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ABSTRACT

5371027063:  Petrochemical Technology Program
Thanutchaphorn Phupongskorn: Determination of Dissolution of a
Material with a Moderately-rapid Dissolution Rate
Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon, Prof. Derek H
Lister, and Prof. Frank R. Steward, 122 pp.
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In common indlustrial process, mass transfer control and dissolution control
(mixed control) or dissolution control can be involved for designing process
equipment or determining the mechanisms of chemical reactions. A jet-impingement
apparatus has been used to study dissolution rates by directing a jet of water onto a
pellet of the material of interest a high velocity to ensure that dissolution is
controlling. The apparatus has been used to measure the dissolution rate constant of
magnetite under the conditions of power system coolants - often a controlling
parameter in steel corrosion. For unequivocal measurements of the dissolution rate
constant, the mass transfer characteristics of the apparatus need to be known in order
to extrapolate mass transfer coefficients to the conditions of interest. Accordingly,
mass transfer in our impingement system is being studied at atmospheric pressure
with materials of a moderate dissolution rate. Cast pellets of plaster of Paris of
different purities and single crystals of the same compound (gypsum- CaSoa ‘2Hzo ),
and pellets of trans-cinnamic acid, potassium hitartrate and aspartic acid have been
used in this study. The dissolution rate constants for single crystal and aspartic acid
were determined and the commercial plaster result gave mass-transfer correlation of
jet-impinging apparatus in reasonable agreement with published correlation.
However, the commercial plaster tended to have a higher solubility than pure plaster
or gypsum crystals; its dissolution rates were higher than those of the other materials
studied, which were in the same range.
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