
Chapter 4
Preliminary Study

In this chapter, a preliminary study of applying GA to circuit synthesis w ill be
presented. The study, conducted in software, concentrated on the synthesis of sequential
circuits from partial input/output sequences. This chapter is divided into 2 sections based
on the circuit representation. Section 4.1 presents an initial work in which the circuit
was represented by the configuration bits of programmable logic device (PLD). Section
4.2 presents another work in which the circuit was represented by a finite-state machine
(FSM).

4.1 Evolving the Configuration Bits of GAL Structure

A sequential circuit can be constructed from the understanding of its behavior. Each
state must be identified to define the state transition function and the output function.
Given a behavioral description, the desired circuit can be synthesised by many conven­
tional methods. In contrast, this work proposed a different approach: a sequential circuit
was synthesised not from a behavioral description but from single partial input/output se­
quence. The paper was published in 1998 (Manovit, 1998). I present only the contents
related to this thesis.

4.1.1 Input/output Sequence

A partial input/output sequence, used as a circuit specification, was attained by the
following steps.

• reset the target circuit to the start state (state 0)

• fed a random input sequence to the target circuit

• recorded the corresponding output sequence

พ8สนุศกลใ} สถใบน}11ยน7กบ

Ï W 1ล}ก1 ๅ 5ï! ยๅ Âtf
2 1

To be a general approach, the input sequence was generated at random with uniform
distribution (i.e. at any time, the probability that the input bit be “0” and “ 1” were equal).
See Figure 4.1 for example.

Figure 4.1 : Generating an input/output sequence.

4.1.2 Circuit Representation

The circuit was encoded to the 256-bit configuration of GAL structure, composed
of rows of two-level sum-of-product programmable array logic (PAL) connected to D flip-
flop. The GAL structure, shown in Figure 4.2, consisted of 4-bit input and 4-bit state. It
should be noticed that the GAL structure only performed a state-transition function, the
output-mapping function was not included.

S3

S2

S I

SO

Figure 4.2: The GAL structure.

2 2

4.1.3 Genetic Operators

The simple GA was tailored to solve the circuit synthesis problem. The genetic
operators were defined as follows.

• Selection: The 10 fittest individuals, ordered by combined rank method
(Winston, 1992), were selected to survive in the next generation. The
combined rank method can be succinctly summarised as selecting the
individuals which were fit and different from the others.

• Crossover: A ll possible pairs among 10 already selected individual
were used to produced new offspring using uniform crossover. Given
two parents Pi ,P2 and a random string mask. The uniform crossover
produced two children: (pi & mask) I {jp2 & ~ mask) and (pi &

~ mask) I (jp2 & mask).

• Mutation: The 10 selected individuals were mutated to produce 10
offspring. The mutation changed exactly 5 bits of each individual.

In addition, some constraints were taken into account. First, a configuration resulting a
product term to always be “0” was not allowed (e.g. A & ~A). Second, the unused input
signals were left unwired. These constraints reduced the search space of the problem and
let the program concentrated on the connection points that indeed affected the function of
the circuit.

4.1.4 Fitness Function

An individual was evaluated by the following steps.

1. fed an input to the circuit, then clocked the circuit

2. next state of the circuit was mapped with the corresponding out­
put, recorded the number of times the state was mapped to the
output “ 0” and “ 1” independently.

3. repeated step 1 and 2 until the end of sequence.

23

After the sequence was completed, the fitness value of the individual, F, was computed
by:

f 1 denoted the fitness value of state i
Pi denoted the number of times in which state i was mapped with output “0”
qi denoted the number of times in which state i was mapped with output “ 1”
ร denoted the number of states

Based on Moore’s model, a state of an FSM must be mapped to only one output value.
Therefore any state that was mapped to both “0” and “ 1” caused the penalty in the fitness
value as shown in the formula. For Mealy’s model, the fitness evaluation was similar
to Moore’s model. The output of Mealy’s machine were constructed from both state and
input, and therefore fi denoted the fitness value of (state, input)i and ร denoted (number
of states X number o f inputs).

