diagonalization in eq. (2.10) is called orthogonalization, since the result is to make the basis

functions orthogonal. The orthogonaolization is important for solving Roothaan-Hall equations so the
diagonalization is the solution of process.

2.2 Diagonalization

Diagonalization is a procedure of matrix transformation from one space to orthogonal space. All
of vectors in orthogonal space arrange in perpendicular dimension. We want the solution of the
Schrodinger equation that appropriates to our particular problem. An orthogonal matrix A can be written
A = PDP~1 where D is a diagonal matrix. The process of finding P and D is diagonalization.

Ax = Ax (2.11)

The eq. (2.11) is solved with normal calculation that is inaccurate, highly slow, yielding only eigenvalues
but not eigenvectors. Diagonalization is crucial for this process. The methodology of diagonalization has
several suggestions, for example Jacobi, householder, QR, LR method and etc. Finally, the
diagonalization results to the eigenvalues and eigenvectors. However, each diagonalization method
shows the equivalence of eigenvalues, but the eigenvectors vary by each method.

2.3 Householder method

Alston Scoot Householder created a diagonalization method where is called householder
method’®. The householder method is able to calculate a symmetric and non-symmetric matrix. The
overlap matrix is a symmetric matrix, then used the symmetric method.

The principle of householder method for symmetric matrix, where 4 x 4 overlap matrix is showed
in eq. (2.12) to eq. (2.24)

Therefore, the equation can solve, which is eq. (2.12). The equation form of householder matrix
is used

uuT
Q=1-=-, (2.12)

where Q is a householder matrix, I is an identity matrix, u is a vector, and

_ 1ot _ 1,2
H—Zu u—2|u|) (2.13)

The uu' in eq. (2.13) is outer product that is a matrix with the elements (uu’);; = ujuj . The matrix
is an orthogonal matrix where symmetric (Q' = Q). So,

o= 0= (1-5)(1-%)

H H
_ uuT u(uTu)uT
=1-2 ” + 2
—1— ZE + u@H)uT

H H2
=1
This shows that Q is also an orthogonal matrix.

Let x be an arbitrary vector and consider the transformation Qx. Choosing

u=x+ ke; (2.14)
where k = +|x|, e, = [1 0 0... 0]T
_ uuT _ u(x+ke,)T
QX—(I—T)X—[I—T]X (2.15)
_ u(xTx+kelx) u(k?+kx,),
=X —x X 7w
but
2H = (x + ke;)T(x + key) = |x|? + k(xTe; + e]x) + k?ele,
= k% + 2kx; + k2 = 2(K? + kx) (2.16)
So,

Qx=x—u=-ke; =[-k 0 0 ...0]T. (2.17)

Householder Reduction

A symmetric n X n matrix is applied by the following transformation.

=fo Gl =T o @19

The first column and row of matrix A (or A1) does not reduce in this step. The vector x represents the
first column of the matrix A with Aj;. A'is an element of the matrix A, but it is omitted the first column
and row element. The matrix Q of dimensions (n — 1) X (n — 1) is using eq. (2.13) - (2.15) into eq.
(2.19). The transformation can reduce the first column of the matrix A.

[
|

A11] _ |
Lo |

Qx

T
A < P,AP, = [%1; (&‘,)Q] (2.19)

The product is the tridiagonalize matrix in the first column and row. Fig. 2.2 show a diagram of
the first step transformation for 4 x 4 matrix.

-k
Q Q 0 QA'Q

0 0

Asy A

0 0 07 [Ax A1z Az Al 1 0 0 0 Ay =k 0 0
0
“ | | [O

SO O O

Figure 2.2 A diagram of the first step transformation for 4 x 4 matrix.

The second step, the second column and row of the new matrix A is reduced as the transformation
for 3 X 3 matrix.

