CHAPTER 3

THEORY

This chapter defines the theory that involves this research. It consists of

three subjects as follows.

3.1 Rinsing Process

3.1.1 Rinsing Principle

B. Kusher and . Kusher [1994] explained a principle of water rinsing
which is a dilution process involved mass transfer principle. Mass which trap on the
surface of workpiece or the barrel of workpiece is transferred to water in rinsing tank. A

mechanism of mass transfer consists of diffusion and convection.

Diffusion is atomic process. Atom or molecule of matter that dissolves in
water moves to other atom such as water. Mass transfer of this mechanism occurs from
a difference between concentration of the solution at surface of workpiece with high
value and concentration of the solution in rinsing tank with small value. Diffusion
depends on each characteristic of molecular movement and slowly occurs. The velocity

of diffusion depends on the temperature and size of diffusion molecule comparison size

of molecule.

Convection is a movement of matter in liquid layer. Matter that dissolves
in water moves to liquid layer such as water. This mechanism can put the external power

such as mixing, pumping and vibrating to accurate fast mass transfer.

The rinsing process can be explained with a simple model with called
“Tank-in-Tank Rinsing Model”. Based on assumption, workpiece or barrel which is
rinsed has one tank with a trapped chemical and dipping in rinsing tank. The effective

mixing rate, k related on making material balance.
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Figure 3.1 Tank-in-Tank Rinsing Model for drag out and rinse overflow rinsing

From figure 3.1, the model can be formulated for a material balancing

equation in a differential form and a material balancing equation at steady state

following.

Drag Out Rinse

At workpiece or barrel Cb, =(A-)(C, (3.1)

At rinsing tank d; =(y)(Cr-C,)dl (3.2)

At steady state, solving the equation 3.1 and 3.2, we get

At workpiece or barrel Cr = (—" PHL+ (~-)exP(- = )] (3.3)
Vv D d

At rinsing tank C, =("Ny=>)[l-exp(~-)] (3.4)



Rinse Overflow Rinsing

At workpiece or barrel dCr=« + k--C r-k— )dt (3.5)

p Qd Qo

At rinsing tank dC,:(k/\-.k/\-QR/\)dt (3.6)
At steady state, solving the equation 3.5 and 3.6, we get

Atworkpiece or barrel (3.5)

At rinsing tank (3.6)

Above equations, if a rinsing process has a high the effective mixing rate

(k=00), the mechanism of this process is similar with perfect mixing assumption.
3.1.2 Type of Rinsing Process

Now, the rinsing process has several types, which depend on the

objective and area of factory. Type of rinsing process can be divided as follows.
1) Drag Out Rinse

Drag out rinse is rinsing of work piece by immersing it in a rinsing tank
with no fresh rinse of water feed. Therefore, concentration of chemical in the tank is
increase when rinsing time raise. Sometime, rinse water in the tank is discharged or

recycled for chemical preparation, when the concentration rises to a limitation.

For a continuous operation, the equation of drag-out rinse at steady state

is expressed as (3.7).

C=C. lexp(»-) (3.7)
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Figure 3.2 Drag out rinse

2) Overflow Rinsing

The rinse tank has continuous flow of fresh rinse water. The water

overflows from rinse tank is wastewater.
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Figure 3.3 Overflow rinse

At steady state and complete mixing, the equation for overflow rinse is

given by (3.8).
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C:Cﬂ (3.8)

Qd+Qr

If the flow rate of rinse water is very large with volume of drag out

(Qr > lOQO) lterm of (QD +QR) can be reduced to QR as (3.9).

CE

1+ A

(3.9)

Where A ="r~
Qo

3) Cascade Rinsing

These type has continuous flow of fresh rinse water too, but saving of
rinse water usage is higher than overflow rinse. Cascade rinsing type has more two rinse
tanks with overflow water from the last tank flows to the first tank and the overflow water
from the first tank discharge to wastewater treatment plant. Normally, cascade rinsing

which is widely used classifies two types as follows.

Series Type
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Figure 3.4 Series type of cascade rinsing
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Figure 3.5 Parallel type of cascade rinsing

At steady state and complete mixing, the equation of series and parallel

types of cascade rinsing are given by (3.10 and 3.11).

