
Chapter 4
Preliminary Study

In this chapter, a preliminary study of applying GA to circuit synthesis w ill be 
presented. The study, conducted in software, concentrated on the synthesis of sequential 
circuits from partial input/output sequences. This chapter is divided into 2 sections based 
on the circuit representation. Section 4.1 presents an initial work in which the circuit 
was represented by the configuration bits of programmable logic device (PLD). Section
4.2 presents another work in which the circuit was represented by a finite-state machine 
(FSM).

4.1 Evolving the Configuration Bits of GAL Structure

A sequential circuit can be constructed from the understanding of its behavior. Each 
state must be identified to define the state transition function and the output function. 
Given a behavioral description, the desired circuit can be synthesised by many conven­
tional methods. In contrast, this work proposed a different approach: a sequential circuit 
was synthesised not from a behavioral description but from single partial input/output se­
quence. The paper was published in 1998 (Manovit, 1998). I present only the contents 
related to this thesis.

4.1.1 Input/output Sequence

A partial input/output sequence, used as a circuit specification, was attained by the 
following steps.

• reset the target circuit to the start state (state 0)

• fed a random input sequence to the target circuit

•  recorded the corresponding output sequence
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To be a general approach, the input sequence was generated at random with uniform 
distribution (i.e. at any time, the probability that the input bit be “0”  and “ 1”  were equal). 
See Figure 4.1 for example.

Figure 4.1 : Generating an input/output sequence.

4.1.2 Circuit Representation

The circuit was encoded to the 256-bit configuration of GAL structure, composed 
of rows of two-level sum-of-product programmable array logic (PAL) connected to D flip- 
flop. The GAL structure, shown in Figure 4.2, consisted of 4-bit input and 4-bit state. It 
should be noticed that the GAL structure only performed a state-transition function, the 
output-mapping function was not included.
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Figure 4.2: The GAL structure.
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4.1.3 Genetic Operators

The simple GA was tailored to solve the circuit synthesis problem. The genetic 
operators were defined as follows.

•  Selection: The 10 fittest individuals, ordered by combined rank method 
(Winston, 1992), were selected to survive in the next generation. The 
combined rank method can be succinctly summarised as selecting the 
individuals which were fit and different from the others.

•  Crossover: A ll possible pairs among 10 already selected individual 
were used to produced new offspring using uniform crossover. Given 
two parents Pi ,P2 and a random string mask. The uniform crossover 
produced two children: (pi & mask) I {jp2 & ~  mask) and (pi &

~  mask) I (jp2 &  mask).

• Mutation: The 10 selected individuals were mutated to produce 10 
offspring. The mutation changed exactly 5 bits of each individual.

In addition, some constraints were taken into account. First, a configuration resulting a 
product term to always be “0” was not allowed (e.g. A &  ~A). Second, the unused input 
signals were left unwired. These constraints reduced the search space of the problem and 
let the program concentrated on the connection points that indeed affected the function of 
the circuit.

4.1.4 Fitness Function

An individual was evaluated by the following steps.

1. fed an input to the circuit, then clocked the circuit

2. next state of the circuit was mapped with the corresponding out­
put, recorded the number of times the state was mapped to the 
output “ 0”  and “ 1”  independently.

3. repeated step 1 and 2 until the end of sequence.
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After the sequence was completed, the fitness value of the individual, F, was computed
by:

f  1 denoted the fitness value of state i
Pi denoted the number of times in which state i was mapped with output “0”
qi denoted the number of times in which state i was mapped with output “ 1”
ร denoted the number of states

Based on Moore’s model, a state of an FSM must be mapped to only one output value. 
Therefore any state that was mapped to both “0” and “ 1”  caused the penalty in the fitness 
value as shown in the formula. For Mealy’s model, the fitness evaluation was similar 
to Moore’s model. The output of Mealy’s machine were constructed from both state and 
input, and therefore fi denoted the fitness value of (state, input)i and ร denoted (number 
of states X number o f inputs).