A < P,AP,,
where

5:% g] (2.20)

that I is a 2 X 2 identity matrix.Q is a (n — 2) X (n — 2) matrix constructed by choosing for x the
bottom n — 2 elements of the second column of A. The total of transformation is taken with since n —
2.

I, of

Pi=0 Q;

So it attains the tridiagonal form.

P; is an extravagant form when it is the multiplication matrix of P;AP process.

to transform.

= A (T o AT T
AQ = A (1 H)_A ST = A -,
where v = A
H
Therefore,
T
QA'Q = (I =) (A —vu") = A" —vul —— (A’ —vul)
AT o T u(uTa’) u(uTv)uT
=A —vu o
=A —vul —uvT + 2guu”,
UTV
where g= 27
Letting

w=v-—gu
QA'Q = A" —wuT —uwT,

which is carriedoni=1,2 ... n — 2.

It is convenient

(2.21)

(2.22)

(2.23)
(2.24)

2.4 Overview program

Fig. 2.3 show the flowchart of the developed program.

A 4

/ Overlap matrix /)

A 4

Householder method — Process (1)

A\ 4

/ Tridiagonal form / —

A 4

QL method . Process (2)

/ Eigenvalues, Eigenvectors /

End

Figure 2.3 show the process of our program.

The program consists of two processes. Firstly, the process starts when the overlap matrix is an
input of the program. The overlap matrix is calculated by householder method, producing tridiagonal
form. Secondly, the process reduces tridiagonal form to eigenvalues and eigenvectors with QL method.
Finally, the product, which is eigenvalue and eigenvector, compares with those value of GAMESS
program.

3.1. The overlap matrix of the system is calculated by GAMESS program, presented in Fig 3.1.

1.000000
0.248362
0.000000
0.000000
0.000000
0.000002
0.037781
0.000000
0.000000
\-0.063250

Chapter 3

Results and Discussions

In our experiment, the matrix that use in calculation is the carbon monoxide (CO) molecule’s
matrix that was calculated using STO-3G basis set. The geometry of the CO molecule is shown in Table

Table 3.1 The coordinate of tested carbon and oxygen atom listed in Angstroms (A).

0.248362
1.000000
0.000000
0.000000
0.000000
0.037893
0.370442
0.000000
0.000000
-0.325482

Atom | Atomic number x(A) y(A) z(A)
C 6.00 0.00 0.00 0.00
0 8.00 0.00 0.00 1.20

0.000000
0.000000
1.000000
0.000000
0.000000
0.000000
0.000000
0.215964
0.000000
0.000000

0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
1.000000 0.000000
0.000000 1.000000
0.000000 0.063850
0.000000 0.448480
0.000000 0.000000
0.215964 0.000000
0.000000 -0.313655

0.000002
0.037893
0.000000
0.000000
0.063850
1.000000
0.236704
0.000000
0.000000
0.000000

0.037781
0.370442
0.000000
0.000000
0.448480
0.236704
1.000000
0.000000
0.000000
0.000000

0.000000
0.000000
0.215964
0.000000
0.000000
0.000000
0.000000
1.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0.215964
0.000000
0.000000
0.000000
0.000000
1.000000
0.000000

-0.063250\
-0.325482
0.000000
0.000000
-0.313655
0.000000
0.000000
0.000000
0.000000
1.00000(?/

Figure. 3.1 The 10 X 10 matrix of CO with STO-3G basis set for testing the calculation.

