
CHAPTER II 
LITERATURE REVIEW

The crystallization of polymers can be broadly classified into three 
categories, which are (1) crystallization during polymerization , (2) crystallization 

induced by orientation, and (3) crystallization under quiescent condition. Only the 
third one, which is the crystallization with no external forces acting to the system 
during the crystallization process, was interested in this research work.

Furthermore, it should be noted that the crystallization of polymers can be 
subcategorized into (a) crystallization from  polym er solution, (b) crystallization from  

polym er melt, and (c) crystallization from  polym er glassy state. The second and the 
third types could be often called as “melt-crystallization” and “cold-crystallization”, 
respectively.

To understand the crystallization behavior of polymers, there are some basic 
concepts and theories to be reviewed, which are morphology, thermodynamics and 
kinetics theory of polymer crystallization.

2.1 The Morphology of Semi-Crystalline Polymers

In 1930, based on the X-ray diffraction results showed that in both natural 
and synthetic polymers presented certain crystalline feature. The Bragg reflection 
patterns also showed the broader peak than those obtained from non-polymeric low 
molecular weight substances. Hermann et al. (1930) proposed the model called 
‘ fringed-m icelle” model based on these observations as shown in Figure 2.1(a). 
According to the model, some parts of polymer segments align themselves together 
to form bundled crystalline regions which surrounded by the amorphous regions. 
However, this model was unable to explain the optical properties of polymer 
spherulites and their small angle X-ray scattering pattern.

Several years later, the electron diffraction results on cast films of gutta­
percha was reported by Storcks (1938). He observed that the total length o f the 
chains was much greater than the thickness of the films and led him to first propose a
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chain-folded structure to explain the experimental result. Individually Fischer, Till, 
and Keller in 1957, reported the growth of the single crystals of linear polyethylene 
from dilute solution which is in the form of thin platelets of ca. 10 nm thickness. Due 
to the electron diffraction experiments, the molecules are believed to align 
themselves normal to the lamellar platelets and it was suggested that the molecules 
have to fold back and forth on themselves. The ‘'folded-chain lamellar model” was 
then proposed due to these observations as shown in Figure 2.1(b).

The observation o f the semi-crystalline polymer morphology through the 
polarized light optical microscope made an evidence of large crystalline 
superstructure called “spherulites” which is commonly found for many polymer 
crystallized from a concentrated solution or a polymer melt. Microscopically, 
spherulites consist of ribbon-like lamellae that grow out radially from the center as 
shown in Figure 2.1(c).

F ig u r e  2.1 The proposed polymer crystal morphologies (a) “fringed-micelle model” 
(b) “folded-chain lamellar model” and (c) “spherulitic morphology”.
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2.2 Polymer Crystallization Kinetics

It is now well understood that the crystallization of polymer occurrs via the 
nucléation mechanism which are divided into “primary nucléation” and “secondary 
nucléation”. The primary nucléation is the formation of an initial small amount of 
crystalline materials (nuclei) which can be categorized into two types depending 
upon the origin of the nuclei. If there are some existing nuclei which may be a 
foreign particle or any second phase that initiate the crystallization, then the primary 
nucléation is termed “heterogeneous nucléation" . If no second phase existing in the 
system and the nuclei forms spontaneously due to the supercooling, then it is referred 
as “homogeneous nucléation". Wunderlich et a/.(1976) have further advocated the 
subdivision of the classification by incorporating the third category called “self 

nucléation” which is due to the preexisting or residual nuclei that survived the initial 
melt condition (or dissolution condition). The secondary nucléation is the subsequent 
crystal growth to continue the crystallization process on the growth surface by 
induction of more and more polymer molecules.

After the primary crystallization, the increase in crystallinity with slower rate 
is an evidence of the secondary crystallization which has been observed in many 
cases. The possibility of the secondary crystallization may be attributed to lamellar 
thickening process.

