CHAPTER II ### **EXPERIMENTAL** # 2.1 Instruments and Equipment Thin layer chromatography (TLC) was performed on aluminum sheets precoated with silica gel (Merck Kieselgel 60 PF₂₅₄). Column chromatography was carried out on silica gel (Merck Kieselgel 60, 70-230 mesh). The ¹H- and ¹³C-NMR spectra were performed in deuterated chloroform (CDCl₃) with tetramethylsilane (TMS) as an internal reference on the Varian nuclear magnetic resonance spectrometer, model Mercury plus 400 NMR spectrometer which operated at 399.84 MHz for ¹H and 100.54 MHz for ¹³C nuclei. The chemical shifts (δ) are assigned by comparison with residue solvent protons. ### 2.2 Chemicals All solvents used in this research were purified prior to use by standard methodology except for those which were reagent grades. The reagents used for synthesis were purchased from Fluka chemical company or otherwise stated and were used without further purification. ## 2.3 Preparation of Brominating Agents ## Ethyl tribromoacetate [5, 36] One mL of concentrated H₂SO₄ was cautiously added to the mixture of Br₃CCO₂H 1 eq (40 mmol, 11.87 g) and EtOH 4.5 mL. The mixture was refluxed for 3-6 h and then poured into 100 mL of water in a separatory funnel. The upper layer of crude ester was removed and washed with 50 mL of water, saturated aqueous NaHCO₃ and water, respectively, and dried over anhydrous Na₂SO₄. Ethyl tribromoacetate: colorless oil (82%). 1 H-NMR (CDCl₃) δ (ppm): 1.40 (t, 3H, J = 7.2 Hz, CH₂CH₃) and 4.43 (q, 2H, J = 7.2 Hz, CH₂CH₃). 13 C-NMR (CDCl₃) δ (ppm): 13.7, 29.5, 65.7 and 162.1. ## Hexabromoacetone [37] Anhydrous NaOAc 7 g was mixed with 20 mL of glacial CH₃COOH. The reaction mixture was stirred and heated to 60 °C, acetone 1.4 mL was added and followed by dropwise addition of Br₂ 5 mL over a 10 min period with stirring. The mixture was then heated to 95 °C for 2 h. After which it was cooled to RT and mixed with 100 mL of water to precipitate the desired product as white solid. After air drying, the pure product was obtained upon recrystallization from hexane. *Hexabromoacetone*: white solid (60%), 13 C-NMR (CDCl₃) δ (ppm): 24.6 and 173.4. ## 2.4 General Procedure ### 2.4.1 Preparation of Alcohols ### 1-Phenylethanol [5] The mixture of acetophenone (5.10 mmol, 0.61 g) and 95% EtOH 10 mL was added NaBH₄ (1.45 mmol, 0.20 g) by portion at least 5 min. Then the mixture was stirred for additional 20 min. After the reaction has completed (monitoring by TLC, hexane:EtOAc 3:1), the reaction was quenched by cautiously adding water 15 mL in an ice bath. 6M HCl was slowly added into the reaction until the reaction mixture became acidic. Finally, the reaction mixture was extracted with ether and dried over anhydrous NaSO₄. 1-Phenylethanol: yellow oil (60%). ¹H-NMR (CDCl₃) δ (ppm): 1.50 (d, 3H, J = 6.4 Hz, CHCH₃), 1.91 (s, 1H, CHOH), 4.90 (m, 1H, CHOH) and 7.26-7.40 (m, 5H). ¹³C-NMR (CDCl₃) δ (ppm): 25.2, 70.4, 125.4, 127.5, 128.5 and 145.8. # Ethyl mandelate [5, 36] One mL of concentrated H_2SO_4 was cautiously added to the mixture of mandelic acid (PhCH(OH)CO₂H) 1 eq (40 mmol, 6.09 g) and EtOH 4.5 mL. The mixture was refluxed for 3-6 h and then poured into 100 mL of water in a separatory funnel. The upper layer of crude ester was removed and washed with 50 mL of water, saturated aqueous NaHCO₃ and water, respectively, and