Number 1 2 3 4 5
Eigenvalue 1.087015 1.066760 0.974941 0.840045 0.868850
Eigenvector -0.892754 0.378601 0.224913 -0.227167 0.122886
0.109069 -0.181245 -0.383595 0.734274 -0.358258
0.021151 -0.075257 0.098939 -0.432913 0.198831
0.201020 0.572951 0.533855 0.681842 -0.199386
-0.062165 -0.307163 0.606297 0.378358 0.018181
0.046397 0.214001 -0.369018 -0.196580 0.083630
-0.079831 -0.315840 0.347496 0.174081 0.007737
0.029287 0.116211 -0.133071 -0.036073 0.055528
0.010158 0.034604 0.002221 -0.153021 -0.300958
-0.030438 -0.126515 0.218280 -0.333866 -0.837031
Number 6 7 8 9 10
Eigenvalue 0.608067 0.393984 1.312259 1.443475 -0.045337
Eigenvector 0.023828 0.094353 0.001515 0.000210 -0.000024
-0.136380 -0.753471 0.001769 0.000570 0.000308
0.076726 0.245194 -0.015962 -0.003008 0.000111
-0.247610 0.294223 0.002570 -0.005439 -0.004148
-0.316940 0.172692 -0.378259 -0.106634 0.000590
-0.616858 0.024750 0.522432 0.162739 -0.060706
0.403404 -0.018104 0.506673 0.351786 -0.040218
-0.137789 0.007092 -0.187679 -0.137216 0.537891
-0.103571 0.004751 -0.26106 0.557104 0.498334
-0.078891 0.002168 0.276726 -0.447045 0.117484

Figure 3.2 Eigenvalues and eigenvectors of the matrix of CO are calculated on our program.

10

11

Number 1 2 3 4 5
Eigenvalue 0.248521 0.784036 0.784036 0.795263 0.850769
Eigenvector -0.096994 0.000000 0.000000 -0.652124 -0.306810
0.484598 0.000000 0.000000 0.523604 0.108449
0.000000 -0.686969 0.167552 0.000000 0.000000
0.000000 -0.167552 -0.686969 0.000000 0.000000
0.501233 0.000000 0.000000 -0.339859 -0.292197
0.112022 0.000000 0.000000 -0.310579 0.654118
-0.568426 0.000000 0.000000 0.276493 -0.350932
0.000000 0.686969 -0.167552 0.000000 0.000000
0.000000 0.167552 0.686969 0.000000 0.000000
0.410933 0.000000 0.000000 0.110279 -0.507646
Number 6 7 8 9 10
Eigenvalue 1.076710 1.215434 1.215964 1.215964 1.813304
Eigenvector 0.358628 0.549158 0.000000 0.000000 0.202497
0.216537 0.449637 0.000000 0.000000 0.479772
0.000000 0.000000 0.702890 -0.077110 0.000000
0.000000 0.000000 -0.077110 -0.702890 0.000000
-0.434693 -0.368582 0.000000 0.000000 0.472304
0.507558 -0.396243 0.000000 0.000000 0.220224
0.247077 -0.333197 0.000000 0.000000 0.552469
0.000000 0.000000 0.702890 -0.077110 0.000000
0.000000 0.000000 -0.077110 -0.702890 0.000000
0.562919 -0.303925 0.000000 0.000000 -0.389899
Figure. 3.3 Eigenvalues and eigenvectors of the matrix of CO are calculated on GAMESS.

Comparisons of eigenvalues of fig. (3.2) with fig. (3.3) are unequal. The problem is caused by:

T
1. One of the householder process calculates %, when uulT} = 0and H = 0, producing some
T 0 T T
undefined values.This case % =3 is changed % = (because the next step is eq. (3.1). If % 1s

zero, then Q can be calculated in this form.
T

Q=1- (1)

H

2. The methods of our program and GAMESS are differences. Householder method have 4 sub-
methods that are tred 1, tred 2, tred 3 and tred 4. The sub-methods transform the directly process of
householder. GAMESS use one of sub-methods, but our program directly implements the householder
method from the theory. Unfortunately, the results are differences.

Chapter 4

Conclusion

A program is developed to diagonalize the overlap matrix via householder method, calculating

for eigenvalues and eigenvectors. Unfortunately, the program is unsuccessful. There are two problems.
T

The calculation of % within the householder process, when the value uu® = 0 and H = 0. Then, the

method in the developed program reduces the tridiagonal to eigenvalues with QL method deferring to

GAMESS.

