POROUS CLAY HETEROSTRUCTURE FOR WASTEWATER TREATMENT: A DEVELOPMENT FROM BENTONITE CLAY IN THAILAND

Rangrong Tassanapayak

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2008

Thesis Title:

Porous Clay Heterostructure for Wastewater Treatment:

A Development from Bentonite Clay in Thailand

By:

Rangrong Tassanapayak

Program:

Polymer Science

Thesis Advisors:

Asst. Prof. Hathaikarn Manuspiya

Assoc. Prof. Rathanawan Magaraphan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science

Nantage Summet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Hathaikarn M.

(Asst. Prof. Hathaikarn Manuspiya)

(Assoc. Prof. Rathanawan Magaraphan)

(Asst. Prof. Manit Nithitanakul)

(Asst. Prof. Teerayuth Liwporncharoenvong)

ABSTRACT

4972026063: Polymer Science Program

Rangrong Tassanapayak: Porous Clay Heterostructure for

Wastewater Treatment: A Development from Bentonite Clay in

Thailand

Thesis Advisors: Asst. Prof. Hathaikarn Manuspiya and Assoc. Prof.

Rathanawan Magaraphan 69 pp.

Keywords: Porous clay heterostructures/ Bentonite/ Heavy metal/

Organic Pollutant/ Adsorption

A wide variety of toxic metals and organic chemicals are discharged to the environment as industrial or laboratory wastes, causing serious water, air, and soil pollution. One of the interesting materials for using as the adsorbents to adsorb these pollutants in wastewater treatment is porous clay heterostructures (PCHs). These porous materials are obtained by the surfactant-directed assembly of mesostructured silica within clay layers. In the present work, the PCHs were synthesized within the galleries of Na-bentonite clay by the polymerization of tetraethoxysilane (TEOS) in cetyltrimethylammonium ion and dodecylamine templates. These PCHs were functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) and N, N-dimethyldecylamine to obtain the MP-PCH and DM-PCH for utilizing as heavy metal and organic pollutant adsorbent, respectively. According to N2 adsorption-desorption data, the results show that PCH, MP-PCH and DM-PCH had surface areas of 549.7, 488.7 and 459.9 m²/g, average pore diameter in the supermicropore to small mesopore range of 3.16, 3.28 and 3.31 nm and pore volume of 0.45, 0.48 and 0.56 cc/g, respectively. Moreover, these adsorbents were investigated the adsorption properties which concerned with their function as adsorbents for aqueous solution. The results show that the adsorption capacity of MP-PCH was 0.22, 0.24, 0.50, 0.48 and 0.11 mmol/g for Cd, Cu, Mn, Ni and Pb, respectively and the adsorption capacity of DM-PCH was 3.6 and 1.4 mM/g for 4-chloroguiacal or 2,6-dinitrophenol, respectively. They point out the potential of these PCHs for utilizing as the heavy metal and organic pollutant adsorbents in wastewater treatment.

บทคัดย่อ

รังรอง ทัศนพยัคฆ์ : ดินเหนียวรูพรุนเพื่อการบำบัดน้ำเสีย : การพัฒนาแร่เบนโทในต์ จากประเทศไทย (Porous Clay Heterostructure for Wastewater Treatment: A Development from Bentonite Clay in Thailand) อ. ที่ปรึกษา : ผศ.ดร. หทัยกานต์ มนัสปิ ยะ และ รศ.ดร. รัตนวรรณ มกรพันธุ์ 69 หน้า

