

REFERENCES

- Babich, I. V. and Moulijn, J. A. (2003). Science and technology of novel processed for deep desulfurization of oil refinery streams: a review. <u>Fuel</u>, 82, 607-631.
- Bhandari, V.M., Ko, C.H., Park, J.G., Han, S., Cho, S. and Kim, J. (2006). Desufurization of diesel using ion-exchanged zeolites. <u>Chemical Engineering Science</u>, 61, 2599-2608.
- Chansa, J. (2004). Removal of sulfur compounds from transportation fuels by adsorption. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Dai, W., Zhou, Y., Wang, S., Su, W., Sun, Y. and Zhou, L. (2008). Desulfurization of transportation fuels targeting at removal of thiophene/benzothiophene.

 <u>FUEL PROCESSSING TECHNOLOGY</u>, 749-755.
- "Department of Energy Business, Ministry of Energy." *Announcement of Quality of Diesel.* 8 May 2009

 http://www.dede.go.th/dede/fileadmin/usr/bers/biodiesel_picture/quality_diesel_2_50.pdf
- "Emission Standards." *Standards*. 8 May 2009 < http://www.dieselnet.com/standards/ >
- Ertl, G., Knozinger, H., and Weitkamp, J. (1997). <u>Handbook of Heterogeneous Catalysis</u>. France: VCH Verlagsgesellschaft mbH, Weinhelm (Federal Republic of Germany).
- Grant, M.H. (1992). <u>Encyclopedia of chemical technology</u>. United States of America: John Willey & Sons, Inc.
- Haji, S. and Erkey, C. (2003). Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell applications, <u>Industrial & Engineering Chemistry Research</u>, 42, 6933–6937.
- Henning, K.D. and Degal, J. "Activated Carbon for Solvent Recovery." *PURIFICA- TION OF AIR, WATER AND OFF GAS SOLVENT RECOVERY.* 20
 March 1990. 9 May 2009
 - < http://www.activated-carbon.com/solrec3.html>

- Hernández-Maldonado, A.J. and Yang, R.T. (2004a). Desulfurization of diesel fuels via π-complexation with nickel(II)-exchange X- and Y-zeolites. <u>Industrial</u> & Engineering Chemistry Research, 43, 1081-1080.
- Hernández-Maldonado, A.J. and Yang, R.T. (2004b). New sorbents for desulfurization of diesel fuels via π -complexation. <u>AIChE Journal</u>, 50, 791-801.
- Hernández-Maldonado, A.J., Yang, F.H., Qi, G. and Yang R.T. (2005). Desulfurization of transportation fuels by π-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites. <u>Applied Catalysis B: Environmental</u>, 56, 111-126.
- Ho, N.L. (2007). Adsorptive removal of sulfur compounds from transportation fuels by using zeolitic adsorbents. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok Thailand.
- Kaewboran, J. (2006). Continuous removal of thiophenic sulfur compounds from transportation fuels by using X zeolite. M.S. Thesis, The Petroleum and Petrochemical College, Bangkok, Thailand.
- Kim, J.H., Ma, X., Zhou, A. and Song, C. (2006). Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism. <u>Catalysis</u> <u>Today</u>, 111, 74-83.
- King, D.L. and Faz, C. (2006). Desulfurization of Tier 2 gasoline by divalent copper-exchanged zeolite Y. <u>Applied Catalysis B: Environmental</u>, 311, 58-65.
- Ma, X., Sun, L. and Song, C. (2002). A new approach to dees desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. <u>Catalysis Today</u>, 77, 107-116.
- "Organosulfur Compounds." *WIKIPEDIA*. 11 May 2009. 13 May 2009 http://en.wikipedia.org/wiki/Organosulfur_compounds>
- Park, J.G., Ko, C.H., Yi, K.B., Park, J., Han, S., Cho, S. and Kim, J. (2008) Reactive adsorption of sulfur compounds in diesel on nickel supported on mesoporous silica. <u>Applied Catalysis B: Environmental</u>, 81, 244-250.

