PRODUCTION OF SINGLE-WALLED CARBON NANOTUBES BY
DECOMPOSITION OF CARBON-CONTAINING GASES OVER
HETEROGENEOUS CATALYSTS AND THEIR PURIFICATION BY USING
FROTH FLOTATION

Mr. Pisan Chungchamroenkit

A Dissertation Submitted in Partial Fulfilment of the Requirements
for the Degree of Doctor of Philosophy
The Petroleum and Petrochemical College, Chulalongkom University
in Academic Partnership with
The University of Michigan, The University of Oklahoma,
and Case Western Reserve University
2007

502080



Thesis Title: Production of Single-Walled Carbon Nanotubes by
Decomposition of Carbon-Containing Gases over
Heterogeneous Catalysts and Their Purification by Using

Froth Flotation
By: Mr. Pisan Chungchamroenkit
Program: Petrochemical Technology

Thesis Advisors:  Assoc. Prof. Sumaeth Chavadgj
Asst. Prof. Boonyarach Kitiyanan
Prof. Daniel E. Resasco

Accepted by the Petroleum and Petrochemical College, Chulalongkom
University, in partial fulfilment of the requirements for the Degree of Doctor of
Philosophy.

College Director
(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

A

(Prof Somchai Osuwan) (Assoc. Prof. Sumaeth Chavade]]

Cl\ i J-tya.

(Prof. Daniel E. Resasco) (Asst. Prof. Boonyarach Kitiyanan)

(Assoc. Prof. Pramoch Rangsunvigit) — (Prof. Damrong Khummongkol)



ABSTRACT
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In this study, the effects of catalyst formulation, carbon-containing gases,
type of catalyst metals, and type of catalyst supports on the synthesis of single-
walled carbon nanotube (SWNT) were investigated. It was found that
disproportionation of carbon monoxide (CO) over Co-Mo(l:2)/Si02 provides a
maximum  selectivity towards SWNTs. However, when using the Co-Re/Si02
catalysts with CO gas, the maximum of both yield and selectivity toward SWNTS
were obtained on a Co:Re ratio of 1:4, a pre-reduction temperature of 800°C, and
reaction temperature of 850°C. Furthermore, the catalyst characterization suggests
different growth mechanisms of SWNTSs on the Co-Re/Si02 catalyst from the Co-
Mo/Si02 catalyst.

To study the purification of the as-prepared SWNTS, carbon black was first
used as a representative of SWNTS and tested for separation from Si02 by using
froth flotation. The maximum carbon black recovery of 70% with an enrichment
ratio of 3.5 was achieved with an initial surfactant concentration of 75% of the
critical micelle concentration (CMC), a feed solid concentration of 0.02 %wiv, an air
flow rate of 200 mL/min, an initial foam height of 50 cm, and no use of an
electrolyte. Subsequently, the as-prepared SWNTS were experimentally purified by
the NaOH leaching and then froth flotation. From the results, the maximum carbon
content of 78%, with a 71% selectivity of SWNTs, was achieved at a surfactant
concentration of 75% of the CMC, a solid loading of 1.0 mg/mL, an air flow rate of



100 mL/min, and a foam height of 22 ¢cm. Furthermore, based on pre- and post-
treatment characterization, the physical structures of SWNTS were retained after
these purification steps.
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