4.1.5 Experiment Results

The GA was applied to synthesise a number of sequential circuits shown in Table 
4.1. In the experiment, the state diagrams of the target circuits were known. Therefore the 
verification was done by comparing state diagrams of the evolved circuit and the target 
circuit. It was noticed that the evolved circuit sometimes was not functionally equivalent 
to the target circuit. The evolved circuit, that was functionally similar to the target circuit, 
was called complete solution. The incomplete solution referred to the evolved circuit that 
was able to perform according to a given input/output sequence but its function was not 
similar to the target circuit.

The correctness percentage was defined as:

F =  fi where

where

correctness percentage =
number of runs yielding complete solutions

X 100 (4 .2 )
number of runs yielding solutions

A number of GA executions were run to obtain the correctness percentage. The exper­
iment shows that the correctness percentage increased with the length of input/output 
sequence. The graph in Figure 4.3 shows that the longer input/output sequence gave a
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Table 4.1 ะ The behaviors of the tested circuits.

Circuits #input
(bit)

#output
(bit)

#state Circuit description
Moore Mealy

Frequency
divider

0 1 8 8 gave square wave output of 
frequency input divided by 8

Odd parity 
detector

1 1 2 2 gave an output “ 1”  when the 
number of “ 1”  in inputs is odd

Modulo-5
detector

1 1 6 5 gave an output ‘ฯ ”  when the 
number of “ 1”  in inputs can be 
divided by five.

Serial
adder

2 1 4 2 gave the sum of 2 inputs feeding 
from LSB to MSB

better result. However, the correctness levelled off when the sequence length exceeded a 
value called upperbound length. The upperbound length, น, was computed by:

น = E(S, ร) X E{I, I) (4.3)

where

E (ท, ท) denoted ท(y + 2 + 3 + ■ • • + n)
ร denoted the number of states (that was 16 for GAL structure)
/  denoted the number of inputs (that was 4 for serial adder )

The E(ร , ร )  xE (I, I) was an approximation of sequence length needed to walk thorough­
ly in a Mealy’s FSM which had ร states and I  inputs. For serial adder, the upperbound 
length was £7(16,16) X E(4,4) =  451. The result shows that we can calculate the upper- 
bound length for a small sequential circuit. However, the Equation 4.3 cannot be used to 
predict the upperbound length of a larger circuit.

4.2 Evolving the Finite-State Machine (FSM)
In the later study, the circuit representation was changed from GAL structure to 

FSM due to the following reasons.

• The GAL structure was inefficient since it possibly produced the mean­
ingless circuit (e.g. a product terms consisting of A &  '-'-'A). To avoid 
such circuit, the time to perform constraint check must be spent.
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Figure 4.3: The correctness percentage of serial adder, Mealy’s model. 
(Each point on the graph was taken from 100 independent runs)

• It was hard to determined whether the number of product terms in GAL 
structure was sufficient to synthesise a particular circuit or not.

•  The simulation of GAL structure took a great deal of computational 
time. Although there was a considerable attempt to optimise the GAL 
simulator, it still consumed 90% of the GA execution.

• The GAL simulator was lack of scalability. It was rather complicated to 
program a scalable and efficient GAL simulator.

Due to the change of circuit representation, this work can be regarded as FSM Inference -  
drawing a FSM from its partial input/output sequences. The paper was published in 1999 
(Chongstitvatana, 1999).

4.2.1 Circuit Representation

An FSM was encoded to a binary string to perform genetic operations. The en­
coding scheme was illustrated in Figure 4.4. The binary string was constructed by con­
catenating the next states and the outputs of all rows together. The string length, L, was 
computed by:

L =  2s X  2i X (ร +  o) (4.4)

where
L denoted string length
ร denoted the number of state bits
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i denoted the number of input bits 
o denoted the number of output bits

For real world applications, the number of internal states needed to produced a complete 
solution might be unknown. Therefore the number of states of an individual would be 
larger than the target FSM.

0/0

S t a t e I n p u t N e x t  S t a t e O u t p u t
00 0 00 0
00 1 01 0
01 0 10 0
01 1 01 0
10 0 00 0
10 1 11 0
11 0 10 1
11 1 01 0

" 0 0  0 0 1 0 1 0  0 0 1 0 0 0  0  11  0 1 0  1 01  I

Figure 4.4: Encoding an FSM to a binary string.

