MOLECULAR DESIGN AND SYNTHESIS OF EXTERNAL STIMULI RESPONSIVE STRUCTURE UNDER SELF-ASSEMBLY SYSTEMS

Natthaporn Suchao-in

A Dissertation Submitted in Partial Fulfilment of the Requirements
for the Degree of Doctor of Philosophy

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2009

Thesis Title:

Molecular Design and Synthesis of External Stimuli

Responsive Structure under Self-assembly Systems

By:

Natthaporn Suchao-in

Program:

Polymer Science

Thesis Advisors:

Assoc. Prof. Suwabun Chirachanchai

Assoc. Prof. Sébastien Perrier Asst. Prof. Apirat Laobuthee

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

(Assoc. Prof. Suwabun Chirachanchai)

(Assoc. Prof. Sébastien Perrier)

(Asst. Prof. Apirat Laobuthee)

Apriot lackuther

(Dr. Thanyalak Chaisuwan)

Thanyalek Chaisin_

(Dr. Pittaya Takolpuckdee)

บทคัดย่อ

ณัฐาพร สุเชาว์อินทร์ : การออกแบบโมเลกุลและสังเคราะห์โครงสร้างที่ตอบสนองได้ จากปัจจัยภายนอกภายใต้ระบบของการจัดเรียงตัวอย่างเป็นระเบียบด้วยตัวเอง (Molecular Design and Synthesis of External Stimuli Responsive Structure under Self-assembly Systems) อ. ที่ปรึกษา : รองศาสตราจารย์ ดร. สุวบุญ จิรชาญชัย, รองศาสตราจารย์ ดร.เซบา สเตียน เพอร์ริเออ, และ ผู้ช่วยศาสตราจารย์ ดร. อภิรัตน์ เลาห์บุตรี 110 หน้า

วิทยานิพนธ์ฉบับนี้มุ่งเน้น ไปที่การจัดวางโมเลกุลอย่างเป็นระเบียบได้ด้วยตนเองของ ระบบโฮส-เกสและสายโช่พอลิเมอร์ ส่วนแรกเป็นการเชื่อมต่อลูมินอลซึ่งเป็นโมเลกุลที่สามารถ เปล่งแสงได้ทางเคมีกับ เอ็น,เอ็น-บิส(5-เมททิล-2-ไฮครอกซีเบนซิล)เมททิลเอมีนโดยปฏิกิริยา ไดอะโซไทเซชั่น ทำให้ได้โฮสโมเลกุลชนิดใหม่ ที่จับไอออนของโลหะได้และสามารถนำไปใช้ ในระบบการวิเคราะห์ของโฟลว์อินเจ็คชั่นโดยไม่ต้องใช้ สารดีเลตตัวอื่นใส่เพิ่มเข้าไป ในส่วนที่ สองว่าด้วยเรื่องของการใช้เทคนิคราฟในการเตรียมบล็อกโคพอลิเมอร์ที่สามารถควบคุมโครงสร้าง ของไมเซลล์และเวสิเคิลได้ งานวิจัยนี้นำเสนอไมเซลล์ที่สามารถตอบสนองได้หลายอย่างโดยการ ออกแบบโคพอลิเมอร์ให้มีส่วนที่ไวต่ออุณหภูมิซึ่งก็คือ พอลิเอ็นไอโซโพรพิลอะคริลาไมด์, พอลิ เมอร์ที่ตอบสนองได้กับกวามเป็นกรคค่าง คือ พอลิเอ็น ไวนิลคาร์บาโซล งานนี้ยังได้แสดงวิธีที่ง่าย ในการควบคุมโครงสร้างของโกพอลิโมอร์ของ พอลิเอ็น ไวนิลคาร์บาโซล งานนี้ยังได้แสดงวิธีที่ง่าย ในการควบคุมโครงสร้างของโกพอลิโมอร์ของ พอลิเอ็นไอโซโพรพิลอะคริลาไมด์และพอลิ-2-ได เมททิลอมิโน เอททิลอะคริลาไมด์ในการเรียงตัวเป็นไมเซลล์หรือเวสิเคิล งานวิจัยนี้ยังแสดงให้เห็น ถึงวิธีที่ง่ายในการควบคุมโครงสร้างของฟลูออเรสเซ้นไมเซลล์หรือเวสิเคิล งานวิจัยนี้ยังแสดงให้เห็น ถึงวิธีที่ง่ายในการควบคุมโครงสร้างของพลูออเรสเซ้นไมเซลล์และเวสิเคิลโดยการปรับค่าความ เป็นกรดค่างและส่วนประกอบของบล็อคโคพอลิเมอร์ ส่วนสุดท้ายรายงานถึงระบบของการผสม ระหว่างไคโตซาน นาโนสเฟียร์และฟลูออเรสเซ้นส์ไมเซลล์

