SEPARATION OF HYDROPHOBIC VOLATILE ORGANIC COMPOUNDS FROM COACERVATE PHASE OF BRANCHED SECONDARY ALCOHOL ETHOXYLATES SURFACTANT USING CO-CURRENT VACUUM STRIPPING

Pornchai Suriya-amrit

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science
The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with
The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2012

THISTIA

Thesis Title:

Separation of Hydrophobic Volatile Organic Compounds

from Coacervate Phase of Branched Secondary Alcohol

Ethoxylates Surfactant Using Co-Current Vacuum Stripping

By:

Mr. Pornchai Suriya-amrit

Program:

Petrochemical Technology

Thesis Advisor:

Asst. Prof. Boonyarach Kitiyanan

Prof. John F. Scamehorn

Dr. Suratsawadee Kungsanant

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

3. Kitiyanan

(Asst. Prof. Boonyarach Kitiyanan)

The state of the s

(Prof. John F. Scamehorn)

(Dr. Suratsawadee Kungsanant)

(Prof. Sumaeth Chavadej)

Sumaeth Aundy.

(Asst. Prof. Bovornlak Oonkhanond)

1 Dr 0, -1.

ABSTRACT

5371018063: Petrochemical Technology

Pornchai Suriya-amrit: Separation of Volatile Organic Compounds

from Coacervate Phase of Branched Secondary Alcohol

Ethoxylates Surfactant Using Co-current Vacuum Stripping

Thesis Advisors: Asst. Prof. Boonyarach Kitiyanan, Dr.

Suratsawadee Kungsanant, and Prof. John. F. Scamehorn 50 pp.

Keywords: Coacervate/Co-current operation/Vacuum stripping/Apparent

Henry's law constant

This work was to study the performance of the co-current vacuum stripping using a packed column for Hydrophobic Volatile Organic Compounds (HVOCs) removal from contaminated surfactant solution. The studied surfactant was the branched secondary alcohol ethoxylates (AEs). Two series of HVOCs, which are the aromatic, and the chlorinated HVOCs were selected as contaminants. The hydrophobicity of HVOCs was indicated by the octanol-water partition coefficient (K_{ow}). The volatility and solubility of HVOCs in the surfactant system were determined in terms of an apparent Henry's law constant and a solubilization constant, respectively. The results show that, as K_{ow} increase, K_s also increase whereas H_{app} of the HVOCs are significantly decreased. Furthermore, The tendency of the HVOCs to solubilize in surfactant micelles had a significant effect on the efficiency of the vacuum stripping column. Moreover, HVOCs removal efficiency was assessed in terms of percentage of HVOCs removed and the overall liquid phase mass transfer coefficient (K_xa). More than 89.8% for all HVOCs is removed form surfactant solution with in a single stage operation. In conclusion, for both aromatic and chlorinated hydrocarbon series; as Kow increase, the percentage of HVOCs removal and K_xa decrease due to the effect of hydrophobicity of solute.

บทคัดย่อ

พรชัย สุริยาอมฤทธิ์: การแยกสารระเหยง่ายออกจากสารลดแรงตึงผิวประเภท แอลกอฮอล์อิทอกซิเลตซึ่งมีโครงสร้างเป็นโซ่กิ่ง ที่อยู่ในวัฏภาคโคแอคเซอร์เวทโดยใช้หอ สูญญากาศแบบการไหลทิศทางเคียวของไอและของเหลว (Separation of Volatile Organic Compounds from Coacervate Phase of Branched Secondary Alcohol Ethoxylates Surfactant Using Co-Current Vacuum Stripping) อ.ที่ปรึกษา: ผศ.คร. บุนยรัชต์ กิติยานั้นท์ อ.คร.สุรัสวดี กังสนัน และศ.คร.จอห์น เอฟ สเกมีฮอร์น 50 หน้า