4.1.5 Experiment Results

The GA was applied to synthesise a number of sequential circuits shown in Table
4.1. In the experiment, the state diagrams of the target circuits were known. Therefore the
verification was done by comparing state diagrams of the evolved circuit and the target
circuit. It was noticed that the evolved circuit sometimes was not functionally equivalent
to the target circuit. The evolved circuit, that was functionally similar to the target circuit,
was called complete solution. The incomplete solution referred to the evolved circuit that
was able to perform according to a given input/output sequence but its function was not
similar to the target circuit.

The correctness percentage was defined as:

F = fi where

where

correctness percentage =
number of runs yielding complete solutions

X 100 (4 .2)
number of runs yielding solutions

A number of GA executions were run to obtain the correctness percentage. The exper­
iment shows that the correctness percentage increased with the length of input/output
sequence. The graph in Figure 4.3 shows that the longer input/output sequence gave a

24

Table 4.1 ะ The behaviors of the tested circuits.

Circuits #input
(bit)

#output
(bit)

#state Circuit description
Moore Mealy

Frequency
divider

0 1 8 8 gave square wave output of
frequency input divided by 8

Odd parity
detector

1 1 2 2 gave an output “ 1” when the
number of “ 1” in inputs is odd

Modulo-5
detector

1 1 6 5 gave an output ‘ฯ ” when the
number of “ 1” in inputs can be
divided by five.

Serial
adder

2 1 4 2 gave the sum of 2 inputs feeding
from LSB to MSB

better result. However, the correctness levelled off when the sequence length exceeded a
value called upperbound length. The upperbound length, น, was computed by:

น = E(S, ร) X E{I, I) (4.3)

where

E (ท, ท) denoted ท(y + 2 + 3 + ■ • • + n)
ร denoted the number of states (that was 16 for GAL structure)
/ denoted the number of inputs (that was 4 for serial adder)

The E(ร , ร) xE (I, I) was an approximation of sequence length needed to walk thorough­
ly in a Mealy’s FSM which had ร states and I inputs. For serial adder, the upperbound
length was £7(16,16) X E(4,4) = 451. The result shows that we can calculate the upper-
bound length for a small sequential circuit. However, the Equation 4.3 cannot be used to
predict the upperbound length of a larger circuit.

4.2 Evolving the Finite-State Machine (FSM)
In the later study, the circuit representation was changed from GAL structure to

FSM due to the following reasons.

• The GAL structure was inefficient since it possibly produced the mean­
ingless circuit (e.g. a product terms consisting of A & '-'-'A). To avoid
such circuit, the time to perform constraint check must be spent.

25

Figure 4.3: The correctness percentage of serial adder, Mealy’s model.
(Each point on the graph was taken from 100 independent runs)

• It was hard to determined whether the number of product terms in GAL
structure was sufficient to synthesise a particular circuit or not.

• The simulation of GAL structure took a great deal of computational
time. Although there was a considerable attempt to optimise the GAL
simulator, it still consumed 90% of the GA execution.

• The GAL simulator was lack of scalability. It was rather complicated to
program a scalable and efficient GAL simulator.

Due to the change of circuit representation, this work can be regarded as FSM Inference -
drawing a FSM from its partial input/output sequences. The paper was published in 1999
(Chongstitvatana, 1999).

4.2.1 Circuit Representation

An FSM was encoded to a binary string to perform genetic operations. The en­
coding scheme was illustrated in Figure 4.4. The binary string was constructed by con­
catenating the next states and the outputs of all rows together. The string length, L, was
computed by:

L = 2s X 2i X (ร + o) (4.4)

where
L denoted string length
ร denoted the number of state bits

26

i denoted the number of input bits
o denoted the number of output bits

For real world applications, the number of internal states needed to produced a complete
solution might be unknown. Therefore the number of states of an individual would be
larger than the target FSM.

0/0

S t a t e I n p u t N e x t S t a t e O u t p u t
00 0 00 0
00 1 01 0
01 0 10 0
01 1 01 0
10 0 00 0
10 1 11 0
11 0 10 1
11 1 01 0

" 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 11 0 1 0 1 01 I

Figure 4.4: Encoding an FSM to a binary string.