2.3 Kinetics Models

Avrami model (Avrami, 1939; Avrami, 1940; Avrami, 1941) is the most 
common approach for describing the kinetics o f phase transition. In order to 
describe the overall isothermal crystallization kinetics of a semi-crystalline polymer, 
the Avrami equation is expressed as

<9(0 = 1 -  exp[-(.KA0 "A ], (2.1)
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where 6(0 is the relative crystallinity function of time, Ka is the Avrami rate 
constant, and nA is the Avrami exponent. Usually, Ka is written in the form of a 
composite Avrami rate constant ka (i.e. k A = K a"a ). The mathematical background 
of Avrami equation is based on “the famous raindrop problem” solved by Poisson in 
1837. The phase transition is considered to be similar to the waves expanding due to 
randomly falling raindrops. According to the derivation o f the Avrami equation, it 
could be referred that Ka is dependent on the shape of the growing crystalline entities 
and the amount and type of nucléation. The exponent 7?A is dependent upon the 
nucléation type and growth geometry but not the amount of nucléation. Despite its 
popularity, the Avrami model has been argued to be appropriate for describing only 
the early stages of the crystallization process. The complications arise due to the 
effects of growth site impingement and secondary crystallization process, which 
occur in the later stages o f the crystallization process.

The relative crystallinity function of time 6(0 is, by definition, the ratio of 
the crystallinity value attained up to an arbitrary crystallization time to the total 
apparent crystallinity value attained over the crystallization period. Since 
crystallization is an exothermic process, it is assumed that the crystallinity value is 
linearly proportional to the enthalpy released during the crystallization process. This 
notions allows for the 6(0 function to be determined from the ratio o f the integral of 
the enthalpy o f crystallization over an arbitrary crystallization period to the integral 
of the enthalpy of crystallization over the overall crystallization period, i.e.

9{t) = (2.2)

where dHc is the instantaneous enthalpy of crystallization released at an arbitrary 
crystallization time and A//c is the enthalpy o f crystallization released over the course 
o f crystallization period.

Malkin et al (1984) proposed a macrokinetic equation based on a 
postulation that the overall crystallization rate equals the summation of the rate at
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which the degree of crystallinity varies with the emergence of the primary nuclei and 
the rate of variation in the degree o f crystallinity varies with the crystal growth rate. 
Mathematically, they arrived at an equation of the form:

0(0  =  1-

Cp+1
Co + exp(C,0 ’ (2.3)

where Co is the Malkin exponent which relates directly to the ratio o f the crystal 
growth rate G to the primary nucléation rate I  (i.e. Co °c G/I) and C] is the Malkin 
rate constant which relates directly to overall crystallization rate (i.e. C] = aG + bl, 

where a  and b are specific constants). It should be noted that the units of Cl are 
given as an inverse of time.

Urbanovici and Segal (1990) modified the Avrami model and proposed a 
new kinetic equation in the following form:

m  = 1 -  [l +  ( r  -  l X ^ u s O " US I /(1-0 (2.4)

where K\JS and ทบร are the Urbanovici-Segal rate constant and the Urbanovici-Segal 
exponent, respectively, and r is a parameter which satisfies the condition r > 0. 
When the value o f r approaches 1, the Urbanovici-Segal equation becomes identical 
to the Avrami equation. This simply means that the parameter r is merely a factor 
determining the degree of deviation of the Urbanovici-Segal model from the Avrami 
model. It is noted that the Urbanovici-Segal kinetic parameters (i.e. K\JS and ทบร) 
have a similar physical meaning to the Avrami kinetic parameters (i.e. K a and « a) 
and the units of K U S are, again, given as an inverse of time.

Based on the mathematical derivation of Evans (1945), Ozawa (1967) 
extended the Avrami theory to be able to describe the non-isothermal crystallization 
data without the use o f x-scale transformation. Mathematically, the relative 
crystallinity function 9(T) can be represented as a function o f cooling rate as
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(2.5)

where ko and no are Ozawa crystallization rate constant and Ozawa exponent 
respectively. It should be noted that the Ozawa kinetic parameters (i.e. ko and no) 
hold similar physical meaning as those of the Avrami ones.