The correction of implementation has been needed to give the equivalent results with GAMESS
program. The understanding of householder method is the key to developing the parallel version,

computing on graphics processing unit.

OooONOTU A WN B

NNNNRPRRRPRRERRRRR
WNRPROWLOONOOU D WNERERO

1. Data in STO-3G, basis set of carbon and oxygen atom.

C STO-3G
S 3
1 71.6168370 0.
2 13.0450960 0.
3 3.5305122 0.
L 3
1 2.9412494 -0.
2 0.6834831 0.
3 0.2222899 0.
O STO-3G
S 3
1 130.7093200 0.1
2 23.8088610 0.
3 6.4436083 0
L 3
1 5.0331513 -0
2 1.1695961 0
3 0.3803890 0

2. Source code of householder method

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

void house (int r,float **A,float d[],float c[]) {

int i=0,3j=0,s=0,p=0,n=r;
float k=0,H=0,uMag=0;

float Aa[r-1][r-1]1, ulr-11,

1][r-1], I[r-1]1[r-1];
for (p=0;p<(r-2);pt++) {
printf ("p = %d\n",p
for (1=0;1i<(r-1) ;1i++
uli]=A[p
}

for (i=0;i<r-1-p;i++

Appendix

15432897
53532814
44463454

09996723
39951283
70011547

5432897
53532814
.44463454

.09996723
.39951283
.70011547

) ;
) {
1[i+1+p];

) {

for (3=0;j<r-1l-p;j++){

I[i]1[3]=

}

for (i=0;i<r-1-p;i++) {
I[i][1i]=1;

}//identitymatrix

for (i=0;i<r-1-p;i++) {
for (j=0;j<r-1-p;j++

0;

) {

(@)

.15591627
.60768372
.39195739

.15591627
.60768372
.39195739

uwul[r-1][r-1],Q([r-1][r-1],

QAQ[r] [r],

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Aa[i] [J]=A[i+1l+p] [J+1+p];

}
}
printf ("\n");
for (i=0;i<r-1-p;i++) {

k = (pow(ul[i],2)) + k;

}
k = sqgrt(k);
if(ul0] < 0.0){

k — .

for (i=0;i<r-1-p;i++) {
H= (pow(ulil,2))+ H;

pow (H,0.5);

= pow (H,2);

= H*0.5;

for (i=0;i<r-1-p;i++) {

for (J=0;j<r-1-p;j++) {

funja i a i
|

uulil (3] = (uljl*ulil);
if(i!l=3){
uulj1[1i] = wulil[J];

}
}
}
for (i=0;i<r-1-p;i++) {
for (3=0;j<r-1-p;j++) {
if(uuli][J]!=0.0 && H !'=0.0) { //check
uuli] [Jl=uuli]l [J]1/H;
}
else break;
}
}
for (i=0;i<r-1-p;i++) {
for (3=0;j<r-1-p;j++) {
Qi) (3] = I[1]1(J]) - uulil(3];
}
}
printf ("Q\n");
for (i=0; i<r-1-p;i++) {
printf ("[");
for (3=0;j<r-1l-p;j++){
printf ("SEN\L",Q[1]1[J]);
tprintf ("]\n");
}

for (1=0;i<r;i++){ //0A and QAQ set zero.

for (3=0;j<r; j++) {
QA[i][3] = 0.0;

14

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

QAQ[i][J] = 0.0;
}
}
k = -k;
QAQ[O0][0] = Alpllpl;
QAQ[O0][1] = k;
QAQ[1]1[0] = k;
printf ("QAQ\n") ;

for (i=0;i<r-p;i++) {
printf ("[");
for (3=0; j<r-p; Jj++) {
printf ("$f\t", QAQI[i]I[j]);
tprintf ("]\n");
}
printf ("Aa\n") ;
for (i=0;i<r-1-p;i++) {
printf (" [");
for (3=0;J<r-1-p;Jj++){
printf ("$£\t",Aa[i][J]);
}printf ("]1\n");
t
for (i=0;i<r-1-p;i++) {
for (§j=0;j<r-1-p;j++) {
for (s=0;s<r-1-p;s++) {