A -l
Series type = (3.10)
P AmM -1
Parallel type Cn:Cp(I+An) (3.11)
Where = number of rinse tank

The words often use for the overflow rinsing type such as rinse ratio,
dilution ratio, or rinse criteria. It has a same meaning, which means a ratio of
requirement volume of rinse water consumption for rinsing workpiece. These volumes

can be calculated from



CC- fa' (3.12)
\Q d

All equation (3.7 to 3.12) with a simple form at steady state frequently
uses to calculate an optimum volume of water consumption for high rinsing efficiency. It

means concentration of contaminant at final state that isn't over an acceptable criterion.

3.2 Modeling of Rinsing Process

Zofia Buczko [1992] presented a mathematical model about rinsing
process. He required to estimate the contaminants on the workpiece surface after
rinsing. The complete-mixing theory is the simplest but is far from practices. However, it
is still the basic assumption made in all rinsing equation. Some attempts at analysis of
the concentration on the workpiece after rinsing have been made. They were mainly
based on diffusion and convection theories. The mathematical expressions derived were

related to ideal conditions, which cannot exist in a real system.

When analysis the results of the laboratory investigations, it has been
concluded that when modeling the rinsing process mathematically it is not possible to
apply diffusion or convection equaiions. The hydrodynamics of these processes is much

more complicated to express by simple physical theory.

Because of contrary to the assumption of complete equalization of
concentration at the product and in a rinsing tank during the washing process, he
assumed that an average concentration Cnatthe workpiece after rinsing in the th rinse
tank is a combination of the concentration Cnlof the inlet solution (concentration at the
workpiece after rinsing in the n-1 th rinse tank) and an average final concentration Znthe
tank taken in suitable proportions. The average concentration of the workpieces can be

described by
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Cnmn_)(l—(l- an)z, (3.13)

The coefficient anindicates the contribution from the initial concentration
to the average final concentration at a workpiece after rinsing. It is called the imperfect-
mixing coefficients (IMCs) with values from 0 to 1. The IMCs are an=0 in the case of
perfect mixing. It also depends on the rinsing techniques and character of the

withdrawn film on the work surface.

To formulate the rinsing equation, an additonal assumption of
continuous-rinsing operation has also been made. fact the rinsing process in a given
rinse is not continuous but stepwise; workpieces are immersed within pre-determined
time intervals. If the volume of drag-out solution is small with respect to the rinse volume,
the concentration variations in the rinses can be treated as pseudo-continuous with time
and differential calculus can be applied for calculation. Under this assumption the
computational mass balance equations have been derived previously and are usually

used in perfect-mixing rinsing calculations.

A differential equation for the th non-flow rinse is derived, under the

assumption that for each rinse the drag-out is the same bath before and after rinsing;

DCO DC, DC2 DCn, DC,

© 7l Zn

Rinser 1 Rinser 2 Rinser

Figure 3.6 Rinsing system



17

DCn1= det" +DC, (3.14)

with the initial condition Zn(t=0) =0, where V is the volume of the rinsing bath and CO0is

the concentration fo the process of bath drag into the first rinse, which is invariant in
time.

For incomplete mixing, substitution of equation (3.13) into (3.14) and
rearrangement one can obtain the following set of differential equations

kb,C,_, = az, +kb,C,
dt
(3.15)
Cn=aCnai+a-an)z,
Where b, =1-a,.k D
|4
One can find that the solution is of the form
C”:Co 1- agexp ('kU)
Vool n=123,.. (3.16)

Zn:COi/l Yl,pi expi'M:].t)\
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Where the recurrent form for the coefficienta a a and pi is

Pi =1 for« =1,/ =1
al =bx
ol - A .
b,, 'b] for«>1] = (317)

< =Zang -l+b,,P|

2 t/74 .
| for |

case perfect mixing (a=0 and b=1), itis easy to obtain an equation.

”'1{ )J S

(3.18)
a

Based on equation 3.16, 3.17 and 3.18, the dynamics behavior of
concentration in each rinse stage is shown in figure 3.7 and 3.8 following.
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Figure 3.7 Dynamics response of concentration in the first rinse stage
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Figure 3.8 Dynamics response of concentration in four rinse stages
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3.3 Optimization

Optimization is method to obtain the best solution under constraint of
system or process. The odjective function is identified the best solution. It is determined
from asset, operation cost, production, net profit and other. The value of the objective
function can be found by adjust decision variable of system. This variable maybe is size
of equipment and operating condition of process such as pressure, temperature and
flowrate etc. Adjusting this variable must consider under constraint of operation as purity

of product, fesibility of model and the relationship of variable.

The optimization consist of four parts as following.

