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ABSTRACT

5073006063: Petroleum Technology Program
Pasit Warunphaisal: Surface Dissolution and Formation of Scallops.
Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon, Prof. Derek H.
Lister and Prof. Frank R. Steward

Keywords: Scallop Surface, Flow accelerated corrosion. Dissolution

Flow-assisted corrosion (FAC) is a significant problem with carbon steel 
components exposed to rapidly moving water or water-steam mixtures. Such 
components often develop distinctive patterns of surface damage producing a 
dimpled surface looking like orange peel, called “Scalloping”. This roughness plays 
an important role in the corrosion of pipes made of carbon steel and it seems that the 
formation of scallops are major factors in the thinning rate of the pipes. To 
characterize scallops, study the mechanisms of scallop formation and investigate how 
the formation of scallops and scallop phenomena affect the dissolution rate, 
experiments on the pressure drop and flow characteristics, of pipes made of plaster of 
Paris (CaSC>4 T/2 H2 O) were performed. Atomic Absorption Spectroscopy (AAS) 
was used to analyze the dissolution rate of the plaster. The surface was photographed 
with a digital camera to observe the initiation of scallops. Pressure transducer was 
used to measure pressure drop. The size decreases with increasing flow rate whereas 
the population of scallops increases with increasing flow rate. Scalloping is believed 
to initiate from defect at the surface and it was found that size and population of 
scallops increase with increasing initial defect size and initial defect concentration 
respectively. The average dissolution rate increases with increasing flow rate, 
particle size, particle concentration and temperature. The dissolution rate of plaster is 
controlled by mixed kinetics. The entrance section affected the mechanism of the 
gypsum dissolution. It is found that concentration of defects on the plaster surface 
has a greater effect on the dissolution rate than effect of defect size. Pressure drop 
increases with increasing flow rate and temperature but decreases with increasing 
initial defect size and concentration. This means that the diameter of the plaster pipe 
has a greater effect than the surface roughness.
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การกัดกร่อนแบบมีอัตราของของไหลเป็นตัวเร่ง (flow-accelerated corrosion) เป็น 
ขัเญหาสำคัญท่ีเกิดข้ึนกับท่อเหล็กคาร์บอนท่ีสัมผัสกับนำหรือส่วนผสมระหว่างนำและไอนำท่ีไหล 
อย่างรวดเร็ว ท่อเหล็กคาร์บอนน้ีมักจะเกิดความเสียหายบนพ้ืนผิวในแบบลักษณะพิเศษซ่ึงจะสร้าง 
พืนผิวขรุขระลักษณะคล้ายเปลือกส้ม, เรียกว่า “สแกลลอป” ผิวขรุขระน้ีมีบทบาทท่ีสำคัญในการ 
กัดเซาะของท่อท่ีสร้างจากเหล็กคาร์บอนและดูเหมือนว่าการก่อรูปของสแกลลอปน้ีจะเป็นตัวแปร 
หลักในอัตราการบางลงของท่อ การก่อเกิดสแกลอปน้ีเป็นปีญหาในการคำนวณอายุการใช้งานของ 
ท่อ และเคร่ืองมือ บ่อยคร้ังท่ีสแกลลอปถูกนำมาใช้อยางสอดคล้องกันในด้านความขรุขระท่ีใช้น้ีา 
ในการขับเคล่ือน, การเพ่ิมความดันลด และการถ่ายเทมวล ท้ังน้ีเพ่ือจะลูลักษณะพิเศษของส 
แกลลอป, ศึกษากลไกของการเกิดสแกลลอป, ศึกษาการเกิดสแกลลอปและปรากฎการณ์ของส 
แกลลอปว่าส่งผลอย่างไรต่ออัตราการสลายตัว, การศึกษาความดันลด และลักษณะของการไหล, 
การทดลองได้ถูกสร้างขึนจากท่อท่ีสร้างจากปลาสเตอร์ออฟปารีส (Plaster of Paris,
CaS04-l/2H20) เคร่ืองอะตอมมิกแอปซอปช่ันสเปกโตรสโคปี (AAS) ได้ถูกใช้เพ่ือวิเคราะห์ 
อัตราการสลายตัวของปลาสเตอร์ พืนผิวถูกก่ายรูปด้วยกล้องดิจิตอลเพ่ือศึกษาการเกิดสแกลลอป 
เคร่ืองวัดความดันแบบแปรกระแสได้ถูกใช้เพ่ือวัดความดันลด ผลปรากฎว่าลักษณะของส
แกลลอปมีความสัมพันธ์กับอัตราการไหล ขนาดของสแกลลอปลดลงตามการเพ่ิมข้ึนของอัตราการ 
ไหล ในขณะท่ีจำนวนของสแกลลอปได้เพ่ิมขึนตามการเพ่ิมขึนของอัตราการไหล สแกลลอปนัน 
ถูกเช่ือว่าเกิดขึนจากข้อบกพร่องบนพืนผิว และพบว่า ขนาดและจำนวนของสแกลลอปเพ่ิมขืนตาม 
การเพ่ิมขืนของขนาดและความเข้มข้นของข้อบกพร่องบนพ้ืนผิวตามลำดับ อัตราการสลายตัวเฉล่ีย 
เพ่ิมขืนตามการเพ่ิมขืนของอัตราการไหล, ขนาดของอนุภาค, ความเข้มข้นของอนุภาค และ 
อุณหภูมิ อัตราการสลายตัวของปลาสเตอร์ถูกควบคุมโดยจลศาสตร์แบบรวม (Mix Kinetics) 
และยังพบอีกว่าความเข้มข้นของพ้ืนผิวท่ีบกพร่องน้ันมีผลต่อการสลายตัวของปลาสเตอร์มากกว่า 
ผลจากขนาดของพืนผิวท่ีบกพร่อง ความดันลดเพ่ิมขืนตามการเพ่ิมขืนของอัตราการไหลและ
อุณหภูมิ แต่ความดันลดลดลงตามการเพ่ิมขืนของขนาดและความเข้มข้นของข้อบกพร่องบนพืนผิว 
ซ่ึงหมายความว่า เส้นผ่านศูนย์กลางของท่อปลาสเตอร์มีผลมากกว่าผลจากความขรุขระบนพืนผิว
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