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ABSTRACT

5072006063:  Polymer Science Program
Buncherd Ngamnawakul: Structure and Mechanical Property
Relationship of PCL, its Nanocomposites, and its Graft Copolymer.
Thesis Advisors: Assoc. Prof. Rathanawan Magaraphan and
Prof. Johannes . Schwank 140 pp.

Keywords:  Polycaprolactone (PCL)Athylene vinyl acetate (EVA)/
Nanocomposites/Graft copolymer

Polycaprolactone (PCL) is a biodegradanle polyester that is very tough and
has a melting point of around 60°c. PCL becomes soft in warm water and can be
shaped; therefore, it is proper for use as a boil and bite mouth guard. This work aims
to study the relationship of the properties of pure PCL and PCL with added rigid and
soft parts for use as mouth guard materials. The different molecular weights affected
the mechanical properties and crystallization behavior of the PCL. The impact
strength of the PCL increased as the molecular weight increased. The lowest
molecular weight PCL (Mw~ 17,000) showed the highest crystallinity and Tc onset.
Its nanocomposites and graft copolymers represent the addition of the rigid part
(Organoclay) and the soft part (Ethylene Vinyl Acetate: EVA), respectively. The
moduli of the PCL nanocomposites were higher than that of the pure one, and
thermal stability was also enhanced. On the other hand, its graft copolymers have
lower modulus, and the thermal stability decreased clearly from 370°c to around
300°c. These graft copolymers also showed an interesting property: a decreasing of
the melting point from pure PCL and EVA, which brings about more viscoelasticity,
allowing hetter shaping of the mouth guard materials at lower temperature.
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