โลหะมีพิษและสารเคมีอินทรีย์หลายชนิคในรูปของเสียทางอุตสาหกรรมหรือ ห้องปฏิบัติการซึ่งถูกปล่อยสู่สิ่งแวคล้อมนั้นเป็นสาเหตุให้เกิดมลพิษทางน้ำ คิน และอากาศ คินที่มี การคัดแปลงโครงสร้างให้มีรูพรุนเป็นวัสคุที่น่าสนใจชนิคหนึ่งที่นำไปใช้ในการบำบัคน้ำเสีย วัสคุ ที่มีรพรุนเหล่านี้ได้จากการสังเคราะห์ผ่านการสร้างโครงสร้างของซิลิกาล้อมรอบสารลดแรงตึงผิว ที่รวมตัวกันอยู่ระหว่างชั้นของแร่คินเหนียว ในงานวิจัยนี้ คินที่มีการคัดแปลงโครงสร้างให้มีรู พรุนถูกสังเคราะห์ขึ้นในระหว่างชั้นของคินโซเดียม-เบนโทไนต์โคยปฏิกิริยาพอถิเมอร์ไรเซชั่น ของเตตระเอธอกซีไซเลนในสารลดแรงตึงผิวแม่แบบ (เซธิลไตรเมธิลแอมโมเนียม และโดเดคซิลา มีน) คืนที่มีการคัดแปลงโครงสร้างให้มีรูพรุนเหล่านี้ถูกนำมาเติมหมู่ฟังก์ชั่นด้วยเมอร์แคปโต พรอพิลไตรเมธอกซี่ไซเลน และไคเมธิลเคคซิลามีน ได้เป็นคินที่มีการคัดแปลงโครงสร้างให้มีรู พรุนที่ถูกเติมด้วยหมู่เมอร์แคปโต และหมู่อะมิโนซึ่งมีตำแหน่งจำเพาะเพื่อใช้ประโยชน์สำหรับ เป็นตัวดูคจับโลหะและสารเคมีอินทรีย์มีพิษตามลำดับ จากการศึกษาการเกิดโครงสร้างรูพรุนด้วย เทคนิคการดูดซับถ๊าซในโตรเจนพบว่าดินที่มีการคัดแปลงโครงสร้างรูพรุนและดินที่มีการ คัดแปลงโครงสร้างให้มีรูพรุนที่ถูกนำมาเติมหมู่ฟังก์ชั่นค้วยเมอร์แคปโตพรอพิลไตรเมธอกซี่ใช เลน และ ไดเมธิลเดคซิลามีน มีพื้นที่ผิว 549.7, 488.7 และ 459.9 เมตร 2 /กรัม, ขนาดรูพรุน 3.16, 3.28 และ 3.31 นาโนเมตร, และปริมาตรรูพรุน 0.45, 0.48, 0.56 เซนติเมตร 3 /กรัม ตามลำคับ นอกจากนี้ ได้ทำการศึกษาคุณสมบัติความสามารถในการคูคจับของตัวคูคจับเหล่านี้ พบว่าความสามารถในการดูดจับโลหะของคินที่มีการคัดแปลงโครงสร้างให้มีรูพรุนเหล่านี้ถูก นำมาเติมหมู่ฟังก์ชั่นด้วยเมอร์แคปโตพรอพิลไตรเมธอกซี่ไซเลน เป็น 0.22, 0.24, 0.50 , 0.48 และ 0.11 มิลลิโมลต่อกรับ สำหรับ แคคเมี่ยม, ทองแคง, แมงกานีส, นิกเกิล และ ตะกั่ว ตามลำดับ และความสามารถในการดูดจับสารเคมีอินทรีย์มีพิษของดินที่มีการดัดแปลงโครงสร้าง ให้มีรูพรุนที่ถูกนำมาเติมหมู่ฟังก์ชั่นด้วยเอ็น-เอ็นไดเมธิลเดคซิลามีน เป็น 3.6 และ 1.4 มิลลิโมลาร์ ต่อกรัม สำหรับ คลอโรกูอาคอล และ ไคไนโตรฟืนอลตามลำคับ ซึ่งพบว่ามีความเป็นไปได้ที่จะ นำคินเหนียวรูพรุนนี้ใช้ประโยชน์สำหรับเป็นตัวคูดจับโลหะและสารเคมีอินทรีย์มีพิษในการ บำบัดน้ำเสีย

ACKNOWLEDGEMENTS

This work would not have been possible without the assistance of the following individuals.

First of all, the author would like to gratefully give special thanks to her advisors, Asst. Prof. Hathaikarn Manuspiya and Assoc. Prof. Rathanawan Magaraphan for their intensive suggestions, valuable guidance and vital help throughout this research. In addition, the author deeply thanks to Asst. Manit Nithitanakul and Asst. Prof. Teerayuth Liwporncharoenvong for serving on her thesis committee.

The author is grateful for the partial scholarship from the Asahi glass foundation; Polymer Processing and Polymer Nanomaterials Research Unit, The Petroleum and Petrochemical College; and the National Excellence Center for the scholarship and funding of this work.

Special thanks go to all of the Petroleum and Petrochemical College's faculties who have tendered invaluable knowledge and to the college staff who willingly gave support and encouragement.