4.2.2 Multiple Input/output Sequences

In previous work, the correctness levelled off after the sequence length exceeded the
upperbound length. To improve the correctness, the multiple input/output sequences were
proposed. The main idea was that the performance of learning system w ill get better with
more examples. The multiple input/output sequences should yield higher correctness than
single input/output sequence of the same length. Generating an input/output sequence was
similar to the previous work.

27

4.2.3 Genetic Operators

The GA was customised to the problem. The main algorithm is presented in A l­
gorithm 4.1. The maximum number of generations was set at 50,000. The P, Q, and R
Algorithm 4.1 Genetic Algorithms.
l i n e 1 ะ g e n e r a t i o n = 0 ;
l i n e 2 : i n i t i a l i z e p i n d i v i d u a l s ;
l i n e 3 : w h i l e t e r m i n a t i o n c o n d i t i o n s n o t m e t d o
l i n e 4 ะ p r o d u c e Q i n d i v i d u a l s u s i n g c r o s s o v e r ;
l i n e 5 : p r o d u c e R i n d i v i d u a l s u s i n g m u t a t i o n ;
l i n e 6 : s e l e c t p i n d i v i d u a l s f r o m (P , Q , R) ;
l i n e 7 : g e n e r a t i o n = g e n e r a t i o n + 1 ;
l i n e 8 ะ e n d w h i l e

were set at 100, 200, 100 respectively. The genetic operators - crossover, mutation, and
selection - were defined as follows:

• Crossover: A pair of parents were selected randomly from p individu­
als to produce two offspring using single-point crossover

• Mutation: A parent was selected randomly from p individuals. The
selected parent was mutated to produce an offspring with the mutation
probability Pm = 0.01.

• Selection: The best p individuals were selected from (P บ Q บ R)
individuals to the next generation using combined rank method (fitness
rank + diversity rank).

4.2.4 Fitness function

The fitness of an individual was evaluated by the following steps:

1. fitness, p, = 0

2. reset the individual (FSM) to start state

3. fed a given input sequence to the individual to get the correspond­
ing output sequence

28

4 . c o m p a re d th e c o rre sp o n d in g o u tp u t se q u e n c e w ith th e g iv e n o u t­
p u t s e q u e n c e , T = T + n u m b er o f s im ila r o u tp u t b its

5. re p e a te d s te p s 2 -4 fo r th e re m a in in g in p u t/o u tp u t se q u e n c e s

F ig u re 4 .5 : F itn e s s ev a lu a tio n .

4.2.5 Experiment Results

A n u m b e r o f s e q u e n tia l c irc u its , u se d in th e e x p e rim e n t, is sh o w n in F ig u re 4 .6 . T h e
p a ra m e te rs in th e e x p e rim e n t w e re fix ed fo r e a c h c irc u it e x c e p t th e n u m b e r o f av a ilab le
in te rn a l s ta te s . W e le t th e n u m b e r o f s ta te o f an in d iv id u a l to b e la rg e r th an th e n u m b e r o f
s ta te in th e ta rg e t F S M . T h e so lu tio n m ay c o n ta in re d u n d a n t s ta te s an d u n re a c h a b le sta tes .
A c o n v e n tio n a l m e th o d can be u se d to o p tim ise th em . T h e n u m b e r o f a v a ila b le in te rn a l
s ta te s fo r e a c h c irc u it is p re se n te d in T ab le 4 .2 .