4.2.2 Multiple Input/output Sequences

In previous work, the correctness levelled off after the sequence length exceeded the 
upperbound length. To improve the correctness, the multiple input/output sequences were 
proposed. The main idea was that the performance of learning system w ill get better with 
more examples. The multiple input/output sequences should yield higher correctness than 
single input/output sequence of the same length. Generating an input/output sequence was 
similar to the previous work.
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4.2.3 Genetic Operators

The GA was customised to the problem. The main algorithm is presented in A l­
gorithm 4.1. The maximum number of generations was set at 50,000. The P, Q, and R
Algorithm 4.1 Genetic Algorithms.
l i n e  1 ะ g e n e r a t i o n  =  0 ;
l i n e  2 :  i n i t i a l i z e  p  i n d i v i d u a l s ;
l i n e  3 :  w h i l e  t e r m i n a t i o n  c o n d i t i o n s  n o t  m e t  d o
l i n e  4 ะ p r o d u c e  Q i n d i v i d u a l s  u s i n g  c r o s s o v e r ;
l i n e  5 :  p r o d u c e  R  i n d i v i d u a l s  u s i n g  m u t a t i o n ;
l i n e  6 :  s e l e c t  p  i n d i v i d u a l s  f r o m  ( P ,  Q ,  R ) ;
l i n e  7 :  g e n e r a t i o n  =  g e n e r a t i o n  +  1 ;
l i n e  8 ะ e n d w h i l e

were set at 100, 200, 100 respectively. The genetic operators -  crossover, mutation, and 
selection -  were defined as follows:

• Crossover: A pair of parents were selected randomly from p individu­
als to produce two offspring using single-point crossover

• Mutation: A parent was selected randomly from p individuals. The 
selected parent was mutated to produce an offspring with the mutation 
probability Pm = 0.01.

• Selection: The best p individuals were selected from (P บ Q บ R) 
individuals to the next generation using combined rank method (fitness 
rank + diversity rank).

4.2.4 Fitness function

The fitness of an individual was evaluated by the following steps:

1. fitness, p, = 0

2. reset the individual (FSM) to start state

3. fed a given input sequence to the individual to get the correspond­
ing output sequence
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4 . c o m p a re d  th e  c o rre sp o n d in g  o u tp u t se q u e n c e  w ith  th e  g iv e n  o u t­
p u t s e q u e n c e , T  =  T  +  n u m b er  o f  s im ila r  o u tp u t b its

5. re p e a te d  s te p s  2 -4  fo r  th e  re m a in in g  in p u t/o u tp u t se q u e n c e s

F ig u re  4 .5 : F itn e s s  ev a lu a tio n .

4.2.5 Experiment Results

A  n u m b e r  o f  s e q u e n tia l c irc u its , u se d  in  th e  e x p e rim e n t, is  sh o w n  in  F ig u re  4 .6 . T h e  
p a ra m e te rs  in  th e  e x p e rim e n t w e re  fix ed  fo r  e a c h  c irc u it  e x c e p t th e  n u m b e r  o f  av a ilab le  
in te rn a l s ta te s . W e le t th e  n u m b e r o f  s ta te  o f  an  in d iv id u a l to  b e  la rg e r  th an  th e  n u m b e r  o f  
s ta te  in  th e  ta rg e t F S M . T h e  so lu tio n  m ay  c o n ta in  re d u n d a n t s ta te s  an d  u n re a c h a b le  sta tes . 
A  c o n v e n tio n a l m e th o d  can  be  u se d  to  o p tim ise  th em . T h e  n u m b e r  o f  a v a ila b le  in te rn a l 
s ta te s  fo r  e a c h  c irc u it is p re se n te d  in  T ab le  4 .2 .