Instead of describing the crystallization process with complicated 
mathematical models, Ziabicki (1967) proposed that the kinetics o f polymeric phase 
transformation can be described by a first-order kinetic equation of the form

where 6{i) is the relative crystallinity as a function of time and K (7) is a temperature- 
dependent crystallization rate function. In the case of non-isothermal crystallization, 
functions K(T) and 0(i) vary and are dependent on the cooling rate used.

For a given cooling condition, Ziabicki showed that the crystallization rate 
function K{T) can be described by a Gaussian function of the following form

where Zmax is the temperature where the crystallization rate is the maximum, K 171ax is 
the crystallization rate at the Tmax and D is the half-width o f the crystallization rate- 
temperature function. With use o f the isokinetic approximation, integration of 
equation (2.7) over the whole crystallizable range o f temperature (Tg<T<Tm°) leads to 
an important characteristic value for the crystallizability G, which is defined as

m 1-4 )1, (2.6)

K { T )= K mn exp -  4 In 2 w  ^ 2'"”(t  - t  )2Y c max / (2.7)

Gz = ] K { T )d T * l .0 6 4 K mmD . (2 .8)

In the case of non-isothermal crystallization studies using DSC where 
cooling rate is a variable, equation (2.8) can be applied when the crystallization rate
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function K(T) is replaced with a derivation function of the relative crystallinity 
91!1{โ') specific for each cooling rate studied (i.e., crystallization rate function at 
different cooling rate). Therefore, equation (2.9) is rewritten to be

o ,  = % { T } r r  ^  l.O640„„,D( , (2.10)

where 9max t  and D 41 are the maximum crystallization rate and the half-width of the 
derivative relative crystallinity as a function of temperature 91!{r). According to 
equation (2.10), G 1! is the kinetic crystallizability at an arbitrary cooling rate ($). The
kinetic crystallizability at unit cooling rate Gz can therefore be obtained by 
normalization G4 with <p(\.e.,Gz = G1!/!/)).

2.4 Thermodynamics Consideration of Polymer crystallization

2.4.1 Gibbs-Thomson Equation
From the schematic drawing of a lamellar structure o f polymer 

crystalline shown in Figure 2.1(b), the Gibbs free energy o f crystal forming at any 
temperature, T ,with finite crystal size can be written as

àG erya0, { 0  = 2 * r ° e  + 2l ( x  + Y )a  -  IXYAGJ {โ) (2.11)

where X  and Y represent the dimensions o f the basal crystal plane, / is the lamellar 
thickness, cr and cre are lateral and fold surface free energy respectively, and ÀG J  is
the free energy o f fusion per unit volume for a perfect crystal with infinite dimension 
which can be expressed as

A g ;  {โ) = AH  ๅ  {โ) -  T AS J  {โ) (2 . 12)
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where AH  J  (7’) and AS J ( t ) are the enthalpy and entropy changes upon the fusion at 
temperature T. At equilibrium melting temperature, T " , the melt is in equilibrium 
with the perfect crystal of infinite size, thus A G j(r^ ) = 0. Then the equation (2.12) 
gives

Aร ; (r1; ) = (2.13)

By assuming no thickening, X  and Y »  /, and o  « a  1,, the equation 
(11) at T =Tm can be rewritten as

a g ;(7-„)=2<7,/; (2.14)

From equation (2.12) at any melting temperature, Tm

A o ;  ) = a h ;  ( r . ) -  r„  a s ;  ( r .  ) * 0 (2.15)

Assuming A H J ( r J =  A H ;(r.°) and vv; f r , ) -  A.S'J'|V„?}. and 
combining equation (2.13), (2.14) and (2.15) together, thus

(2.16)

The well-known “Gibbs-Thomson” equation can be obtained as 
written in equation (2.16) which correlates the melting temperature and the thickness 
of a given lamellar crystal.

