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ABSTRACT

4482001063:  Polymer Science Program
Pakin Thanomkiat: Study on Crystallization Kinetics and Subsequent
Melting Behavior of Polymers with Different Molecular
Characteristics and Polymers Filled with Various Types of
Additives.
Thesis Advisors: Assoc. Prof. Pitt Supaphol, and Prof. Stephen Z.D.
Cheng 159 pp.

Keywords:  Equilibrium melting temperature/ Crystallization kinetics/
Macrokinetic model/ Syndiotactic polypropylene/ Pigment/
TiC- nanoparticles

Crystallization and subsequent melting hbehavior for six syndiotactic
polypropylene (SPP) resins having different molecular characteristics, medium-
density polyethylene (MDPE) filled with 3 types of pigments (i.e. diarylide,
phthalocyanine, and quinacridone), and isotactic polypropylene (iPP) filled with
titanium(IV)oxide (TiCh) with 3 different surface modifications were investigated by
differential scanning calorimetry (DSC). The crystallization kinetics were analyzed
based on various macrokinetic models, i.e. Avrami, Malkin, Urhanovici-Segal,

Ozawa, and Ziabicki. The equilibrium melting temperature (7)) was also estimated
based on the linear and non-linear Eloffman-Weeks extrapolative methods. In
general, the estimated 7- values were found to increase with increasing
syndiotacticity level. By comparing these values along with the values obtained from
literature, the T value for a perfect sPP can be estimated. The subsequent melting

behavior of sPP after crystallization process exhibited either a single melting
endotherm or double melting endotherms. For the crystallization behavior of
pigmented MDPE resins, it was found that diarylide could be the only pigment that
was effective in accelerating the crystallization processes compared to other two
pigments,
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