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ABSTRACT

5171018063  Petrochemical Technology Program
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over -and Ge-promoted Pt/KL Catalysts
Thesis Advisors: Asst. Prof. Siripom Jongpatiwut, Assoc. Prof.
Thirasak Rirksomboon, Prof. Somchai Osuwan, and Prof. Daniel E.
Resasco s p.
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In previous studies, it was found that PtSn/KE catalysts prepared by vapor-
phase co-impregnation exhibit remarkably high stability and selectivity to Ce-
aromatics for «-octane aromatization. One of the serious drawbacks of Pt/KL-based
catalysts is their high sensitivity to even traces of sulfur. The addition of Ge was
found to improve sulfur tolerance of Pt/ALos catalyst. In this work, the sulfur
tolerance of - and Ge-promoted Pt/KL catalysts, including the effects of varying
Ge content, have been investigated. The catalysts prepared by vapor-phase co-
impregnation were characterized by TPR, TPO, hydrogen chemisorptions, TEM,
DRIFTS, and XPS. Reaction measurements were carried out at 500 °c and
atmospheric pressure. It was found that, in the absence of sulfur, Pt-Sn/KL and Pt-
Ge/KL could improve the catalytic activity and the selectivity to Cs-aromatics<'
compared with unpromoted Pt/KL catalyst. In the case of bimetallic Pt-Ge catalyst,
the appropriate amount of Ge loading with 0.6 wt% Pt loading selected to prepare the
catalyst was 0.6 wit%. In the presence of 25 ppm sulfur, the unpromoted Pt/KLX;_.,
catalyst for «-octane aromatization was not extremely high sensitivity to sulfur as
much as for «-hexane aromatization. The sensitivity to sulfur was also found in the
aromatization of «-octane on Pt-Ge/KL catalyst. By contrast, on the Pt-Sn/KL
catalyst, the «-octane aromatization activity was not diminished by the presence of
sulfur, but actually increased. TEM images displayed higher distributed metal
clusters on Pt-Sn/KL and Pt-Ge/KL compared to the unpromoted Pt/KL catalyst.
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