- Prateepamornkul, S. (2008). Adsorptive Removal of Sulfur Compounds from Diesel Using Activated Carbon and Alumina Modified with Cu(I) and Ni(II). M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok Thailand.
- Pringprayong, S. (2006). Adsorptive removal of sulfur compounds from transportation fuels using zeolitic adsorbents. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Reut, S., and Prakash, A. (2006). Evaluation of sorbents for thiophene removal from liquid hydrocarbon. <u>Fuel Processing Technology</u>, 87, 217-222.
- Rousseau, R.W. (1987). <u>Handbook of separation process technology</u>. United States of America: John Willey & Sons, Inc.
- Ruthven, D.M. (1984). <u>Principles of adsorption and adsorption processes</u>. United States of America: John Willey & Sons, Inc.
- Satterfield, C.N. (1991). <u>Heterogeneous catalysis in industrial practice</u>. United States of America: McGraw-Hill, Inc.
- Sano, Y., Choi, K., Korai, Y. and Mochida, I. (2004). Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep hydrodesulfurization. <u>Applied Catalysis B: Environmental</u>, 49, 219-225.
- Sano, Y., Choi, K., Korai, Y. and Mochida, I. (2004). Selection and Further Activation of Activated Carbons for Removal of Nitrogen Species in Gas Oil as a Pretreatment for Its Deep Hydrodesulfurization. <u>Energy Fuels</u>, 18, 644–651.
- Shafia, R. and Hutchingsb, G.J. (2000). Hydrodesulfurization of hindered dibenzothiophenes: an overview. <u>Catalysis Today</u>, 59, 423–442.
- Takahashi, A. Yang, F.H. and Yang, R.T. (2000). Aromatics/aliphatics separation by adsorption: New sorbents for selective aromatics adsorption by π-complexation. <u>Industrial & Engineering Chemistry Research</u>, 39, 3856-3867.
- Takahashi, A., Yang, F. H. and Yang, R.T. (2002). New sorbents for desulfurization by π-complexation: Thiophene/Benzene adsorption. <u>Industrial & Engineering Chemistry Research</u>, 41, 2487-2496.

- "Thai refiners ready for 350 ppm diesel sulfur limit for 2004." *Diesel Fuel News*. 21 July 2003. BNET. 26 May 2009

 http://findarticles.com/p/articles/mi m0CYH/is 13 7/ai 106026629/>
- Wang, Y., and Yang, R.T. (2007). Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration. Langmuir, 23, 3825-3831.
- "World Travel: The Fuel Challenge." *EXPEDITION PORTAL*. 31 March 2009. 26 May 2009

 http://www.expeditionportal.com/forum/showthread.php?t=25516>
- Xue, M., Chitrakar, R., Sakane, K. Hirotsu, T., Ooi, K. Yoshimura, Y., Feng, Q., and Sumida, N. (2005). Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium. Journal of Colloid and Interface Science, 285, 487-492.
- Yang, R.T., Takahashi, A., and Yang, F. H. (2001). New sorbents for desulfurization of liquid fuels by π-complexation. <u>Industrial & Engineering Chemistry Research</u>, 40, 6236-6239.
- Yang, R.T. (2003). Adsorbents Fundamentals and Applications. United States of America: John Willey & Sons, Inc.
- Zhang, Z.Y., Shi, T.B., Jia, C.Z., Ji, W.J., Chen, Y. and He, M.Y. (2008). Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites. <u>Applied Catalysis B: Environmental</u>, 82, 1-10.
- Zhou, A., Ma, X. and Song, C. (2009). Effects of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fuel. <u>Applied Catalysis B: Environmental</u>, 87, 190-199.

APPENDICES

APPENDIX A Calculation of Sample Preparation

A1 Amount of Metal Chemical for Impregnation

Example: Amount of 100% monolayer of CuCl₂ chemical for impregnation on macroporous alumina (Concentration of metal is corresponded to monolayer of CuCl₂ on macroporous alumina surface)

From

Monolayer of CuCl on alumina surface $= 0.095 \text{ g CuCl/}100 \text{ m}^2 \text{ of alumina}$

Surface area of macroporous alumina = $194 \text{ m}^2/\text{g}$

Monolayer of CuCl on alumina surface $=\frac{0.095 \times 194}{100}$

= 0.184 g CuCl/1 g of alumina

Molecular weight of CuCl = 98.999 g/mole

Thus, monolayer of CuCl on alumina surface = $\frac{0.184}{98.999}$

= 0.00186 mole CuCl/1 g of alumina

From

CuCl₂ was used as the same molar concentration of CuCl.