Finally, the author would like to take this opportunity to thank PPC Ph.D. students and all her PPC friends for their friendly assistance, cheerfulness, creative suggestions, and encouragement. Also, the author is greatly indebted to her parents and her family for their support, love and understanding

TABLE OF CONTENTS

				PAGE
	Title I	Page		i
	Abstra	act (in English)		iii
	Abstra	act (in Thai)		iv
	Ackno	owledgements		V
	Table	of Contents		vi
	List of	f Tables	·	viii
	List of	f Figures	94	ix
	Abbre	viations		xi
CHA	APTER		· ·	
	I	INTRODUCTION	12.00	1
		·	4.	
	П	LITERATURE REVIEW		3
	Ш	EXPERIMENTAL		22
		÷.		
	IV	POROUS CLAY HETEROS	STRUCTURE	
		FOR WASTEWATER TRE	ATMENT:	
		A DEVELOPMENT FROM	BENTONITE CLAY	
		IN THAILAND		28
		4.1 Abstract		28
		4.2 Introduction		29
		4.3 Experimental		30
		4.4 Results and Discussion		35
		4.5 Conclusions		52
		4.6 Acknowledgements		52
		4.7 References		53

CHAPTI	ER		PAGE
V	CONCLUSION AND RECOMME	NDATIONS	54
	REFERENCES		56
	APPENDICES		60
	Appendix A		60
	Appendix B	15	65
	CURRICULUM VITAE	49	69

LIST OF TABLES

TABLE		PAGE
	CHAPTER II	
2.1	Chemical formula and characteristic parameter of commonly used	
	2:1 phyllosilicates	5
	CHAPTER IV	
4.1	Porosity characteristics of bentonite, PCH, DM-PCH and MP-PCH	42
4.2	% element of bentonite and MP-PCH	43
4.3	Adsorption capacity of heavy metal on MP-PCH in suitable pH	
	and contact time	47
4.4	% element of MP-PCH(1) and MP-PCH(2)	48
4.5	Reported adsorption capacities (mg/g) for various materials	51

LIST OF FIGURES

F	FIGURE		PAGE	
		CHAPTER II		
	2.1	Structure of 2:1 phyllosilicates	4	
	2.2	Functionalization of mesoporous silicates by grafting	9	
	2.3	Preparation of hybrid mesoporous silicates by co-condensation	9	
	2.4	Schematically illustration of mechanism for formation of		
		hybrid porous clay heterostructure (HPCH) through surfactant-		
		directed assembly of organosilica in the galleries of clay	10	
	2.5	Schematic representation of the formation of the pillars in		
		vermiculite	14 :.	
	2.6	Grafting of mercaptopropylsilane groups to the inner and outer	4	
		walls of mesostructural silica intercalated in smectite clay	15	
	2.7	The form of combination between mercapto groups and		
		mercury ions	16	
		CHAPTER IV		
	4.1	The calibration curve of 4-chloroguaiacol	33	
	4.2	The calibration curve of 2,6-dinitrophenol	34	
	4.3	XRD patterns of BTN and organoclay	36	
	4.4	XRD patterns of PCH, MP-PCH and DM-PCH.	37	
	4.5	TEM images of PCH, MP-PCH and DM-PCH	38	
	4.6	SEM images of BTN, PCH, MP-PCH and DM-PCH	40	
	4.7	N ₂ adsorption-desorption isotherms of BTN, PCH, MP-PCH and		
		DM-PCH	41	
	4.8	FTIR spectra of BTN, organoBTN, as-synthesized PCH and PCH	43	
	4.9	FTIR spectra of PCH and DM-PCH	44	

FIGURE		PAGE
4.10	Adsorption Capacity for each heavy metal by PCH and MP-PCH	45
4.11		46
4.12	Effect of contact time on the adsorption of organics pollutant	47
4.13	Bar graph results of heavy metal absorbent derived from PCHs	49
4.14	Adsorption Capacity for organics pollutant by PCH and	49
	DM-PCH	
4.15	Effect of concentration on the adsorption of organics pollutant	50
4.16	Effect of contact time on the adsorption of organics pollutant	51

ABBREVIATIONS

BTN Na-bentonite

PCH Porous clay heterostructure

MPTMS 3-mercaptopropyltrimethoxy silane

DMDA *N,N*-dimethyldecylamine

MP-PCH Porous clay heterostructure functionalized with 3-mercaptopropyl-

trimethoxy silane

DM- PCH Porous clay heterostructure functionalized with N,N- dimethyldecyl-

amine

CTAB Cetyltrimethylammonium bromide