ABSTRACT

4782008063:

Polymer Science Program

Natthaporn Suchao-in: Molecular Design and Synthesis of External

Stimuli Responsive Structure under Self-assembly Systems.

Thesis Advisors: Assoc. Prof. Suwabun Chirachanchai, Assoc. Prof.

Sébastien Perrier, and Asst. Prof. Apirat Laobuthee 110 pp.

Keywords:

Self-Assembly/ Fluorescence/ Reversible addition fragmentation chain transfer polymerization/ Luminol/ Flow injection analysis/ N,N-Bis(2-hydroxyalkylbenzyl)alkylamine/ PNIPAAM/ External

stimuli/ Micelle/ Vesicles/ Mixed Micelle

The present work focuses on the molecular self-assembly of host-guest system and polymeric chain. In the first part, the conjugation of the chemiluminescent molecules, luminol, onto N, N-bis(5-methyl-2hydroxybenzyl)methylamine by diazotization reaction to obtain novel host compound is proposed. The metal ion guest entrapped in host allows the flow injection analysis system being possible to use in a single system where the chelating agent is not required. In the second part, RAFT technique was applied for preparing a copolymer with a controlled structure in micelle and vesicles form. The work originally proposes a multi-responsive micelle by designing a copolymer with a thermoresponsive of poly(N-isopropylacrylamide), PNIPAAM, a pH sensitive chain of poly(2-(dimethylamino)ethyl acrylate), PDMAEA, and a fluorescence sensitive chain of poly(N-vinylcarbazole), PNVC. The work further shows a simple approach to control morphology of the copolymer containing PNIPAAM and PDMAEA to obtain micelle or vesicles. The work also demonstrates a simple control of pH together with copolymer ratio to obtain a fluorescent vesicle and micelle system of which can be formed selectively. Finally, the mixed micelle systems from chitosan and multi responsive fluorescent micelle were reported.

ACKNOWLEDGEMENTS

The present dissertation would not have been accomplished without her Thai supervisor, Associate Professor Suwabun Chirachanchai, who not only originated this work, but also provided her continuous guidance, intensive recommendation, constructive criticism, invaluable suggestions and discussion, inspiration, and the opportunity to do the research in Australia.

She would like to express her appreciation to her Australia co-advisor, Associate Professor Sébastien Perrier, for the recommendation, worth advices, strong support, helpful comments and warm hospitality during her stays in Australia.

A deep gratitude is expressed to Assistant Professor Apirat Laobuthee (Department of Material Engineering, Faculty of Engineering, Kasetsart University) for his fruitful discussion and invaluable guidance.

She is indebted to Assistant Professor Duangjai Nacapricha for her comments, the knowledges, and helps in flow injection analysis.

She wants to express appreciation to all the Professors who have tendered invaluable knowledge to her at the Petroleum and Petrochemical College, Chulalongkorn University.

She would like to give a sincere thank to all members in the Key Centre for Polymers&Colloids, KCPC, for their helps, good time, and good memories throughout her stays in Australia, especially Dr. Hank De Bruyn who make her understanding light scattering technique clearly. She also wishes to thank Thai friends in Australia, Ms. Varangkana Jitchum and Ms. Wilasinee Sriprom for their encouragement, friendship, and lots of help.

She wishes to thank all members in SWB group for giving her helps and good memories during her study.