Molecular weight of $CuCl_2$ = 134.45 g/mole

Thus, monolayer of CuCl₂ on macroporous alumina surface

= 0.00186 mole CuCl₂ /1 g of alumina

 $= 0.00186 \times 134.45$

= $0.250 \text{ g CuCl}_2/1 \text{ g of alumina}$

From

Pore volume of macroporous alumina $= 0.674 \text{ cm}^3/\text{g}$ of alumina

Amount of CuCl₂ used $= \frac{0.250}{0.674}$

Thus, amount of $CuCl_2$ used = 0.371 g $CuCl_2/cm^3$ of alumina Then, 75% monolayer = 0.278 g $CuCl_2/cm^3$ of alumina

And, 50% monolayer $= 0.186 \text{ g CuCl}_2/\text{cm}^3 \text{ of alumina}$

A2 Simulated Diesel Fuel Preparation

Example: Preparation of 1000 cm³ simulated diesel (80%wt. Dodecane, 20%wt. Toluene and 150 ppmw of Dibenzothiophene)

From

Density of Dodecane = 0.75 g/cm^3 Density of Toluene = 0.8669 g/cm^3

Molecular weight of Dibenzothiophene (DBT) = 184.26

Density of simulated diesel =
$$\left(\frac{80 \times 0.75}{100}\right) + \left(\frac{20 \times 0.8669}{100}\right)$$

So, density of simulated diesel = 0.77338 g/cm^3

Weight of simulated diesel = 0.77338×1000

So, weight of simulated diesel = 773.38 g

Amount of Dodecane = $\left(\frac{80}{100}\right) \times 773.38$ = 618.704 g

Amount of Toluene $= \left(\frac{20}{100}\right) \times 773.38 = 154.676 \text{ g}$

Dibenzothiophene concentration = 150 ppmw

 $=\frac{150}{10^6}$

= 0.00015 g of S/g of simulated diesel

 $=\frac{0.00015}{32}$

= 4.6875×10^{-6} mole of S/g of simulated diesel

 $= (4.6875 \times 10^{-6}) \times 184.26$

= 8.6374×10^{-4} g of DBT/g of simulated diesel

Amount of Dibenzothiophene = $(8.637 \times 10^{-4}) \times 773.38$

So, amount of Dibenzothiophene = 0.6680 g

APPENDIX B Calculation of Amount of Adsorption of Sulfur Compounds in Dynamic Adsorption Experiment

B1 Death-Volume of Fixed Bed Reactor

To find out the death-volume of fixed bed reactor, the breakthrough curve of simulated diesel fuel (80% dodecane, 20% paradiethylbenzene and 150 dibenzothhiophene) without adsorbent was performed in this study. By applying first moment of the breakthrough curve (μ), we can determine the death-volume:

$$\mu_1 = \mu = \int_0^\infty (1 - y) dV$$
 $y = \frac{c(V)}{c_0}$

Where µ: mean breakthrough volume

C: concentration of sulfur compounds in the feed (mole or g)

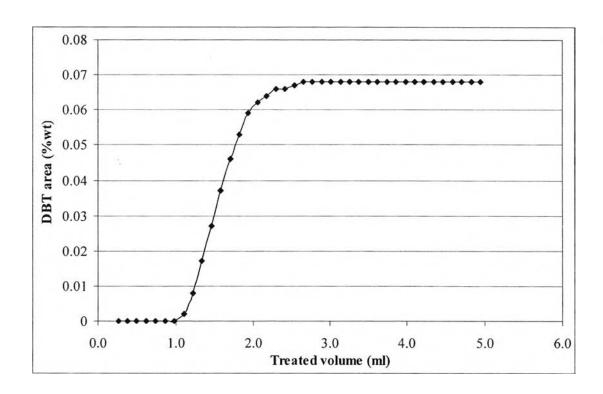


Figure B1. Breakthrough curve without adsorbent.

Hence, Death-volume = μ = 1.591 ml

B2 Amount of Adsorption of Sulfur Compounds in Dynamic Adsorption Experiment

Example: Adsorption of dibenzothiophene in simulated diesel fuel (80% dodecane, 20% Toluene and 150 ppmw sulfur content) on 100% monolayer of $CuCl_2$ on m-Al₂O₃ which crushed after impregnation at diameter size 300-500 μ m.