QA[1][J1=(Q[i][s]*Aals] [3])+(QA[L][]])’

}
}
}
for (i=0;i<r-1-p;i++) {
for (J=0;j<r-1-p;Jj++){
for (s=0;s<r-1-p;s++) {

QAQ[i+1]1[J+1]1=(QA[i][s]1*Q[s][J])+QAQ[i+1][j+1];
}
}
}
printf ("QAQ\n") ;
for (i=0; i<r-p;i++) {
printf("[");
for (J=0;j<r-p;Jj++) {
printf ("SE\t", QAQ[i][]J]);
}printf ("1\n");
}
printf ("\n");
for (i=0;i<r-p;i++) {
for (j=0;j<r-p;j++) {
Ali+p] [J+p]=0QAQ[1i]1[]];
}

}
printf ("A\n");

15

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

for (1i=0;i<r;i++) {
printf (" [");
for (3=0;j<r;j++) {

printf ("SENt",A[1]1[3]);

}printf ("1\n") ;

}
k=0;
H=0;
}//end loop
printf("\nd = [");
for (i=0;i<n;i++) {
d[i] = A[i][i];
printf ("SE\t",d[1]);
}
printf ("]\n\n");
printf("c = [");
for (i=0;i<n-1;i++) {
cli] = A[i][i+1];
printf ("SE\t",c[i]);
}
printf ("]1\n");

16

17

Line 1-8: The include files are used and declare a type of variables.
Line 9: The main loop of program when end loop (line132) since p < (r-2) (or size of matrix minus one).
Line 10: The program checks by printing the value of p.

Line 11-13: The process inputs the value u [i] from the top row of real matrix (A[p][it+1+p]). The size matrix u is
r-1.

Line 14-21: The process set the variable I that it is an identity matrix.
Line 22- 26: The process set value of Aa (A') from the real matrix (A).

Line 28-34: The process calculates k, which is square root of summation all value u (k = +|u]|). Then, if the
value of u[0] < 0.0 then k =-k.

Line 35: The process inputs value of u[0]+k to u[0].

Line 36: The variable H is set to zero.
Line 37-42: The process calculates H by H = % lul? .

Line 43-50: The process calculates the matrix uu (uu") with multiply matrix u and matrix u' (matrix transpose).

T
Line 51-58: The process calculates % with uu is devised by H.

T
Line 59-70: The process calculates matrix Q by [— % and print it.

Line 71-76: The process set zero the matrix QA and QAQ.

Line 77-80: The process input value Ai; into QAQ:; and k into QAQ12 and QAQ::.
Line 81-94: The program checks by printing the values of matrix QAQ and Aa.

Line 95-101: The process calculates the matrix QA with matrix Q multiply matrix Aa.
Line 102-109: The process calculates the matrix QAQ with matrix QA multiply matrix Q.
Line 110-117: The program checks by printing the matrix QAQ.

Line 118-122: The values of matrix QAQ input to matrix A.

Line 123-129: The program checks by printing the matrix A.

Line 130-131: The process resets the variable k and H to zero before the next loop.
Line 132: This line is the end loop of the method.

Line 133-138: The process inputs diagonal of A into d and print.

Line 139-145: The process inputs subdiagonal of A into ¢ and print.

2. Source code of QL method

QL method is a process of calculation the tridiagonal form to eigenvalues and eigenvectors. L is
the lower triangular matrix (the left part) that includes the diagonal, and Q is a rotation matrix. QL method

OCoONOOULLE WN R

AR ADAEADDPRRAWWWWWWWWWWRNNNNNNNNNNRRPRREPRRERRRPR
OO DWNPOOOMNIOTUDWNRPROWVLONOODTUDWNRPOWVLWONOOUDWNNERO

18

is a favorite to use after QR method that called QR and QL method*. The method can use tridiagonal

form of householder method because it uses diagonal, subdiagonal and real matrix A.

