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ABSTRACT

4581002063:  Petrochemical Technology Program
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Thesis Advisors: Prof. Somchai Osuwan, Prof. John F. Scamehom,
and Assoc. Prof. Thirasak Rirksomboon, 105 pp.
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Cloud point extraction (CPE) has been successfully scaled up to
continuously remove aromatic contaminants from wastewater in a multi-stage
rotating disc contactor. When the nonionic surfactant solution has a temperature
higher than the cloud point, phase separation occurs, forming the coacervate phase,
and the dilute phase. Most of contaminants contained in the wastewater will
solubilize into the surfactant micelles and concentrate in the coacervate phase, thus
the dilute phase can be discharged as treated water. The extraction performances for
removal of organic solutes with difference structures and initial concentrations were
compared for both batch and continuous CPE. The higher the Kow (octanol-water
partition coefficient) or hydrophobicity of solutes, the better the extraction due to the
greater affinity of solutes to solubilize into micelles. The empirical linear correlations
between log Kow; log (solute partition ratio), and log (height of transfer unit) were
developed. The extraction ability decreases as the initial concentration of solute in
the wastewater increases mainly due to the coacervate entrainment into the overhead
effluent. In addition, the effect of nonionic surfactant molecular structure on the CPE
of phenol in hatch experiment was studied. Phenol coacervate solubilization
equilibrium constant is shown to increase lingarly with EO number, but is unaffected
by alkyl carbon number or hydrophobe branching. A model is developed which can
predict the phenol partition ratio at a given temperature for any AE surfactant
structure dependent on only one simple measured parameter: fractional coacervate
volume. Finally, potential solutions for surfactant entrainment in the dilute phase

after CPE were proposed and studied.
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