dried over anhydrous Na₂SO₄. Ethyl mandelate: colorless oil (37%). ¹H-NMR (CDCl₃) δ (ppm): 1.22 (t, 3H, J = 6.0 Hz, CH₂CH₃), 3.8 (s, 1H, CHOH), 4.21 (q, 2H, J = 9.0 Hz), 5.15 (s, 1H, CHOH) and 7.33-7.43 (m, 5H). ¹³C-NMR (CDCl₃) δ (ppm): 14.0, 62.2, 72.9, 126.5, 128.6, 138.4 and 173.7. # 2.4.2 Optimum Conditions Study for the Conversion of Benzylic and Allylic Alcohols to Their Corresponding Chlorides A stirred solution of alcohol 1 eq (0.25 mmol) and selected chlorinating agent 1.5 eq (0.375 mmol) in dry CH₂Cl₂ (0.5 mL) was successively added PPh₃ 1.5 eq (0.375 mmol) at RT (30 °C) under N₂ atmosphere. After 30 min, the reaction was quenched by solvent evaporation, and then the corresponding product was determined by ¹H-NMR on the crude mixture with toluene as an internal standard or purified by silica gel column chromatography (eluent: hexane). Benzyl chloride: colorless oil. 1 H-NMR (CDCl₃) δ (ppm): 7.35 (m, 5H), 4.58 (s, 2H). *1-Phenyethyl chloride*: colorless oil. ¹H-NMR (CDCl₃) δ (ppm): 1.88 (d, 3H, J = 7.2 Hz,), 5.12 (m, 1H), 7.36 (m, 5H). Furfuryl chloride: colorless oil. ¹H-NMR (CDCl₃) δ (ppm): 4.49 (s, 2H, CH₂Cl), 6.20-6.30 (m, 2H), 7.35-7.45 (m, 1H). Desyl chloride: colorless oil. 1 H-NMR (CDCl₃) δ (ppm): 6.32 (s, 1H) and 7.33-7.99 (m, 10H). *Trans-cinnamyl chloride:* colorless oil. 1 H-NMR (CDCl₃) δ (ppm): 4.24 (d, 2H, J = 7.0 Hz), 6.29 (dt, 1H, J = 15.9, 7.0 Hz), 6.65 (d, 1H, J = 15.9 Hz), 7.26-7.41 (m, 5H). *1-Chloro-2-hexene*: colorless oil. ¹H-NMR (CDCl₃) δ (ppm): 0.90 (t, 3H, J = 7.1 Hz), 1.37 (m, 4H), 4.05 (d, 2H, J = 7.1 Hz), 5.62 (m, 1H), 5.79 (m, 1H). Geranyl chloride: colorless oil. 1 H-NMR (CDCl₃) δ (ppm): 1.71 (s, 3H), 2.05 (m, 4H), 4.05 (d, 2H, J = 7.1 Hz, CHCH₂Cl), 5.20 (m, 1H), 5.43 (m, 1H). # 2.4.2.1 Effects of Chlorinating Agents The synthesis of benzyl chloride and *trans*-cinnamyl chloride as two model compounds for benzylic and allylic alcohols, respectively were carried out using the reaction conditions described in the general procedure. Eleven different chlorinating agents: CCl₄, CHCl₃, trichloroethane (Cl₃CCH₃), hexachloroethane (Cl₃CCCl₃), 2,2,2-trichloroethanol (Cl₃CCH₂OH), trichloroacetonitrile (Cl₃CCN), hexachloro-2-propanone (Cl₃CCOCCl₃), trichloroacetic acid (Cl₃CCO₂H), ethyl trichloroacetate (Cl₃CCO₂Et), 2,2,2-trichloroethyl acetate (Cl₃CCH₂O₂CCH₃) and trichloroacetamide (Cl₃CCONH₂) were utilized. ## 2.4.2.2 Effects of PPh₃ and Chlorinating Agent Ratio Various ratios of PPh₃ and chlorinating agent for the synthesis of benzyl chloride and *trans*-cinnamyl chloride utilizing the general procedure were varied (based on the alcohols 1 eq). After 30 min, the yield of chlorides in the crude mixture was quantified by ¹H-NMR with the addition of toluene as an internal standard. The selected chlorinating agent was Cl₃CCONH₂. #### 2.4.2.3 Effects of Reaction Time The ratios of PPh₃ and Cl₃CCONH₂ for the synthesis of the chlorides were varied (based on alcohols 1 eq) as follows: 1:1, 1:1.5, 1:2, 1.5:1.5, 1.5:2, 2:2, 2:3, 2:4 and 2.5:2.5, respectively. Determine the yield of the chlorides by ¹H-NMR in the crude mixture with toluene as an internal standard. Furthermore, employing the above-mentioned reaction conditions, the reaction was operated by altering reaction time at RT (30 $^{\circ}$ C) under N₂ atmosphere. # 2.4.3 Optimum Conditions Study for