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ABSTRACT

4973006063  Petroleum Technology Program
Prisana Homhuandee: Transport Through Carbon Steel of Hydrogen
Produced by Flow-Accelerated Corrosion
Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon, Prof. Frank R
Steward, and Andy Justason, 105 pp.

Keywords:  Hydrogen Probe/ Flow-Accelerated Corrosion/ Oxide Films/
Corrosion Monitoring/ Hydrogen Evolution

Atomic hydrogen is produced as a by-product when a ferrous metal surface
IS exposed to water at a high temperature at a rate corresponding to the rate of
corrosion. In de-aerated conditions, the hydrogen atoms permeate through the steel
and combine into pairs to form molecular hydrogen at the opposite surface. Because
of rapid diffusion of hydrogen through ferrite steels at the temperature of interest, the
total rate of hydrogen emission from the steel is a measurement of the instantaneous
corrosion rate. The Hydrogen Effusion Probe (HEP) has been developed for an on-
line monitor of Flow Accelerated Corrosion (FAC) by measuring the generated
through-wall hydrogen. This study was carried out to investigate the transport of
hydrogen through steel to obtain a fundamental understanding of the through-wall
hydrogen behaviour. HEPs have been installed on a feeder pipe in the Point Lepreau
Generating Station (PLGS), on a hoiler wall in the Coleson Cove Generating Station
(CC), and in a test loop at the Centre Nuclear Energy Research (CNER) laboratory.
Data from PLGS, CC and the experiments indicate that the FEP is sensitive and
responsive to changes in FAC rate, and can provide an on-line monitor of FAC.
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