T h e  e x p e r im e n t re su lt  in  T ab le  4 .3  sh o w s th a t  th e  c o rre c tn e s s  in c re a se d  w ith  th e  
n u m b e r  o f  in p u t/o u tp u t seq u en ces . T h e  c o rre c tn e s s  can  b e  ra ise d  to  1 00%  u s in g  100 
in p u t/o u tp u t s e q u e n c e s . T h e  sy n th e s is  o f  s e r ia l a d d e r  w as  a n a ly se d  in  o rd e r  to  u n d e rs ta n d  
th is  im p ro v e m e n t. A  c o m p le te  so lu tio n  w a s  sh o w n  in  F ig u re  4 .7 . T h e  F S M  c o n s is te d  o f  
a  re d u n d a n t s ta te  an d  an  u n re a c h a b le  s ta te ; th e  s ta te  “ 10” w as e q u iv a le n t to  th e  s ta te  “ 11” 
an d  th e  s ta te  “ 0 1 ” w as u n re a c h a b le . A n  in c o m p le te  so lu tio n  p ro d u c e d  b y  u s in g  s in g le  
in p u t/o u tp u t s e q u e n c e  w as sh o w n  in  F ig u re  4 .8 . T h e  F S M  c o n s is te d  o f  3 p a rts  ะ th e  
in itia l s ta te  “0 0 ” , th e  p a r t  A , an d  th e  p a r t  B . P a rt A  p ro d u c e d  in c o rre c t  o u tp u ts . P a rt B 
p ro d u c e d  c o rre c t  o u tp u ts . T h e  f irs t few  b its  in  th e  in p u t s e q u e n c e  d e te rm in e d  w h ic h  p a rt 
th e  su b se q u e n t s ta te s  b e lo n g e d  to . U s in g  a  s in g le  se q u e n c e , th e  F S M  th a t w a lk e d  in to  p a rt 
B w a s  in d is t in g u ish a b le  f ro m  a  c o m p le te  so lu tio n . U s in g  m u ltip le  se q u e n c e s  in c re a se d  th e  
p o ss ib il i ty  o f  e x e rc is in g  p a r t A  a n d  h e n c e  id e n tif ie d  th is  F S M  as an  in c o m p le te  so lu tio n . 
In  o th e r  w o rd s , th e  m u ltip le  se q u e n c e s  h a d  a  b e tte r  d is c r im in a tio n  b e tw e e n  c o m p le te  an d  
in c o m p le te  so lu tio n s .
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0 0 / 0 01/0

10/0

0 / 0

1/0

(A) Serial Adder

(B) 1010 Detector

(C)0101 Detector

(D) Modulo-4 Counter

(E) Reversible 4-Counter

F ig u re  4 .6 : T h e  se q u e n tia l c irc u its  u sed  in  th e  e x p e rim e n t.
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T ab le  4 .2 : T h e  n u m b e r  o f  av a ila b le  in te rn a l s ta te s

T es ted  c irc u its In p u t
(b its )

O u tp u t
(b its )

T h e  n u m b e r  
o f

in te rn a l s ta te s

T h e  n u m b e r  
o f  av a ila b le  

in te rn a l s ta te s
S e ria l A d d e r 2 1 2 4

1010  D e te c to r 1 1 4 8
0101  D e te c to r 1 1 4 8

M o d u lo -4  C o u n te r 1 1 4 8
R e v e rs ib le  4 -C o u n te r 1 2 4 8
R e v e rs ib le  8 -C o u n te r 1 3 8 32

T ab le  4 .3 : C o rre c tn e ss  P e rc e n ta g e

N u m b e r
o f

S e q u e n c e s

C o rre c tn e ss  P e rc e n ta g e  (S e q u e n c e  L e n g th  =  100)
S eria l
A d d e r

1010
D e te c to r

0101
D e te c to r

M o d u lo -4
C o u n te r

R e v e rs ib le
4 -C o u n te r

R ev e rs ib le
8 -C o u n te r

1 6 0 .0 0 .0 10 .0 4 2 .8 2 0 .0 0 .0 0
5 7 0 .0 4 0 .0 10 .0 83 .6 100 .0 57.1
10 8 0 .0 9 0 .0 8 0 .0 100 .0 1 0 0 .0 7 1 .4
25 100.0 55 .5 9 0 .0 100 .0 1 0 0 .0 100 .0
5 0 100 .0 9 0 .0 100 .0 100 .0 100 .0 100 .0
75 100 .0 100 .0 1 0 0 .0 1 00 .0 100 .0 100 .0
100 100.0 1 00 .0 100 .0 100 .0 100 .0 100 .0

0 0 / 0

F ig u re  4 .7 : A  c o m p le te  so lu tio n  (se ria l ad d er)
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B

1 0 / 0  ,,

F ig u re  4 .8 : A n  in c o m p le te  so lu tio n  (se ria l ad d er)
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