CHITOSAN-HOBt WATER BASED SYSTEM: AN EFFECTIVE PATHWAY FOR CHITOSAN CONJUGATING REACTION AND FOR AEROGEL FORMATION

Tidarat Ponyomma

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2008

Thesis Title:

Chitosan-HOBt Water Based System: An Effective Pathway

for Chitosan Conjugating Reaction and for Aerogel Formation

By:

Tidarat Ponyomma

Program:

Polymer Science

Thesis Advisors:

Assoc. Prof. Suwabun Chirachanchai

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Mantays Fammet: College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

(Assoc. Prof. Suwabun Chirachanchai)

(Asst. Prof. Varawut Tangpasuthadol)

(Dr. Wanpen Tachaboonyakiat)

Wanpen Tachaboonyakiat

บทคัดย่อ

ชิคารัตน์ พลยมมา: ชื่อหัวข้อวิทยานิพนธ์ (ภาษาไทย) ใคโตซาน-ไฮดรอกซีเบนโซ ไตรอะโซลในระบบน้ำ: วิธีที่มีประสิทธิภาพสำหรับปฏิกิริยาการคอนจูเกตไคโตซาน และการ สร้างแอโรเจล (Chitosan-HOBt Water Based System: An Effective Pathway for Chitosan Conjugating Reaction and for Aerogel Formation) อ. ที่ปรึกษา: รอง ศาสตราจารย์ คร. สุวบุญ จิรชาญชัย 50 หน้า

งานวิจัยนี้ได้เสนอการนำไกโตซาน-ไฮดรอกซีเบนโซไตรอะโซลในระบบน้ำเพื่อที่จะ เตรียมไกโตซานที่คอนจูเกตกับกรคอะมิโนซึ่งเป็นหมู่ฟังก์ชันของระบบการนำส่งยาแบบกำหนด เป้าหมาย การคอนจูเกดทำได้โดยการใช้ไกโตซานแบบร่างแหที่เตรียมได้จากการดีอะเซตีเลชั่น ของไกตินแบบร่างแหกับแอสพาราจีนและทริปโตแฟนด้วย WSC การวิเคราะห์เชิงคุณภาพและเชิง ปริมาณยืนยันได้จากเปอร์เซ็นต์การแทนที่ของแอสพาราจีนและทริปโตแฟน 25% และ 4% ตามลำคับ หลังจากการระเหิดน้ำแล้วสารทั้งคู่มีลักษณะเป็นโครงสร้างร่างแหกล้ายสำลี งานวิจัย ยังได้ขยายขอบเขตถึงการศึกษาไกโตซานนาโนคอมโพสิทแอโรเจลจากไกโตซาน-ไฮดรอกซีเบนโซไตรอะโซลในระบบน้ำด้วยไดคาร์บอกซิลเลตเตต โพลีเอทธีลีน ไกลคอล แสดงถึงปฏิกิริยาการ เชื่อมโยงที่มีประสิทธิภาพที่ได้มาจากไฮโครเจล การระเหิดผลึกน้ำแข็งทำให้ได้แอโรเจล

ABSTRACT

4772030063: Polymer Science Program

Tidarat Ponyomma: Chitosan-HOBt Water Based System: An

Effective Pathway for Chitosan Conjugating Reaction and for

Aerogel Formation

Thesis Advisors: Assoc. Prof. Suwabun Chirachanchai 50 pp.

Keywords: Drug

Drug targeting / Aerogel Nanocomposite

The present work proposes chitosan-hydroxybenzotriazole (HOBt) water-based system to prepare chitosan conjugated with amino acids which are ideal drug targeting functional groups. The conjugation is demonstrated based on the use of chitosan nanoscaffold prepared from deacetylation of chitin whisker. The conjugation with asparagines and tryptophan is accomplished by using WSC. The qualitative and quantitative analyses confirm the degree of substitution to be 25% and 4% for asparagines and tryptophan, respectively. By simple freeze drying, both derivatives give cotton-like scaffold. The work extends to study chitosan nanocomposite aerogel by using chitosan-HOBt water-based system. The dicarboxylated polyethylene glycol shows effective crosslinking reaction as evidenced from the hydrogel formation. The water exclusion by freeze-drying gives aerogel.

ACKNOWLEDGEMENTS

This thesis work is partially funded by the Petroleum and Petrochemical college; and the National Excellence Centre for Petroleum, Petrochemicals and Advanced Materials, Thailand.

The author would like to give special thanks to her advisor, Associate Professor Suwabun Chirachanchai, who not only originated this work, but also gave her many suggestions, invaluable guidance, constructive criticism, constant encouragement, inspiration and vital help throughout this research work.

She also gratefully thanks Assistant Professor Varawut Tangpasuthadol and Dr. Wanpen Tachaboonyakiat for their valuable comments and discussion as the thesis committees.

She appreciates all Professors who have tendered invaluable knowledge to her at the Petroleum and Petrochemical College, Chulalongkorn University.

She is also indebted to Associate Professor Buncha Pulpoka (Department of Chemistry, Faculty of Science, Chulalongkorn University) for his comments and help in the NMR measurement. She extends her appreciation to Seafresh Chitosan (Lab) Company Limited, Thailand, for their chitosan starting materials.

In addition, she wishes to thank her seniors, especially Dr. Sasiprapa Phongying, Dr. Juthathip Fangkangwanwong, Mr. Puripong Totsatitpaisan for the suggustions and encouragement throughout this research work. She also would like to thank the College staff, and all her friends at Petroleum and Petrochemical College.