the Conversion of Benzylic and Allylic Alcohols to Their Corresponding Bromides A stirred solution of alcohol 1 eq (0.25 mmol) and selected brominating agent 1.5 eq (0.375 mmol) in dry CH₂Cl₂ (0.5 mL) was successively added PPh₃ 1.5 eq (0.375 mmol) at RT under N₂ atmosphere. After 30 min, the reaction was quenched by solvent evaporation, and then the quantification of the corresponding product was performed by ¹H-NMR on the crude mixture with toluene as an internal standard or purified by silica gel column chromatography (eluent: hexane). Benzyl bromide: colorless oil. 1 H-NMR (CDCl₃) δ (ppm): 4.52 (s, 2H), 7.19–7.36 (m, 5H). 1-Phenyethyl bromide: colorless oil. 1 H-NMR (CDCl₃) δ (ppm): 2.06 (d, 3H, J = 7.0 Hz), 5.24 (q, 1H, J = 7.0 Hz), 7.31–7.49 (m, 5H). Furfuryl bromide: colorless oil. 1 H-NMR (CDCl₃) δ (ppm): 4.41 (s, 2H), 5.88 (m, 1H), 6.88 (m, 1H) and 7.21 (d, 1H, J = 10.0 Hz). Desyl bromide: colorless oil. 1 H-NMR (CDCl₃) δ (ppm): 6.45 (s, 1H), 7.30-8.15 (m, 10H) Trans-cinnamyl bromide: colorless oil. 1 H-NMR (CDCl₃) δ (ppm): 3.80 (d, 2H, J = 7.1 Hz), 6.50 (t, 1H, J = 7.0 Hz), 7.10 (d, 2H, J = 7.0 Hz), 7.90 (d, 3H, J = 7.1 Hz), 8.01 (d, 1H, J = 7.0 Hz). Geranyl bromide: colorless oil. 1 H-NMR (CDCl₃) δ (ppm): 1.60 (s, 3H, CHC<u>H</u>₃), 1.68 (s, 3H), 1.72 (s, 3H), 2.07 (m, 2H), 4.02 (d, 2H, J = 7.0 Hz, C<u>H</u>₂Cl), 5.07 (m, 1H), 5.53 (m, 1H). ## 2.4.3.1 Effects of Brominating Agents The synthesis of benzyl bromide and *trans*-cinnamyl bromide were carried out using the reaction conditions described in the general procedure. Eight different brominating agents: CBr₄, CHBr₃, Br₃CCOCBr₃, Br₃CCO₂H, Br₃CCO₂Et, trichlorobromomethane (BrCCl₃), dibromoacetic acid (Br₂HCCOOH) and bromoethane (BrCH₂CH₃) were utilized. ## 2.4.3.2 Effects of PPh₃ and Brominating Agent Ratio The ratios of PPh₃ and brominating agent for the synthesis of benzyl bromide and *trans*-cinnamyl bromide utilizing the general procedure were varied (based on the alcohols 1 eq). After 30 min, the yield of bromides in the crude mixture was determined by ¹H-NMR with the addition of toluene as an internal standard. Selected brominating agents were Br₃CCO₂Et and Br₃CCOCBr₃. ## 2.4.3.3 Effects of Reaction Time According to the general procedure, the reaction time for each brominating agent can procure using suitable ratios of PPh₃ and brominating agent as follows: 1.5:1 and 1.5:0.3 eq in the case of utilizing Br₃CCO₂Et and Br₃CCOCBr₃, respectively. The time variations are as follows: 5, 15 and 30 min at RT under N₂ atmosphere. The bromide product in the crude mixture was quanlified by ¹H-NMR with the addition of toluene as an internal standard. # 2.5 Comparative Reactivity Study of Halogenation between Benzylic and Allylic Alcohols The relative reactivity of PPh₃/Cl₃CCONH₂, PPh₃/Br₃CCO₂Et and PPh₃/Br₃CCOCBr₃ with two alcohols was further studied by competing two selected alcohols in the same reaction vessel. In case of PPh₃/Cl₃CCONH₂, a stirred solution of two selected alcohols (1 eq each) in dry CH₂Cl₂ (0.5 mL) were successively added PPh₃ (2 eq) and Cl₃CCONH₂ (2 eq). In case of PPh_3/Br_3CCO_2Et and $PPh_3/Br_3CCOCBr_3$, a stirred solution of two chosen alcohols (1 eq) in dry CH_2Cl_2 (0.5 mL) were added PPh_3 (1.5 eq) and Br_3CCO_2Et (1.0 eq) or $Br_3CCOCBr_3$ (0.3 eq) under the same condition as the chlorination.