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ABSTRACT

4791003063  Petrochemical Technology
Nongnuch Rueangjitt: Reforming of Natural Gas Using an
Alternating Current Gliding Arc System.
Thesis Advisors: Assoc. Prof. Sumaeth Chavadej and
Assoc. Prof. Hidetoshi Sekiguchi 126 pp.

Keywords:  Plasma/ Gliding arc discharge/ Applied voltage/ Input frequency/
Natural gas/ Methane reforming / ¢ - reforming of methane/ Partial
oxidation/ Plasma-catalytic reaction/ Microreactor/ Ni catalyst

In this work, the reforming of simulated natural gas was conducted under
the alternating current gliding arc system at ambient conditions. The effects of all
gaseous hydrocarbons and CO. present in the natural gas, process parameters, and O.
added were investigated. The presence of other gas components ( - s, CsHs and
CO.) in natural gas was found to contribute prominently to the synergistic effects on
the overall plasma reaction performance. Especially, CO., an oxidative gas, exhibited
pronounced effects by enhancing the conversions of all hydrocarbons in the feed, by
reducing coke formation, and by lowering specific energy consumption. The results
showed that not only did the effects of applied voltage and input frequency strongly
influence the stability of the gliding arc discharge, they affect the chemical activation
of simulated Co - -containing natural gas reforming as well. Furthermore, the effect
of added oxygen in the feed was tested with using pure oxygen or air as an oxygen
source for partial oxidation. The oxygen species derived from the addition of oxygen
to the simulated natural gas play an active role in significantly minimizing carbon
formation; moreover, they provided improvement in the reactant conversions,
product yields, and product selectivities, as well as the decrease in specific energy
consumption. Air was best suited for use as the oxygen source in the combined CO.-
containing natural gas reforming and partial oxidation.

The innovative concept of integrating non-thermal plasma and microreactor
technology offers several advantages, e.g. low reaction temperature, good heat



transfer and heat distribution, and short reaction time. Based on this concept, the
gliding arc microreactor was first designed to investigate the reforming reaction of
natural gas instead of using the conventional gliding arc reactor. For this
preliminarily study, methane, a major constituent of natural gas, was used instead of
the simulated natural gas in order to reduce the complexity of feed composition. The
reforming of methane was conducted under the gliding arc microreactor, with and
without catalyst. In the sole plasma system, all operational parameters affected both
methane conversion and product selectivities. In the plasma and catalytic system, the
temperature distribution within the plasma microreactor has a significant role in
improving the reaction performance.
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