She appreciates the financial support from Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Ph.D. Grant No. PHD/0087/2549). Her acknowledge also extends to National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials.

Finally, she wishes to express her gratitude to her family for their love, understanding, encouragement, limitless sacrifice, and for being a constant source of her inspiration.

TABLE OF CONTENTS

			PAGE
	Title	e Page	i
	Abs	tract (in English)	iii
	Abs	tract (in Thai)	iv
	Ack	nowledgements	v
	Tabl	e of Contents	vii
	List	of Schemes	xi
	List	of Figures	xii
CH	IAPTE	R	
	I	INTRODUCTION	1
	II	LITERATURE REVIEW	4
		2.1 Molecular Self-Assembly	4
		2.2 Inclusion Compounds Formed from N,N-bis(2-hydroxyber	nzyl)
		alkylamine Derivatives and Transition Metal Ions	6
		2.3 Basic Concept of Fluorescence	7
		2.4 Flow Injection Analysis	8
		2.5 Chemiluminescence of Luminol and related compounds	9
		2.6 Reversible addition–Fragmentation Chain Transfer (RAFT	()
		Polymerization	12
		2.7 External Stimuli Responsive Micelles and Vesicles from	
		Amphiphilic Block Copolymer Synthesized via RAFT Pro	cess14
		2.8 Points of the Present Work	15

CHAPTER		PAGE	
III	A NOVEL CHEMILUMINESCENT HOST: 5-((3-(((2-		
	HYDROXY-5-METHYLBENZYL)(METHYL)AMINO)		
	METHYL)-2-HYDROXY-5-METHYLPHENYL)		
	DIAZENYL)-2,3-DIHYDROPHTHALAZINE-1,4-DIONE		
	COMPOUNDS IN FLOW INJECTION SYSTEM	17	
	3.1 Abstract	17	
	3.2 Introduction	17	
	3.3 Experimental	20	
	3.4 Results and discussion	22	
	3.5 Conclusions	33	
	3.6 Acknowledgement	33	
	3.7 References	33	
IV	pH AND THERMO- MULTI-RESPONSIVE		
	FLUORESCENT MICELLES FROM BLOCK		
	COPOLYMERS VIA REVERSIBLE ADDITION		
	FRAGMENTATION CHAIN TRANSFER (RAFT)		
	POLYMERIZATION	36	
	4.1 Abstract	36	
	4.2 Graphical Abstract	37	
	4.3 Introduction	38	
	4.4 Experimental	40	
	4.5 Results and discussion	43	
	4.6 Conclusions	54	
	4.7 Acknowledgements	55	
	4.8 References	55	

CHAPTER		PAGE
V	CONTROL OF BLOCK COPOLYMER MORPHOLOGY:	
	AN EXAMPLE OF SELECTIVE MORPHOLOGY INDUCI	ED
	BY SELF ASSEMBLY FORMATION CONDITION	60
	5.1 Abstract	60
	5.2 Graphical Abstract	60
	5.3 Introduction	61
	5.4 Experimental	63
	5.5 Results and discussion	65
	5.6 Conclusions	71
	5.7 Acknowledgements	71
	5.8 References	71
VI	pH SENSING DUALLY CORE-SHELL TYPE	
	FLUORESCENT NANOPARTICLES	75
	6.1 Abstract	75
	6.2 Introduction	75
	6.3 Experimental	78
	6.4 Results and discussion	80
	6.5 Acknowledgement	84
	6.6 References	84
VII	COMPLEX FORMATION BETWEEN	
	POLYELECTROLYTES AND OPPOSITELY CHARGED	
	MIXED MICELLES: CHITOSAN NANOSPHERE AND pH	[—
	THERMO-MULTI-RESPONSIVE FLUORESCENT	
	MICELLES	87
	7.1 Abstract	87
	7.2 Introduction	87
	7.3 Experimental	89
	7.4 Results and discussion	91

CHAPTER	PAGE	
7.5 Conclusions7.6 Acknowledgement	98 98	
7.7 References VIII CONCLUSIONS	98	
REFERENCES	100 101	
CURRICULUM VITAE	106	

.