งานวิจัยนี้ศึกษาประสิทธิภาพของหอบรรจุภายใต้สูญญากาศที่มีการใหลในทิศทาง เดียวกันของไอและของเหลวในการแยกสารระเหยอินทรีย์ออกจากสารลดแรงตึงผิว ซึ่งสารลดแรง ตึงผิวที่ใช้เป็นชนิดแอลกอฮอลอิทอกซิเลตที่มีโครงสร้างเป็นโช่กิ่ง ส่วนสารอินทรีย์ที่ใช้นั้นแบ่ง ออกเป็น 2 กลุ่มคือ กลุ่มที่มีวงเบนซีน ได้แก่ เบนซีน โทลูอื่น เอททิลเบนซีน และสารกลุ่มคลอรีน ได้แก่ ไคคลอโลเอททิลีน ใตรคลอโลเอททิลีน เตตระคลอโลเอททิลีน ซึ่งความสามารถในการ ละเหยออกและค่าการละลายของสารอินทรีย์เหล่านี้ถูกอธิบายด้วยค่าคงที่ของการละลายและค่าคงที่เฮนรี่ พบว่าสารอินทรีย์ระเหยง่ายที่มีค่าคงที่สมคุลสูง จะมีค่าคงที่ของการละลายสูง ซึ่งทำ ให้ค่าคงที่ของเฮนรี่ลดลงอย่างมาก ในส่วนของประสิทธิภาพในการแยกสารอินทรีย์ออกจากสาร ลดแรงตึงผิวโดยใช้หอบรรจุภายใต้สูญญากาสนั้นจะรายงานในรูปของค่าร้อยละการแยกและค่าสัม ประสิทธิในการถ่ายโอนมวล พบว่าหอบรรจุดำเนินการภายใต้สูญญากาศที่มีการใหลในทิศทาง เดียวกันของไอและของเหลวสามารถแยกสารอินทรีย์ระเหยง่ายได้มากกว่าร้อยละ 89.8 ซึ่งสามารถ สรุปได้ว่าสารที่มีค่าคงที่สมคุลสูงนั้นจะมีร้อยละการกำจัดสารอินทรีย์ระเหยง่าย และค่าสัมประ สิทธิการถ่ายโอนมวลต่ำ เนื่องจากสารระเหยอินทรีย์ชอบที่จะละลายในสารลดแรงตึงผิวมากกว่า

ACKNOWLEDGEMENTS

I would like to take this chance to sincerely thank my advisor, Asst. Prof. Boonyarach Kitiyanan, for his helpful suggestions, discussions, supervision from the very early stage of this research. He also provided me unflinching encouragement, patience and support in various ways throughout my graduate thesis.

I would also like to thank my co-advisor, Dr. Suratsawadee Kungsanant, for his advice, guidance, and his willingness to share his bright thoughts with me, which was very helpful for shaping up my ideas and research.

I would like to thank Prof. Sumaeth Chavadej and Dr. Bovornlak Oonkhanond for kindly serving on my thesis committee. Their suggestions are certainly important and helpful for completion of this thesis.

I am grateful acknowledge the Petroleum and Petrochemical College; the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Thailand.; and the Thailand Research Fund (Grant number: MRG5480070); the department of chemical engineering, Prince of Songkla University; and the Office of the Higher Education Commission for research financial support.

I would like to thank the entire faculty and staff at the Petroleum and Petrochemical College, Chulalongkorn University for their kind assistance and cooperation.

Finally, I would like to express my sincere gratitude to thank my whole family for showing me the joy of intellectual pursuit ever since I was a child, for standing by me and for understanding every single part of my mind.

TABLE OF CONTENTS

		PAGE
7	Title Page	i
A	Abstract (in English)	iii
A	Abstract (in Thai)	iv
A	Acknowledgement	v
T	Table of Contents	vi
I	List of Tables	ix
I	List of Figures	x
СНАР	TER	
I	INTRODUCTION	1
I	I LITERATURE REVIEW	3
	2.1 Use of Surfactants in HVOCs Removal	3
	2.2 Cloud Point Extraction (CPE)	3
	2.3 Surfactant Regeneration Process	5
	2.3.1 Air Stripping	5
	2.3.2 Steam Stripping	5
	2.3.3 Spraying	6
	2.3.4 Vacuum Stripping	6
	2.4 Hydrophobicity of Solutes	9
	2.5 Vapor-Liquid Equilibrium of Solute in Aqueous	
	Surfactant System	9
	2.5.1 Micelle Formation	9
	2.5.2 Solubilization	10
	2.5.3 Vapor-Liquid Partitioning of the HVOCs	11
	2.5.4 The Vapor-Liquid Equilibrium Partition	
	Coefficient, Ki	11

CHAPTE.	APTER	
	2.6 Flash Calculation	12
	2.7 Mass Transfer Calculation	14
III	EXPERIMENTAL	16
	3.1 Materials	16
	3.2 Apparatus	16
	3.2.1 Batch Operation	16
	3.2.2 Continuous Operation	16
	3.3 Methodology	17
	3.3.1 Analytical Techniques	17
	3.3.2 Vapor-Liquid Equilibrium	18
	3.3.3 Continuous Operation	19
IV	RESULTS AND DISCUSSION	20
	4.1 Properties of Studied Surfactant	20
	4.1.1 Cloud Point Temperature	21
	4.1.2 Concentration of Surfactant in Coacervate	
	Phase	22
	4.2 Vapor-Liquid Equilibrium	23
	4.2.1 The Partition Behavior of the HVOCs in	
	Aqueous and Coacervate Phase Solution	24
	4.2.2 Determination the Solubilization Constant,	
	K_s	24
	4.2.3 Determination of the Apparent Henry's Law	
	Constan (H _{app}) of HVOCs in Coacervate	
	Phase Solution	27
	4.3 Continuous Operation	30
V	CONCLUSIONS AND RECOMMENDATIONS	37