Setting parameter of breakthrough adsorption experiment:

Number of the collected vials = 60Collected time $= 0.50 \min$ Waste time $= 3.98 \min$ Wait time $= 5.39 \min$ $= 0.4 \text{ cm}^3/\text{min}$ Flow rate (F) $= 1.591 \text{ cm}^3$ Death-volume Diameter of grain = 0.25 mm $= 3.085 \text{ g/cm}^3$ Structural density (ρ_s) $= 0.013 \text{ cm}^3/\text{g}$ Macroporous volume (V_M) $= 0.545 \text{ cm}^3/\text{g}$ Mesoporous volume (V_m) Microporous volume (V_{μ}) $= 0.000 \text{ cm}^3/\text{g}$ Mass of adsorbent = 6.00 g $= 0.774 \text{ g/cm}^3$ Density of simulated diesel fuel (d) $= 1.096 \text{ g/cm}^3$ Particle density (ρ_{P}) Bulk density (ρ_R) $= 0.740 \text{ g/cm}^3$ = 150 ppm C_0 (DBT)

 T_a = Waste time + Wait time/2 = 6.675 min T_p = Total time / Numbers of vials

= 5.86 min

u (superficial liquid velocity in empty column, cm/min)

= flow rate / column section

= 0.510 cm/min

Particle porosity
$$(\varepsilon_P)$$
 = Partical density \times V_M = 0.014

Interparticle porosity (ε_I) = 1- $\left(\frac{\rho_B}{\rho_P}\right)$

Interparticle porosity
$$(\varepsilon_I)$$
 = 1- $\left(\frac{\rho_B}{\rho_P}\right)$ = 0.326

Total Macroporous volume
$$= V_M \times Mass$$
 of adsorbent

$$= 0.078 \text{ cm}^3$$

Total Microporous volume
$$= V_{\mu} \times Mass$$
 of adsorbent

$$= 0.000 \text{ cm}^3$$

Total Macroporous and Microporous volume

$$= 0.078 \text{ cm}^3$$

Total Bed porosity
$$(\varepsilon_B)$$
 = Total Macroporous and Microporous

volume/ Volume of column

$$= 0.335$$

At the Collected vials number i:

Average time
$$= T_a + \left(i - \frac{1}{2}\right) \times T_p$$

Average volume of fuel =
$$(T_a \times F) + (i - \frac{1}{2}) \times T_p \times F$$

Amount of treated volume = Average volume of fuel – Death volume

Hence, Cumulative effluent volume of DBT

=
$$\mu_{DBT}$$

= 49.351 cm³
= 49.351 cm³ / 6 g of adsorbent
= 8.225 cm³g-adsorbent

Amount of DBT in the column (M_{DBT})

$$= \mu_{DBT} \times d_{DBT} \times C_0$$

= 0.031 g

Amount of DBT adsorbed = M

$$= M_{DBT} \times (1 - \varepsilon_B)$$

= 0.031 g

 $= 0.031 \times 1000/6$ g of adsorbent

= 5.1238 mg/g-adsorbent

= 5.1238 / molecular weight of DBT

= 0.0278 mmole/g-adsorbent

CURRICULUM VITAE

Name:

Ms. Jitlada Atireklapwarodom

Date of Birth:

December 31, 1985

Nationality:

Thai

University Education:

2004-2008 B.Eng. (Petrochemical and Polymeric Materials), Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand

Academic Awards:

1. Certificates

- Completing training period from IFP-Lyon, France, 2010.
- Completing training course of Carbon Capture and Storage Technologies, The 2009 IEA GHG International CCS Summer School, Victoria, Australia.
- Completing training program from TOC-1/TOC-2 section of technology department, Thaioil Public Company Limited, 2006.

2. Publication

 Pat SOOKSAEN, Supakij SUTTIRUENGWONG, Kunwadee ONIEM, Khanamporn NGAMLAMIAD and Jitlada ATIREKLAPWARODOM, Fabrication of Porous Bioactive Glass-Ceramics via Decomposition of Natural Fibres, Journal of Metals, Materials and Minerals, Vol. 18 No. 2 pp.85-91 (2008).

3. Conference

• Atireklapwarodom, J.; Malakul, P.; and Thomas, M. (2010, April 22) Desulfurization of diesel fuel by adsorption via π-complexation using activated carbon and alumina modified with Cu(I) and Ni(II). The 1st National Research Symposium on Petroleum, Petrochemicals, and Advanced Materials and The 16th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.