LIST OF SCHEMES

SCHE	CHEME	
	CHAPTER II	
2.1	Synthesis of N, N-bis(2-hydroxybenzyl)alkylamine	6
2.2	Chemiluminescence mechanism of luminol	10
2.3	Mechanism of RAFT polymerization	13
	CHAPTER III	
3.1	Synthesis of 3	22
	CHAPTER IV	
4.1	Synthesis of (PNIPAAM-co-PNVC)-b-PDMAEA diblock	
Œ	copolymers	43
4.2	Micellization behavior of (PNIPAAM-co-PNVC)-b-PDMAEA	
	diblock copolymers in aqueous solution and shell crosslinked micelle	55

LIST OF FIGURES

FIGU	URE	PAGE
	CHAPTER II	
2.	1 Typical examples of (A) rotaxanes and (B) catenane	5
2.	2 Schematic diagram of the basic flow injection system (R1, R2: reage	ents,
	P1, P2: peristaltic pumps, V: injection valve, S: sample injection poi	nt,
	M1, M2: reaction coils, D: flow-through photometric detector)	9
2.	3 Chemiluminogenic acylhydrazides. (A) 7-[N-(4-aminobutyl)-N-	
	ethyl]naphthalene-1,2-dicarboxylic acid hydrazide; (B) benzo[ghi]	
	perylene-1,2-dicarboxylic acid hydrazide; (C) 4-(9-acridonyl-10-	
	methylene)phthalhydrazide; (D) 4-(5',6'-dimethoxybenzothiazolyl)	
	phthalhydrazide	11
	CHAPTER III	
3.	1 FI manifold set up (P1, P2: peristaltic pumps, V: injection valve, M1	,
	M2: reaction coils, D: flow-through photometric detector)	21
3.	2 FTIR spectra of (a) 1 (b) 2 and (c) 3	23
3.	3 ESI-TOF Mass spectrum of 3	23
3.	4 (A) UV-Vis spectra of 3-CuCl ₂ in DMSO at various volumetric ratio	os;
	a) 0:6, b) 1:5, c) 2:4, d) 3:3, e) 4:2, f) 5:1, and g) 6:0	24
	(B) Job's plot as a function of mole fraction of 3 at 528 nm.	25
3.	5 Effect of flow rate on CL intensity	27
3.	6 Effect of NaOH concentration on CL intensity	28
3.	7 Effect of H ₂ O ₂ concentration on CL intensity	28
3.	8 Effect of 3 concentration on CL intensity	29
3.	9 CL intensity with various types of catalysts	30
3.	10 CL intensity with Cu(II) concentration	31
3.	11 Chemiluminescence spectra obtained from triplicate injections of	
	(a) 3-Cu and (b) 3-Cu-EDTA	32

54

FIGURE		PAGE	
	CHAPTER IV		
4.1	¹ H NMR spectrum of (PNIPAAM ₁₁₅ -co-PNVC ₁₀)-b-PDMAEA ₁₂₅		
	diblock copolymer in CDCl ₃	44	
4.2	SEC chromatograms of: (a) PNIPAAM-co-PNVC macroCTA and		
	(b) (PNIPAAM ₁₁₅ -co-PNVC ₁₀)-b-PDMAEA ₁₂₅ diblock copolymers	45	
4.3	Particle sizes under various temperatures for 1 g/L aqueous solutions		
	of (PNIPAAM ₁₁₅ -co-PNVC ₁₀)-b-PDMAEA ₁₂₅ diblock copolymers		
	at pH 2 (\circ), 4 (\square), 7 (Δ) and 10 (\bullet)	47	
4.4	¹ H NMR spectra of (I) (PNIPAAM-co-PNVC)-b-PDMAEA micelle		
	before crosslinking in D ₂ O, (II) BIEE in MeOD, and (III) shell		
	crosslinked micelle of (PNIPAAM-co-PNVC)-b-PDMAEA in D ₂ O	50	
4.5	TEM images and size distribution of (PNIPAAM ₁₁₅ -co-PNVC ₁₀)-b-		
	PDMAEA ₁₂₅ micelle (a) before crosslinking, (b) after crosslinking.	51	
4.6	Fluorescence spectra for 0.5 g/L aqueous solutions of (PNIPAAM $_{115}$		
	-co-PNVC ₁₀)-b-PDMAEA ₁₂₅ (a) before crosslinking, and (b) after		
	crosslinking at room temperature	52	
4.7	Size of micelles under varied temperature for 1 g/L aqueous		
	solutions of (0)(PNIPAAM ₁₁₅ -co-PNVC ₅)-b-PDMAEA ₁₂₅ and		
	(□)(PNIPAAM ₁₁₅ -co-PNVC ₁₀)-b-PDMAEA ₁₂₅ Particle sizes under		
	various temperatures for 1 g/L aqueous solutions	53	
4.8	Fluorescence spectra for 0.5 g/L aqueous solutions of (a)		
	(PNIPAAM ₁₁₅ -co-PNVC ₁₀)-b-PDMAEA ₁₂₅ , and (b)		