#include <math.h>
#define NRANSI

#include

"nrutil

.h"

float pythag(float a, float Db) {
float absa, absb;
absa=fabs (a) ;
absb=fabs (b) ;

void tqgli(float d[],

if

(absa > absb)

else return

int m,1,iter,1i, k;
float s,r,p,q9,f,dd,c,b;
(1=2;1i<=n;i++)
=0.0;
(1=1;1<=n;1++) {
iter=0;

for

e[n

]

for

do {

for

(absb == 0.0 2 0.

0

float e[], int n,

e[i-1]=e[il];

(m=1;m<=n-1;m++)

dd=fabs (d[m])+fabs (d[

{

//code for function pythagoras

float **z) {

m+1]);

return absa*sqrt (1.0+SQOR (absb/absa)) ;
absb*sqgrt (1.0+SOR (absa/absb))) ;

if ((float) (fabs(e[m])+dd) == dd) break;
}
if (m !'= 1) {
if(iter++ == 30)nrerror ("Too many iterations in tgli");
g=(d[1+1]-d[1])/(2.0*e[1]);
r=pythag(g,1.0);
g=d[m]-d[1]+e[1]/ (g+SIGN(r,q)) ;
s=c=1.0;
p=0.0;
for (i=m-1;i>=1;i--) {
f=s*e[i];
b=c*e[1];
e[i+l]=(r=pythag(f,q)):;
if (r == 0.0) {
d[i+l] -= p;
e[m]=0.0;
break;
1
s=f/r;
c=g/r;
g=d[i+1]-p;
r=(d[i]-g) *s+2.0*c*b;

d[i+1]=g+ (p=s*r);
g=c*r-b;

for

(k=1; k<=n; k++)

{

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

=z [k] [i+1];
[k] [i+1]=s*z[k] [i]+c*f
[k][i]=c*z[k] [1]-s*£;
}
}
if (r == 0.0 && 1 >= 1) continue;
d[l] -= p;
el[l]=g;
e[m]=0.0;
}
} while (m != 1);
}
printf ("QL Pass"); //check QL method

}
#undef NRANSI

19

OCoONOOULLE WN R

AR ADAEADDPRRAWWWWWWWWWWRNNNNNNNNNNRRPRREPRRERRRPR
OO DWNPOOOMNIOTUDWNRPROWVLONOODTUDWNRPOWVLWONOOUDWNNERO

20

3. Source code of diver run for householder and QL method.

#include <stdio.h>
#include <math.h>
#define NRANSI
#include "nr.h"
#include "nrutil.h"
#include "test.h"
#include "QL2.h"
#define TINY 1.0e-6

#define n 10 // edit size of matrix
int main () {

int i,3,k;

float *p,*d, *q, *e,*f, **a, **b;

static float c[n][n] = { //edit matrix for
calculate

{1.00000000000000022204, 0.24836239031011142497,
0.0000000000000000000CO, 0.00000O0OOOOOOOOOOOOOOQ, -0.00000000000000012371,

0.00000150822730372276, 0.03778103087794688897,
0.0000000000000C0O0COOOOOQ, 0.00000000000000000COOO, -
0.06325041378995543973},

{0.24836239031011142497, 1.000000000000000444009,
0.0000000000000000000OCO, 0.00000O0OOOOOOOOOOOOOOQ, -0.0000000000000001909¢6,
0.03789346793677286079, 0.37044193335519737253,

0.0000000000000C0O0COOOOOQ, 0.000000000000000OQ0COOO, -
0.32548200232478652349},

{0.00000000000000000000, 0.00000000000000000000,

1.00000000000000088818, 0.00000000000000000000, 0.00000000000000000000,
0.00000000000000000000, 0.00000000000000000000,
0.21596354654766608538, 0.00000000000000000000,
0.000000000000000000001%,