CHAPTER	PAGE
REFERENCES	38
APPENDICES	41
Appendix A Chemical Properties	41
Appendix B Sample of Calculation	43
CIRRICULUM VITAE	50

LIST OF TABLES

TABLE		PAGE
4.1	Properties of Tergitol TMN-6 compared with Tergitol	
	15-S-7 and Triton X-114 nonionic surfactant	22
4.2	Concentration of surfactant in dilute and coacervate phase	
	at 40°C	22
4.3	Molecular structures and the Henry's law constants (H) of	
	the selected aromatic solutes	23
4.4	Solubilization constant (K _s), and apparent Henry's law	
	constant of all studied HVOCs in branched nonionic	
	surfactant and linear nonionic surfactant	28
4.5	Overall liquid phase mass transfer coefficient (Kxa), and	
	% HVOCs removal of all studied HVOCs in branched	
	nonionic surfactant and linear nonionic surfactant	36

LIST OF FIGURES

FIGUR	FIGURE	
3.1	Schematic of the vacuum stripping unit	17
3.2	Liquid Distributor	20
	•	20
4.1	Correlation between octanol-water partition coefficient	
	(K _{ow}) and solubilization constant (K _s) of benzene (BEN),	
	toluene (TOL),	
	and ethyl benzene (ETB) in Tergitol TMN-6 solution (450	26
	mM Tergitol TMN-6, 40°C) at equilibrium condition	26
4.2	Correlation between octanol-water partition coefficient (K _{ow})	
	and solubilization constant (K _s) of dichloroethylene (DCE),	
	trichloroethylene (TCE), and perchloroethylene (PCE) in	
	Tergitol TMN-6 solution (450 mM Tergitol TMN-6, 40°C) at	
	equilibrium condition	26
4.3	Correlation between octanol-water partition coefficient (Kow)	
	and solubilization constant (Ks) of the studied HVOCs in	
	Tergitol TMN-6 solution (450 mM Tergitol TMN-6, 40°C) at	
	equilibrium condition	27
4.4	Correlation between octanol-water partition coefficient (Kow)	
	and apparent Henry's law constant (Happ) of benzene (BEN),	
	toluene (TOL), and ethyl benzene (ETB) in Tergitol TMN-6	
	solution (450 mM Tergitol TMN-6, 40°C) at equilibrium	
	condition	29
4.5	Correlation between octanol-water partition coefficient (K _{ow})	
	and apparent Henry's law constant (H _{app}) of dichloroethylene	
	(DCE), trichloroethylene (TCE), and perchloroethylene (PCE)	
	in Tergitol TMN-6 solution (450 mM Tergitol TMN-6, 40°C)	
	at equilibrium condition	30

]	FIGURE		PAGE
	4.6	Correlation between octanol-water partition coefficient (K _{ow})	
		and apparent Henry's law constant (Happ) of studied HVOCs	
		in Tergitol TMN-6 solution (450 mM Tergitol TMN-6, 40°C)	
		at equilibrium condition	30
	4.7	Correlation between HVOCs removal (%) and octanol-water	
		partition coefficient (Kow) of benzene (BEN), toluene (TOL),	
		and ethyl benzene (ETB) in Tergitol TMN-6 solution (2000	
		ppm HVOCs in 450 mM Tergitol TMN-6, 40°C)	32
	4.8	Correlation between HVOCs removal (%) and octanol-water	
		partition coefficient (Kow) of dichloroethylene (DCE),	
		trichloroethylene (TCE), and perchloroethylene (PCE) in	
		Tergitol TMN-6 solution (2000 ppm HVOCs in 450 mM Tergitol	
		TMN-6, 40°C)	32
	4.9	Correlation between HVOCs removal (%) and octanol-water	
		partition coefficient (Kow) of studied HVOCs in Tergitol TMN-6	
		solution (2000 ppm HVOCs in 450 mM Tergitol TMN-6, 40°C)	33
	4.10	Correlation between the overall liquid phase volumetric mass	
		transfer coefficient, Kxa (mol/cm³ min) and partition coefficient	
		(K _{ow}) of benzene (BEN), toluene (TOL), and ethyl benzene (ETB)	
		in Tergitol TMN-6 solution (2000 ppm HVOCs in 450 mM Tergitol	
		TMN-6, 40°C)	34
	4.11	Correlation between the overall liquid phase volumetric mass	
		transfer coefficient, Kxa (mol/cm³ min) and partition coefficient	
		(Kow) of dichloroethylene (DCE), trichloroethylene (TCE), and	
		perchloroethylene (PCE) in Tergitol TMN-6 solution (2000 ppm	
		HVOCs in 450 mM Tergitol TMN-6, 40°C)	34
	4.12	Correlation between the overall liquid phase volumetric mass	
		transfer coefficient, K _x a (mol/cm ³ min) and partition coefficient	
		(K_{ow}) of studied HVOCs in Tergitol TMN-6 solution (2000 ppm	
		HVOCs in 450 mM Tergital TMN-6, 40°C)	35