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ABSTRACT

5171001063:  Petrochemical Technology Program
Angkana Luttikul: Oxide Film Characteristics under PWR Primary
Coolant Conditions
Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon, Prof. Derek H.
Lister, and Prof Frank R. Steward, 201 pp.

Keywords:  Crud-Induced Power Shift/ Alloy 600/ Alloy690/Alloy 800/
Corrosion Product/ Heat Treatment/ Oxide Film

In pressurized water reactors (PWRs), the deposition of corrosion
products (crud) on the fuel cladding surface causes Crud-Induced Power Shift
(CIPS), which shifts the neutron flux distribution. Since corrosion products found on
the cladding are rich in Ni, the Ni-based alloy steam generator (SG) tubing is the
primary concern for corrosion product inventory that has led to the development of
CIPS. This  dy was carried out to study the effects of SG alloy composition and
heat treatment, boron concentration and zinc addition on oxide film formation under
PWR primary coolant conditions. The corrosion tests were performed on specimens
of Alloy 600, Alloy 690, Alloy 800, 304 stainless steel and Zirc-4 in an autoclave
(titanium autoclave and stainless steel autoclave), simulating PWR primary coolant
conditions. After exposure for several days, the oxides on the samples were
characterized with several techniques. The results revealed that nickel-based alloys
and SS304 were covered with Fe-rich crystallites overlaying an amorphous Cr-rich
layer, while Zircaloy-4 was covered with a Zr02 layer. For the same heat treatment,
the higher-Cr alloys apparently produced more protective oxide (finer and more
compact crystallites) than the lower-Cr alloys. The heat treatment effects were
observed on all alloys, but were overshadowed by effects of alloy composition. The
compactness of the oxide films was strongly boron dependent; the compact oxides
were formed in the coolant containing boron. In addition, the oxides on Ni-based
alloys and SS304 seem to be more protective by the addition of 20 ppb Zn in the
coolant,
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