{0.00000000000000000000, 0.00000000000000000000,

0.00000000000000000000, 1.00000000000000088818, 0.00000000000000000000,
0.00000000000000000000, 0.00000000000000000000,
0.00000000000000000000, 0.21596354654766608538,
0.000000000000000000001,

{-0.00000000000000012371, -0.000000000000000190906,

0.00000000000000000000, 0.00000000000000000000, 1.00000000000000088818,
0.06385039699942257618, 0.448480242264302660426,
0.0000000000000000Q0COQOOQ, 0.00000000000000O0COOGOOO, -

0.31365485536680176581},

{0.00000150822730372276, 0.03789346793677286079,
0.0000000000000000Q0COQOOQ, 0.000000000000000C0O0COOO, 0.06385039699942257618,
1.00000000000000022204, 0.23670393651084761788,

0.0000000000000000Q0COQOOQ, 0.0000000000000C0O0COOGOOO, -

0.000000000000000057341,

{0.03778103087794688897, 0.37044193335519737253,

0.00000000000000000000, 0.00000000000000000000, 0.44848024226430266426,

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

0.23670393651084761788,
0.00000000000000000000,
{0.00000000000000000000,
0.21596354654766608538, 0.00000000000000000000, 0.
0.00000000000000000000, 0.00000000000000000000, 1.
0.00000000000000000000, 0.000000000
{0.00000000000000000000,
0.00000000000000000000, 0.21596354654766608538, 0.
0.00000000000000000000, 0.00000000000000000000, 0
1.00000000000000066613, 0.000000000000000000001},
{-0.06325041378995543973, -0.3254820023247865234
0.00000000000000000000, 0.00000000000000000000, =0
-0.00000000000000005734, 0.00000000000000013628, 0.
0.00000000000000000000, 1.00000000000000066613}1};
d = (1,n);
= vector (
= vector (
= vector (
(
(

0.000000000

1
1,n);
1,n);
1,n);
= vector(l,n);
= matrix(0,n-1,0,n-1);
= matrix(l,n,1,n);
for (1=0;1i<n;i++) {
for (3J=0;J<n;j++) {
alil[3] = clil[31;

14

o o QT 0D
|

1
house(n,a,d,e); //householder process
printf ("House ok\n"); //check householder
printf ("a\n");
for (1=0; i<=n-1;1i++) {
printf ("[");
for (§7=0;j<=n-1;j++) {
printf ("$f\t",ali
}printf ("1\n");

i1031)7

}
printf ("e=\n[");
for (1=0;i<=n;i++) {
printf ("$f\t",e[1]);
}printf ("1\n");
i<=n;i++) {
[1-11;

for (i=0;
plil=e

}

printf ("p=\n[");
for (i=0;i<n; i++) {

printf ("$f\t",pl[1

}printf ("1\n") ;

for (1=0;1i<=n;i++) {

into e

1)z

if (i==0/*]||1i==1*/){
e[11=0.0;

21

1.00000000000000022204,0.00000000000000000000,

00000013628},

0.00000000000000000000,

000000000000000000OOQ,
00000000000000066613,
00000000000},

0.00000000000000000000,

0000000000000O0OC0O0O0OOOO,

.00000000000000000000,

9,

.31365485536680176581,

00000000000000000000,

//reverse subdiagonal

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

}

else e[i+l]l=p[n-1];

}

//

printf ("\n p(reverse p)=\n[");
for (i=0;i<=n+1;i++) {
printf ("$E\t",e[i]);

}printf ("1\n");

for (1=0;i<=n;i++) {

1f(1==0) {

qli1=0.0;
}

else g[i]=d[n-i];

