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ABSTRACT

4782009063: Polymer Science Program
Ruksapong Kunanuruksapong: Development of Dielectric Elastomers
and Blends for Actuator Applications
Thesis Advisor: Assoc. Prof. Anuvat Sirivat

Keywords:  Poly(p-phenylene)/Dielectric Elastomers/Actuator/ Electromechanical
properties/Dielectrophoresis Force/Dielectric
Constant/Electrostriction

This study evaluated and characterized the many types of dielectric
elastomers and poly(p-phenylene)/dielectric elastomers blends towards the
electroactive application. Dielectric elastomers films and ART71/PPP hlends were
prepared and investigated as an electroactive polymer. The acrylic elastomers
(AR70, ART7L, ART2) possess linearly positive storage modulus responses or
sensitivities with increasing temperature and dielectric constant. On the other hand,
the styrene copolymers (SAR, SBS, SIS) attain the maximum storage modulus
responses or sensitivties at the glass transition temperature of the hard segments. For
ARTL/PPP blends, the dynamic moduli, G' and G" of each blend, are higher than
those of pure ART7L. In addition, The effects of dielectric constant and DC/AC
electric field strength on the deflection angle and the dielectrophoresis force of
acrylic elastomers and styrene copolymers were investigated. As a DC electric field
is applied, five elastomers, with the exception of SAR, deflect towards the anode side
of the electrodes. For these elastomers, internal dipole moments are generated under
electric field leading to the attractive force between the elastomers and the anode.
SAR contains metal impurities (Cu and Zn) as determined by EDX. Their presence
introduces a repulsive force between the Cu2t and Zn2+ ions and the aniodic
electrode, leading to the bending towards the neutral electrode. The dielectrophoresis
forces of the six elastomers generally increase with increasing electric field strength,
and increase monotonically with the dielectric constants. For an AC electric field,
the deflection angle and the dielectrophoresis force increase with amplitude but
decreases with increasing freqency under AC electrical field. The opitmum thickness



for acrylic elastomer is 0.25 mm which gives the highest deflection angle and force.
For AR71/doped ppp blends, the cut-off frequency of each blend are higher than
those of pure AR71. The conductive particles act as a filler and can be used to
improve the electromechanical responses at high frequency.
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