Process Model

The objective of model is to identify the solution of objective function and
the position of constraint. A reliable model is necessary for calculation which can be

devided as mathematical model and actual process

Objective Function

The objective function means a equation or group of equation which are
formulated for calculation. The caculation have finding minimum value or finding
maximum value. The objective function for optimization has various form such as annual

cost, net benefit, production time and energy consumption rate etc.

Constraint

The optimization always has contraint of eah system for finding the
solution in feasible region of decision variable. The feasible region of decision varible is
determine with constraint which is formulated from mass balance, energy balance,

equipment design and property of matter.

Natural condition of physical production is express area or feasible

region and the solution locates in this region. The constraint has two forms as following.
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Equality constraint is a constraint which has a sign (=) in the equation.

The equality constraint is an equation which indicates process and product limitation

such as mass balance, energy balance and purity of product.

Inequality constraint is a constraint which has sign (=)1(<) I>)1(<)1

(>) or (*) in the equation The inequality constraint is an equation which indicates

limitation of design and other limitation such as mole fraction, no negative value of

flowrate and minimum of production rate.

Decision Variable

Decision variable is adjust variable for finding maximum or minimum of
objective function value and affecting objective function such as temperature, pressure,

flowrate, concentration and reactor size. the practicality, decision varible is set point

for process control system.

The optimization problem can be classified two categories as follows

1. Static optimization is the process of minimizing or maximizing the

cost or benefits of some objective function for one instant in time only.

2. Dynamic optimization is the process of minimizing or maximizing the

cost or benefits of objective function over a period of time.

Characterisitc of dynamics optimization problems can be divied that

3.3.1  Free Dynamic Optimization

Discrete Time

We focus on the problem of controlling the system

Xiv1= /(x,, ,) 1=0,...,N-\ x0=x0 (3.19)

L Eat*
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such thatthe cost function
J = <P>N) + Y JL(xI, 1) (3.20)

is minimized. The solution to this problem is a sequence of control
actions or decisions, = O,JV']. Knowing the sequence = 0,...N - \,the solution
is the path or trajectory of the state and the costate. The problem is specified by the

functions /, L and the horizon N and the initial state* 0.

The problem is an optimization of (3.20) with N +1 set of equality
constraints given in (3.19). Each set consists of equality constraints. We associated a
vector, A of Lagrange multipliers to each set of equality constraints. By tradition An+1 is

associated to XM = f (X,], ,) . These vectors of Lagrange multipliers often denoted as

costate or adjoint state.
The Hamiltonian function with is a scalar function is defined as

H1(X, .5Am ) =L (X, )+AMF1X5 ) (3.21)

and facilitates a very compact formulation of the necessary conditions (Or

an optimum.

Considering the free dynamic optimization problem of the system (3.19)

from the initial state, the performance index (3.20) is minimized. The necessary condition

is given by the Euler-Lagrange equations (for i = 05..,Af-1):
*,+i =fix1 1) State equation (3.22)
0 .
=—H. Costate equation (3.23)
Ox,
0
0r=—A~H, stationarity condition (3.24)
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and the boundary conditions

*0 —T0 = (6)~(’\(A'n) (3.25)
which is a split boundary condition.

The necessary condition can also be expressed in a more condensed

form as

4 0T = |-/, (3.26)

with the boundary conditions:

*0 —i0 7 (3.27)

The Euler-Lagrange equations express the necessary conditions for
optimality. The state equation (3.22) is inherently forward in time, whereas the costate
equation, (3.23) is backward in time. The stationarity condition (3.24) links together the

two set of recursions as indicated in figure 3.9.

) State Equation

Stationarity Equation

M Costate Equation

Figure 3.9 Charateristics of Euler-Lagrange equation for

discrete time free dynamics optimization

The state equation (3.22) is forward in time, whereas the costate
equation, (3.23), is backward in time. The stationarity condition (3.24) links together the

two set of recursions.
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Continuous Time

Consider the problem related to finding the input function , to the

system

x = f,.(x, ) x0=x0 fe[0,r] (3.28)

such that the cost function
b= (T (*7)+ 0 )dt (3.29)

is minimized. Here the initial state *0 and final time T are given (fixed).
The problem is specified by the dynamic function, f, Lthe scalar value functions () and

L and the constants T and *0.

The problem is an optimization of (3.29) with continuous equality
constraints. Similarilly to the situation in discrete time, we here associate a
dimensional function, A, to the equality constraints, X -ft(x,, ,). Also in continuous
time these multipliers are denoted as costate or adjoint state. some part of the

littérature the vector function, A, lisdenoted as influence function.