}

printf ("\n g(reverse d)=\n[");

for (1=0; 1i<=

n;i++) {

printf ("$f\t",qli]);
tprintf ("]1\n");
for (1=0;1i<=n;i++) {

dlil=qli];
}

for (i=1;i<=n;i++) {

for (§=1;i<=

n; j++) {

bli][j]=ali-1][3-11;

}
tgli(d,e,n,b);
printf ("b\n") ;

for(i=1;1i<=

//QL method where a is changed to Db

n;i++) {

printf ("[");
for (J=1;j<=n;j++) {

printf ("$£\t",b[1i][]]);

}printf ("1\n");

}

//reverse diagonal from d to g

//input g to d

printf ("\nEigenvectors for a real symmettic matrix\n");
for (i=1;i<=n;i++) {

for (3=1;j<=

n;j++) {

f[j]= 0.0;
for (k=1;k<=n; k++) {
f1J] += (c[J-11[k-1]1*b[k][i]);

}

printf ("%s

printf ("$1lls %1l4s

%$3d %$s %10.6f\n","eigenvalue",i," =",d[1i]);
//print eigenvalue

//print eigenvector

for (§=1; <=

n; j++) {

if(fabs(b[j][1i]) < TINY)
printf ("$12.6f %$12.6f %$12s\n",

else

b[j][1],£[3],"div.

by 0");

22

%9s\n", "vector", "mtrx*vect.", "ratio");

148
149
150
151
152
153
154
155
156
157
158
159
160

}

printf ("$12.6f %12.6f %$12.6f\n",

b[J1[1],£031,£031/b[3]1[1]);

printf ("Press Enter to continue...\n");
(void) getchar():;
1
free matrix(b,1,n,1,n);
free matrix(a,0,n-1,0,n-1);
free vector(f,1,n);
free vector(e,1,n);
free vector(d,1,n);

return O;

}

23

Bibliography

IRA N.LEVINE. Quantum Chemistry, Prentice-Hall: Brooklyn, New York; 1991; Vol.4.

Lewars, G.E. Computational Chemistry, Springer: London, New York; 2011; Vol.2; p.156-
157.

Kiusalaas J. Numerical methods in engineering with python, Cambridge University press: New
York; 2005; p.357-363.

Press, W.H.; Teukolsk, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C the art
of scientific computing, Cambridge University press: New York; 1992; Vol.2; p.469-481.

Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.;
Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; Windus, T.L.; Dupuis, M.; Montgomery J.A.
General Atomic and Molecular Electronic Structure System, Comput. Chem., 1993, 14, 1347-
1363.

Pornpiganon, C., 2014, Program development for molecular orbital calculations with CUDA
(MOCCA), Master’s Thesis, Chulalongkorn University.

Housholder A.S., Unitary triangularization of a nonsysmetric matrix, J. Assoc. Comp., 1958,
339-342.

Aukenthaler,T.; Blum,V.; Bungartz, H-J.; Huckle, T.; Johanni, R.; Krdmer, L.; Lang, B.;
Lederer, H.; Willems, P.R., Parallel solution of partial symmetric eigenvalue problems
from electronic structure calculations, Parallel Comput., 2011, 37, 783-794

Vitae

My name is Napat Sitthimonchai. I was born in Saraburi on the 25" of May 1992. I was
graduated from secondary school at Princess Chulabhorn's College Pathumthani, Pathumthani.
I was a Bachelor’s student at Department of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok during 2011 to 2014. I resived scholarship for the best activists from The
Government Pharmaceutical Organization (GPO) in 2013. I ever did many of University’s
activities such as vice president of academic of associate for factory of science in 2012, vice
president of CU Academic Expo in 2012 and CU-TU traditional football in 2012. My address is
393 Moo.10 SuwannaShorn Road, NongSuang, Wihandang, Saraburi, 18150.

	Cover (Thai)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgement
	Contents
	Chapter 1 Introduction
	Chapter 2 Theories and Programing
	Chapter 3 Results and Discussions
	Chapter 4 Conclusion
	Appendix
	Bibliography
	Vitae

