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ABSTRACT

4572019063:  POLYMER SCIENCE PROGRAM
Puritat Tanpaiboonkul: Transient and Steady State Deformations
of Dispersed-Phase Droplets in Immiscible Polymer Blends in
Steady State Shear Flow
Thesis Advisors: Associate Professor Anuvat Sirivat
and Professor Ronald G. Larson

Keywords:  Vorticity stretching/Immiscible blend/Viscoelastic blend

Transient deformation and breakup of viscoelastic polystyrene (PS)
droplets dispersed in an viscoelastic high density polyethylene (HDPE) matrix were
observed under a simple steady state shearing flow between two transparent parallel
disks. The influence of elasticity of the blend constituent components on the
deformation and equilibrium size of dispersed-phase droplet was investigated. The
viscosity ratios were fixed at 0.5, 1.0 and 2.6., After the startup of steady state
shearing flow, the viscoelastic droplet shape initially showed small oscillations in
the flow direction, after which its shape oscillated and deformed in the vorticity
direction. The steady-state deformation of droplet in vorticity direction increased
with increasing capillary number. When the critial capillary number, Cac, was
exceeded, the droplet stretched and formed a string which became thinner and finally
broke up. At a fixed capillary number, the deformation of droplet in the vorticity
direction decreased with increasing droplet elasticity. When the capillary number and
the Weissenberg number were kept fixed, the steady-state deformation in vorticity
direction and the critical capillary number for breakup were found to increase as the
viscosity ratio was varied from 0.5 to 1.0, and to 2.6.
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