For convienence we can introduce the scalar Hamiltonian function as

follows:

Ho(x,, AL =L, (x,, )+ A]f, (X, ,) (3.30)

We are now able to give the necessary condition for the solution to the

problem.

Consider the free dynamic optimization problem in continuous time of
bringing the system (3.28) from the initial state such thatthe performance index (3.29) is

minimized. The necessary condition is given by the Euler-Lagrange equations (for

re[0,r]):
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X, = ) State equation (3.31)

ﬂ_ Costate equation (3.32)
ﬂ_ Stationarity condition (3.33)

and the boundary conditions

*0 ~ X0 = ~T~0r(xr) (3.34)

0

We can express the necessary conditions as

Sr

xt=4tH xt="-H o'=4-h (3.35)
0A d
with the (split) boundary conditions

Xo =X, Ay ='§_x¢7 (3.36)
332 Dyraric Qinization vith Brd airts Corgtrairts
Considerthe discrete time system (for i :0,1,..., - 1)

XM = f (*«f) x0 = x0 (3.37)

the cost function

J=0(Xn)+ Y LX) (3-38)
and the simple terminal constraints
XN = XN (3.39)

where XN and X0 are given. this simple case, the terminal
contribution, (J) 1to the performance index could be omitted, since it has not effect on the

solution (except a constant additive term to the performance index). The problem
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consists of the system (3.37) from its initial state x0 to a (fixed) terminal state XN such

that the performance index, (3.38) is minimized.

The problem is specified by the functions / and L (and <>) the length
of the horizon N and by the initial and terminal state x0, XN. We apply the usual
notation and associate a vector of Lagrange multipliers Antl to each of the equality
constraints X't1= f{xt, 1). To the terminal constraintwe associate, vV which is a vector

containing  (scalar) Lagrange multipliers.
As the unconstrained case, we introduce the Hamiltonian function
Hix,, LAm)=Li(x,, 1)+ AenfL(xL ,) (3.40)

and obtain @ much more compact form for necessary conditions, which

is stated inthe theorem below.

Considering the dynamic optimization problem of the system (3.37) from
the initial state, x 01to the terminal state, XN, the performance index (3.38) is minimized.

The necessary condition is given by the Euler-Lagrange equations (fori- 0,..N -1)

* 4= [ (rh«d) State equation (3.41)
Costate equation (3.42)
T d . "
0 Stationary condition (3.43)
du,

The boundary conditions are

*) = *( XN ~ XN (3.44)

and the Lagrange multiplier, , related to the simple equality constraints
can be determined from
A 0

= r+dXN* (3.45)
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Notice, the performance index will rarely have a dependence on the
terminal state in this situation.  that case

4 =v1 (3.46)

Also notice, the dynamic function can be expressed in terms of the
Hamiltonian function as

f )= — H, (3.47)
and obtain a more memotechnical form

H , L =+£-//,(3.48)
for the Euler-Lagrange equations, (3.41) - (3.43).

Continuous Time

this section we consider the continuous case in which t e [o,r]Etf.
The problem is to find the input function , to the system

x=f.{x,, ) x0=x0 (3.49)

such that the cost function
1= g1(*1) 4 82,(x,, )dt (3.50)

is minimized and the end point constraints in
yIL(x7) - 0 (3.51)

are met. Here the initial state x0 and final time 1 are given (fixed). The
problem is specified by the dynamic function, f, 1the scalar value functions <) and L 1
the end point constraints through the function y/ and the constants 1 and x0.
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We can for the sake of convenience introduce the scalar Hamiltonian
function as:

Ho (e, WA ) =L (x,, ) Talfdx, 1) (3.52)

As in the previous section on discrete time problems we, in addition to
the costate (the dynamics is an equality constraints), introduce a Lagrange multiplier, v
associated with the end point constraints.

Consider the dynamic optimization problem in continuous time of
bringing the system (3.49) from the initial state and a terminal state satisfying (3.51)
such that the performance index (3.50) is minimized. The necessary condition is given
by the Euler-Lagrange equations (t e [0,T]}

x, =f,(x,ut) State equation (3.53)
- Costate equation (3.54)
or . s Stationarity condition (3.95)

and the boundary conditions:

x0=x0 AT(x1)=10 Aj (356)

0X 0X

which is a split boundary condition.
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