2.4.2 Lauritzen-Hoffman Secondary Nucléation Theory
The secondary nucléation theory for linear flexible macromolecules 

which are crystallized from the melt into chain-folded lamellae was introduced by
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Lauritzen and Hoffman (Lauritzen and Hoffman, 1960; Hoffman and Lauritzen, 
1961; Lauritzen and Hoffman, 1973) and continuously developed and revised in 
many publications (Hoffman et al., 1976; Hoffman, 1982; Hoffman, 1983; Hoffman 
and Miller, 1988; Hoffman, 1992; Hoffman and Miller, 1997). The theory starts by 
considering the formation o f the first stable stem and following by the deposition of 
subsequent stems in a stepwise manner. The minimum lamellar thickness needed to 
form a thermodynamically stable nucleus can be expressed as

/ 2 a  ̂  
mm "  A H f  AT; (2.17)

where AT  1. or supercooling is defined as T ° - T c . Furthermore, the lamellar 
thickness which gives the fastest stem deposition rate and thus the maximum overall 
crystal growth rate is more favorable than lmin would be express as

+ " kT  ’ A Gf  + 4 aa0

2 b0cr A G f  + 2cra0 = +51 (18)

where k is the Boltzman constant, do is the width of the molecular stem, bo is the 
thickness of a surface nucleus, and SI is the increment above the / . which makes the 
crystal to enter the thermodynamically stable state at the fastest rate and prevents the 
anomaly Tm ~ T C.

2.4.3 Equlibrium Melting Temperature Determination
The equilibrium melting temperature Tm° is an important 

thermodynamic parameter for determining the degree of undercooling, which, in 
turn, influences the kinetic driving force for crystallization of a crystallizable 
polymer. It is simply said that no crystallization can occur at temperatures greater 
than the Tm°. Theoretically, Tm° is defined as the melting temperature of an infinitely 
large stack of extended-chain crystals in the directions perpendicular to the chain
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axis and with the chain ends establishing an equilibrium state o f pairing (Marand et 

๔ , 1998).

temperature can be obtained by plotting the observed melting temperature, Tm, versus 
1/7. The lamellar thickness, 7, is often obtained from SAXS or TEM experiment, 
while Tm is usually obtained using DSC technique.

determining the Tm° which states a finite linear relationship between the observed 
melting temperature Tm and the crystallization temperature Tc. As mention previously 
in equation (18), 7* = /min + (57, the thickening ratio, /?, was introduced to be the ratio
of ///* , then the observed melting point, Tm, of a crystal which has been thickened 
by a factor (3 can be expressed using Gibbs-Thomson equation as

In case of 51=0 (i.e. non-thickening), the melting temperature 
is related to its crystallization temperature as

Based on equation (19) and (20), Hoffman and Weeks (1962) 
derived the following equation:

2.4.3.1 Gibbs-Thomson Extrapolation M ethod

According to equation (16), the equilibrium melting

2.4.3.2 Linear Hoffman-Weeks Extrapolation M ethod

Hoffman and Weeks (1962) proposed a method for

(2.19)

(2.20)

(2 .21)
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So the linear extrapolation of Tm versus Tc data to the line 
Tm=Tc yields the equilibrium melting temperature value, and the thickening ratio as 
the slope. It should be noted that this method in only valid when the slope of the plot 
of observe Tm versus Tc is a constant value close to 0.5, at which condition the p  is 
close to 1.

2.4.3.3 Non-Linear Hoffman- Weeks Extrapolation M ethod

Recently, Marand et al. (1998) proposed a new mathematical 
derivation that states a relationship between the observed Tm and the corresponding 
Tf by considering the possibility for the stem length fluctuation during secondary 
nucléation. The new equation reads

pO
pO p _GT T 0 p + D1Ml" 

2a\
(2.22)

where p r  is the thickening coefficient, creGT is the basal interfacial free energy 
associated with nuclei of critical size including the extra lateral surface energy due to 
fold protrusion and the mixing entropy associated with stems of different lengths, (Te1 
is the interfacial energy associated with the formation of the basal plane of the initial 
crystals, £>2 is an arbitrary constant, and AH °  is the equilibrium enthalpy of fusion. 
Due to the suggested nonlinear relationship of the Tm-Tc data, this approach should 
be referred to the nonlinear Hoffman-Weeks extrapolative method.
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