(PNIPAAM₁₁₅-co-PNVC₅)-b-PDMAEA₁₂₅ at room temperature

FIGURE PAGE

CHAP	TER V
------	-------

	CHAPTER V	
5.1	Particle size and polydispersity index (PDI) with temperature for 1 g/I	,
	aqueous solutions of PNIPAAM ₁₁₅ -b-PDMAEA ₁₀₆ diblock	
	copolymers at pH 2, 4, 7 and 10	68
5.2	TEM image of PNIPAAM ₁₁₅ -b-PDMAEA ₁₂₅ micelle at pH 2 prepared	
	by slow (a) and fast heating process (b) and at pH10 prepared by	
	slow (c) and fast heating process (d) after negative staining	69
5.3	Variation of particle size at pH 2, 4, 7 and 10 for 1 g/L aqueous	
	solutions of PNIPAAM ₁₁₅ -b-PDMAEA ₁₀₆ diblock copolymers	
	prepared by slow (□) and fast heating (■) at 60°C	70
	CHAPTER VI	
6.1	Variation of particle size with temperature for 1 g/L aqueous	
	Solutions of (PNIPAAM ₁₁₅ -co-PNVC ₅)-b-PDMAEA ₁₂₅ diblock	
	copolymers at pH 2 (\circ), 4 (\square), 7 (Δ) and 10 (\diamond) and (PNIPAAM ₆₂	
	-co-PNVC ₅)-b-PDMAEA ₁₂₅ diblock copolymers at pH 2 (●), 4 (■),	
	7 (▲) and 10 (♦)	82
6.2	Critical Micellization Concentration (CMC) of (PNIPAAM ₁₁₅ -co-	
	PNVC ₅)-b-PDMAEA ₁₂₅ at 25 °C	83
6.3	Fluorescence Spectra for 0.5 g/L aqueous solutions of (PNIPAAM ₁₁₅	
	-co-PNVC ₁₀)-b-PDMAEA ₁₂₅ and (PNIPAAM ₆₂ -co-PNVC ₅)-b-	
	PDMAEA ₁₂₅ diblock copolymers ($\lambda_{ex} = 300 \text{ nm}$)	84

FIGURE

CHAPTER VII

7.1	Particle size with pH for chitosan nanosphere () copolymer micelle	
	(Δ), and mixed micelle (\circ) prepared by separation method.	93
7.2	Zeta potential with pH for chitosan nanosphere () copolymer micelle	
	(▲), and mixed micelle (•) prepared by separation method.	93
7.3	TEM images of mixed micelle prepared by separation method (a)	
	pH 4 (b) enlargement of a (c) and (d) pH 10 after negative staining.	94
7.4	Particle size with pH for chitosan nanosphere () copolymer micelle	
	(Δ), and mixed micelle (\circ) prepared by premixing method.	96
7.5	Zeta potential with pH for chitosan nanosphere () copolymer micelle	
	(▲), and mixed micelle (•) prepared by premixing method.	96
7.6	TEM images of mixed micelle prepared by premixing method (a)	
	pH 4 and (b) pH 10 after negative staining.	97