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ELECTRICAL CONDUCTIVITY AND RELAXATION TIME

2.1 INTRODUCTION

In this Chapter, we will give an elementary d.c. electrical conductivity theory 
generated from the Boltzmann transport equation by using the relaxation time 
approximation.

2.2 BOLTZMANN TRANSPORT EQUATION

To describe the electron system, we introduces the distribution function, 
f k ( r , t )  in equilibrium state, the Fermi-Dirac distribution function, which gives the 
occupation probability of a state characterized by k -vector, and space vector r . More 
precisely, the product of distribution function, density of states and volume element 
d r d k  of phase space gives the number of electrons in the volume element ( r, d r  ) of 
r -space and ( k, d k  ) of k -space at time t.

To calculate the distribution function / k(r,f), in short / k , in given external 
fields, one considers a group of electrons in the volume element d r d k  in phase space. 
This group will move through phase space [11]. For the short time interval considered, 
let the form of the group remain essentially unchanged. Then the total differential 
quotient d f k /  d t  would be zero if electrons were not scattered from (k, d k  ) to another 
(k '.Jk ')  and vice versa, by electron-phonon interaction. Let the change in distribution
function due to the scattering be d f k

d t
. Then = ÿ *

d t  d t
, or, if we replace the

s c a n . s c a n .
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total differential quotient by the local one plus terms following from the implicit time 
dependence of / k over r(f)and k(r)[12],

^ k
dt = ~ -  + k v „ / 1 + r . v r/ k d t

s c a n .

(2.2.1)

In the steady state the local differential quotient is zero and we are left with
[12]

k ' Vk/k + r - v r/ k d t
s c a n .

(2 .2.2)

The first term is the rate of change of distribution due to external fields and will 
change thek vector of each carrier, at the rate

k = * E + i ( v k xH) (2.2.3)

where E is an applied electric field,
H an applied magnetic field, 
e  the electron charge, 
h Planck’s constant and 
c speed of light.

The second term is the rate of change of the distribution due to diffusion.
The effect of scattering is more complicated but we will be confined mostly to 

elastic scattering. This gives rise to a rate of change of f k [ 12]

d t s c a n .

(2.2.4)
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where <2 (k,k') is the transition probability from state k to k ' and vice versa.
The process of scattering from k to k ' decreases f k. The probability of this process 
depends o n /k and ( l - / k')> the distribution of vacancies available in the final states. 
There is also the inverse process, from k ' into k 5 which increases f k, and which is 
weighted with / k.( 1 -  f k ). The sum is over all other possible states k ' . For each value 
of k and k ', however, there is a basic transition probability <2 (k,k '), which would 
measure the rate of transition if, say, k were known to be occupied and k'known to 
be empty.

2.3 ELECTRICAL CONDUCTIVITY

Suppose we have only an electric field E in an infinite medium kept at 
constant temperature. We uses Eq. (2.2.3) and the relation

V. =T v„E (k),

where
E(k) , in short E , the electronics energy of k th state,
vk electron velocity of k th state and
h = — , Planck’s constant h = 6.62620 X 10~27 erg ร , 2n

and then the Boltzmann transport equation (2.2.2) becomes

(d f°  k ไVk -eE = - ^ -l  3E ; k dt s c a t t .

( 2 . 3 . 1 )
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where the Fermi-Dirac distribution function in steady state is

where p is the chemical potential. We assume that the steady state distribution 
function does not depart very far from equilibrium / ° k . We therefore write

= / k - / V

Thus from Eq. (2.2.4), Eq. (2.3.1) can be rewritten as [12]

/

V
1ชุ/-0,  ̂of k

ÔE vk eE = J ( / k - / k - ) 2 ( k , k 'p k ’

= Jfek + / “ -(?»• + /k °))2 (k .k ')* ’

= J ( * k - * k O e M ') < * '-  (2.3.3)

Note that / 14° = / 14°, momentum conserved principle is used.
Instead of solving this equation directly, let US make another 

phenomenological assumption

dt s c a n .

( 2 . 3 . 4 )
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That is, we introduce a relaxation time X. If the field is turned off, the any out 
of balance, gk would decay to zero according to

dgk = gk
d t  X

so that
(2.3.5)

gk =8k(0)exp(-f/x) .

Substitution (2.3.4) into (2.3.1) gives

gk = -
v

xvk -eE

(2.3.6)

(2.3.7)

To calculate the electrical conductivity, one needs the current density [13],

J  = J« v k/ kdk

= [ e \ kgkdk e \ kf ° d k  = 0  in equilibrium state[13])

- M ^2^vk (vk -E) d f \
dE

dSdE (2.3.8)

where บk = |v k , on the surface ร of constant energy. Note that the concept of the 
density of state [14]

dS_
Uk
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and

— æ  = n (e )ædE

has been used in Eq. (2.3.8). In a metal, the function
f  'ๆ  r 0OJ k

’ ÔË behaves like a delta

function at the Fermi level; one is left with an integral over the Fermi surface รF. 
Thus

( 2 - 1 9 )

Comparing Eq. (2.3.9) with the standard macroscopic equation,

J  = aE (2.3.10)

where a  is a tensor, we obtain ( in dyadic notation) [1 2 ],

We usually deal with crystals having cubic symmetry, in which case the 
conductivity tensor reduces to a scalar. Thinking of the case where E and J  are both 
in the x-direction, we find that the integrand

