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ABSTRACT
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The photocatalytic water splitting is a promising process for producing
hydrogen, which is an alternative energy resource. Hydrogen can be produced from
two major sources of renewable energy, i.e. water and solar light, with the aid of a
suitable photocatalyst. In this work, a combination of sensitizer addition and noble
metal loading was employed to modify perovskite photocatalysts in order to achieve
the enhancement of photocatalytic hydrogen production under visible light
irradiation. The dependence of the hydrogen production on type of perovskite
photocatalysts (MgTICL, CaTiCL, and SrTiCh), calcination temperature of
photocatalyst, type and concentration of electron donor (diethanolamine, DEA and
triethanolamine, TEA), sensitizer concentration (Eosin Y, E.Y.), photocatalyst
dosage, and initial solution pH, was studied. The experimental results showed that
the 0.5 wt.% Pt-loaded mesoporous-assembled SrTiC-s prepared by single-step sol-
gel method calcined at 650°c exhibited the highest photocatalytic hydrogen
production activity from a 15 vol.% DEA aqueous solution with dissolved 0.5 mM
E.Y. Moreover, the optimum photocatalyst dosage and initial solution pH for the
maximum photocatalytic activity of hydrogen production were 6 ¢/1 and 116,
respectively.
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