T h e e x p e r im e n t re su lt in T ab le 4 .3 sh o w s th a t th e c o rre c tn e s s in c re a se d w ith th e
n u m b e r o f in p u t/o u tp u t seq u en ces . T h e c o rre c tn e s s can b e ra ise d to 1 00% u s in g 100
in p u t/o u tp u t s e q u e n c e s . T h e sy n th e s is o f s e r ia l a d d e r w as a n a ly se d in o rd e r to u n d e rs ta n d
th is im p ro v e m e n t. A c o m p le te so lu tio n w a s sh o w n in F ig u re 4 .7 . T h e F S M c o n s is te d o f
a re d u n d a n t s ta te an d an u n re a c h a b le s ta te ; th e s ta te “ 10” w as e q u iv a le n t to th e s ta te “ 11”
an d th e s ta te “ 0 1 ” w as u n re a c h a b le . A n in c o m p le te so lu tio n p ro d u c e d b y u s in g s in g le
in p u t/o u tp u t s e q u e n c e w as sh o w n in F ig u re 4 .8 . T h e F S M c o n s is te d o f 3 p a rts ะ th e
in itia l s ta te “0 0 ” , th e p a r t A , an d th e p a r t B . P a rt A p ro d u c e d in c o rre c t o u tp u ts . P a rt B
p ro d u c e d c o rre c t o u tp u ts . T h e f irs t few b its in th e in p u t s e q u e n c e d e te rm in e d w h ic h p a rt
th e su b se q u e n t s ta te s b e lo n g e d to . U s in g a s in g le se q u e n c e , th e F S M th a t w a lk e d in to p a rt
B w a s in d is t in g u ish a b le f ro m a c o m p le te so lu tio n . U s in g m u ltip le se q u e n c e s in c re a se d th e
p o ss ib il i ty o f e x e rc is in g p a r t A a n d h e n c e id e n tif ie d th is F S M as an in c o m p le te so lu tio n .
In o th e r w o rd s , th e m u ltip le se q u e n c e s h a d a b e tte r d is c r im in a tio n b e tw e e n c o m p le te an d
in c o m p le te so lu tio n s .

29

0 0 / 0 01/0

10/0

0 / 0

1/0

(A) Serial Adder

(B) 1010 Detector

(C)0101 Detector

(D) Modulo-4 Counter

(E) Reversible 4-Counter

F ig u re 4 .6 : T h e se q u e n tia l c irc u its u sed in th e e x p e rim e n t.

30

T ab le 4 .2 : T h e n u m b e r o f av a ila b le in te rn a l s ta te s

T es ted c irc u its In p u t
(b its)

O u tp u t
(b its)

T h e n u m b e r
o f

in te rn a l s ta te s

T h e n u m b e r
o f av a ila b le

in te rn a l s ta te s
S e ria l A d d e r 2 1 2 4

1010 D e te c to r 1 1 4 8
0101 D e te c to r 1 1 4 8

M o d u lo -4 C o u n te r 1 1 4 8
R e v e rs ib le 4 -C o u n te r 1 2 4 8
R e v e rs ib le 8 -C o u n te r 1 3 8 32

T ab le 4 .3 : C o rre c tn e ss P e rc e n ta g e

N u m b e r
o f

S e q u e n c e s

C o rre c tn e ss P e rc e n ta g e (S e q u e n c e L e n g th = 100)
S eria l
A d d e r

1010
D e te c to r

0101
D e te c to r

M o d u lo -4
C o u n te r

R e v e rs ib le
4 -C o u n te r

R ev e rs ib le
8 -C o u n te r

1 6 0 .0 0 .0 10 .0 4 2 .8 2 0 .0 0 .0 0
5 7 0 .0 4 0 .0 10 .0 83 .6 100 .0 57.1
10 8 0 .0 9 0 .0 8 0 .0 100 .0 1 0 0 .0 7 1 .4
25 100.0 55 .5 9 0 .0 100 .0 1 0 0 .0 100 .0
5 0 100 .0 9 0 .0 100 .0 100 .0 100 .0 100 .0
75 100 .0 100 .0 1 0 0 .0 1 00 .0 100 .0 100 .0
100 100.0 1 00 .0 100 .0 100 .0 100 .0 100 .0

0 0 / 0

F ig u re 4 .7 : A c o m p le te so lu tio n (se ria l ad d er)

31

B

1 0 / 0 ,,

F ig u re 4 .8 : A n in c o m p le te so lu tio n (se ria l ad d er)

	Chapter 4 Preliminary Study
	4.1 Evolving the Configuration Bits of GAL Structure
	4.2 Evolving the Finite-State Machine (FSM)