( v . - E b « ' £  ( 2 . 3 . 1 2 )

where E = E



1 2

which is one-third of the contribution from the square of the total velocity, ง X2E . 
Thus in an isotropic medium,

a  = — 7 — 7  I*XUds 1:4:r3 3h J f

= ^ - ^ - ร F (2.3.13)47:37/J F

where we have introduced the mean free path

A = XU. (2.3.14)

This is the basic formula for the electrical conductivity.
Substituting g 14 in our assumption for gk = / k -  /k  we therefore have

f  SJl3E(k)
Jk Jk 5E(k) ôk ท

(2.3.15)

by Taylor’s theorem. Note that the relation vk = — VkE(k) is used. Another point toh
notice is that Eq. (2.3.15) can be rewritten

f 1, = / 11° (E+ <™„•£) ( 2 . 3 . 1 6 )

as if the electron in state k has gained the energy of the amount
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5E = exv 14 E . (2.3.17)

This extra energy acquired from the collision with the impurities, or phonons, is 
expressed in term of the drift velocity, 5v 14, in the direction of the field, such that

X dE ov 14 •—— = 5E Svk (2.3.18)

X dE VSvk • “  = exv 14 E

Q (  \ ไร\  14 ■ ——— —mvl =ervk -E 5vk y2
so that

(2.3.19)

0Vk = m E (2.3.20)

for a classical particle of mass m . Note that the only kinetic part of an electronic 
energy E survives in Eq. (2.3.19).

If there are ท particles per unit volume, then the current density due to an 
applied field E is

J  = neb\ 14 .

From Eqs. (2.3.20), (2.3.21) and (2.3.10), we get

(2.3.21)

ne2 T
CT ■ m (2.3.22)
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From Eqs. (2.3.13) and (2.3.22), we see that the conductivity depends only on the 
property of the electrons near the Fermi level, not on the total number of electrons in 
the metal. The high conductivity of metals is therefore to the high velocity of the few 
electrons at the top of the Fermi distribution rather than the total density of free 
electrons, which can be slowly drifting.

2.4 CALCULATION OF RELAXATION TIME [12]

We still have not solved the integral equation (2.3.3). The most general 
possible solution would be

where A(k)is a vector defined at each point k of the Fermi surface. Our elementary 
solution (2.3.7) is equivalent to the identification

showing that A(k) is the vector mean free path of the electrons. In general case one 
might have A(k) varying in magnitude, and deviating from the direction of vk over 
the Fermi surface.

It is sometime assumed that

(2.4.1)

A(k)= xvk (2.4.2)

A ( k )  =  x ( k ) ( 2 . 4 . 3 )
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where x(k) is an anisotropy relaxation time varying over the Fermi surface. It is easy 
to show, however, that Eq. (2.4.1) is not always a complete solution of the integral 
equation and there is no direct method for evaluating the function x(k).

The only simple solution is, in fact, the elementary solution (2.3.7). Suppose 
one substitutes forgk in (2.3.3), and also assumes that one has elastic scattering, i.e.

Q(k,k')dk' = ร (E -E')$(k ,k ')dn'dE  (2.4.4)

where ô(E -E ') is Dirac’s delta function, 19(k,k')riQ' the differential transition 
probability subtended by element of solid angle dQ' in the direction of k'after 
scattering (the magnitude of k'being fixed by the requirement that the energy is 
conserved during the collision).

Eliminating the delta function of energy on both sides of Eq. (2.3.3),

v k , Æ  =  j f e k  - £ k ' ) ô ( k . k' ) 1 ( 2. 3. 3)d f \
ÔE

we have

K ÔE
0 V

|evk -EdE' =

HI 0 ไgrit
ÔE <?rvk - E -

ะurO ^
dE' ezvk' E ร(E-E')9(k ,k ')dn 'dE \dE'

where in equilibrium state
f  CSJT 0dfk
V

= ร(e - e f ) is Dirac’s delta function at the Fermi

energy Ef . Then the left hand side becomes
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- E f ) e v k 'EÆ' = evk E.

In the same manner, finally we have

vk -E = xj*(vk -  vk.)-E â (k ,k ') jQ '. (2.4.5)

to be evaluated over the Fermi surface. This is a functional relation, which imposes 
conditions on the form of 0(k,k'). It is easy to show that it holds when we have a
spherical Fermi surface, with I vk l= V  = —  constant, and whenm

ô (k ,k ')= ô (e ); (2.4.6)

that is, the relation (2.4.5) can be satisfied when the scattering probability is a function 
of only the angle between the two wave vectors.

If these conditions, Eqs. (2.4.1) to (2.4.6) are satisfied, then we immediately 
have [13]

1
T

vk" E
vk.E &{Q)eKl'

y

or

-  =  \ ( l - C O S  e)s(e)df2\T (2.4.7)



17

This shows that the relaxation time is inversely proportional to an integral of 
the scattering probability 0 (0 ) over all the process but weighted by a factor 
(1 — cos0 ), in favor of large scattering angles. This factor comes from (vk -  Vk.)-E . 
The crucial point is not that the electron is scattered but the amount that the 
component of its velocity along the electric field is changed in the process.

We can express the scattering probability in term of the differential scattering 
cross section ç(0) at a density N .1 of impurities. The mean free path A is given by 
[12]

-J- = 2nNi J*(1 — cos 0)ç(0)sin QdQ. (2.4.8)

This formula will be applied to the Ziman theory in the next Chapter.
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