Finally, she wishes to express his gratitude to her family for their love, understanding, encouragement, and financial support.

TABLE OF CONTENTS

			PAGE
	Title P	age	i
	Abstra	ct (in English)	iii
	Abstra	ct (in Thai)	iv
	Ackno	wledgements	v
	Table	of Contents	vi
	List of	Schemes	ix
	List of Tables		
	List of	Figures	xi
СНА	PTER		
	I	INTRODUCTION	1
	II	LITERATURE REVIEW	3
		2.1 Chitin-Chitosan	3
		2.2 Development of Chitosan for Biomedical Drug	
		Administration Products: From Drug Delivery System	
		to Drug Targeting System	4
		2.2.1 Applications in Drug Delivery System	5
		2.2.2 Applications in Drug Targeting	6
		2.2.3 Points to be considered for Chitosan Drug Targeting	
		System	8
		2.2.4 Motivation of the Present Work on Drug Targeting	
		System	8
		2.3 Development of Chitosan for Biomedical Scaffold Material	9
		2.3.1 Production of Scaffold Material	9
		2.3.2 Nanocomposites-based Aerogel Scaffold	10
		2.3.3 Points to be considered for Chitosan Aerogel	
		Nanocomposite	10

CHAPTER			PAGE
	2.3.4	Motivation of the Present Work on Aerogel	
		Nanocomposite	11
Ш	EXPERIN	MENTAL	12
	3.1 Mater	ials	12
	3.2 Instru	ments and Equipment	12
	3.3 Metho	odology	13
	3.3.1	Preparation of Chitin Whisker	13
	3.3.2	Preparation of Chitosan Whisker	13
	3.3.3	Synthesis of Chitosan-L-Asparagine	13
	3.3.4	Synthesis of Chitosan-L(-)-Tryptophan	13
	3.3.5	Chitosan-HOBt Aqueous Solution	15
	3.3.6	Synthesis of Chitosan-PEG-clay Aerogel	
		Nanocomposite	15
IV	NANOST	RUCTURED CHITOSAN FOR	
	DRUG TA	ARGETING SYSTEM	17
	Abstract		17
	Introduction	on	18
	Experimen	ntal	19
	Results an	d Discussion	21
	Conclusio	ns	29
	Reference	s	31
V	CHITOSA	AN-PEG-CLAY AEROGEL NANOCOMPOSITE	32
	Abstract		32
	Introduction	on	33
	Experimen	ntal	34
	Results an	d Discussion	37

CHAPTER		PAGE
	Conclusions	42
	References	43
VI	CONCLUSIONS AND RECOMMENDATIONS	44
	REFERENCES	45
	CURRICULUM VITAE	50

LIST OF SCHEMES

SCHEME			PAGE	
	CHAPTER II			
1	Deacetylation of chitin		3	
2	Representative scheme of drug delivery system		6	
3	Representative scheme of drug targeting		8	
	CHAPTER III			
1	Synthesis of chitosan-L-asparagine and L-(-)-tryptophan		14	
2	Synthesis of chitosan-PEG-clay aerogel nanocomposite		16	
	CHAPTER IV	14.20		
1	Synthesis of chitosan-L-asparagine and L-(-)-tryptophan		21	
	CHAPTER V			
1	Synthesis of chitosan-PEG-clay aerogel nanocomposite		36	

LIST OF TABLES

TABLE		PAGE
	CHAPTER IV	
1	Evaluation of solubility in various solvents related to	
	polarity index	28

LIST OF FIGURES

FIGURE		PAGE	
	CHAPTER II		
1	Chemical structures of; (a) tryptophan, and (b) asparagine	9	
	CHAPTER IV		
1	FTIR spectra of; (a) chitosan whisker, (b) asparagine, and (c) 5,		
	(d) tryptophan, and (e) 6	23	
2	¹ H NMR spectra of; (a) chitosan whisker, and (b) HOBt in		
	CD ₃ COOD/D ₂ O at room temperature	24	
3	¹ H NMR spectra of; (a) 5, and (b) 6 in CD ₃ COOD/D ₂ O at		
	room temperature	25	
4	TGA thermograms of; (a) asparagine, (b) tryptophan, (c) chitosan		
	whisker, (d) 5, and (e) 6	26	
5	Appearances of; (a) 5, and (b) 6 after lyophilization	27	
6	SEM micrographs of; (a) 5 (× 15,000), and (b) 6 (× 15,000)	27	
7	Appearances of; (a) 5, and (b) 6 in water	29	
8	TEM micrographs of; (a) 5, and (b) 6	29	
	CHAPTER V		
1	Appearances of; (a) chitosan gel nanocomposite, and (b) chitosan		
	aerogel nanocomposite	37	
2	FTIR spectra of; (a) Na ⁺ -montmorillonite clay, (b) chitosan, (c) 2,		
	and (d) 3	38	
3	TGA thermograms of; (a) clay, (b) chitosan, (c) 2, and (d) 3	39	
4	Degradation temperature of aerogel, 3, with various		
	Na ⁺ -montmorillonite clay content	39	

FIGURE		PAGE
5	XRD patterns of; (a) chitosan, (b) Na ⁺ -montmorillonite,	
	(c) carboxyl terminated PEG, and (d) chitosan aerogel	
	nanocomposite	40
6	Water absorption with various amount of carboxyl terminated	
	poly(ethylene glycol) at room temperature	41
7	SEM micrographs of; (a) chitosan-clay hydrogel (× 200),	
1.0	and (b) chitosan aerogel nanocomposite (× 200)	41