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APPENDICES

Appendix A Assumptions, definitions, and calculations.

In this work, the following assumptions were made:

1. All the gaseous behaviors obey the ideal gas law

2. The change in the system, pressure is very small and negligible.

3. The pressure in the system equals the atmospheric pressure (1 atm)

4, The vapor pressure of liquid benzene is based on the Antoine equation.
The Antoine equation, which is more satisfactory for general use, has the form
(PERRY’S CHEMICAL ENGINEERS’ HANDBOOK)

B
logP"” =A B
g A (B.)
where
e = saturated vapor pressure (torr)
A, B, andC = antoine vapor-pressure constants for each

pure substances. Incase of benzene, A = 6.87987, B = 1196.760 and C = 219.161
T = temperature (°C)

The total molar flow rate of the gaseous stream can be determined from the
following equation:

N = g X(PIRT) (B.2)
where
q = total volumetric flow rate
p = total pressure of the system
R =gas constant (82.051 atm-ml-mol'l-min‘1K)
T = absolute ambient temperature (K)
The molar flow rate of each component can be obtained by multiplying its
fraction derived from the gas chromatography analysis by the total molar flow
rate.
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The conversion is defined as:

%Conversion _ Mole reac tant in -Mole rgac tant out 100%
Mole reac tant in

The first selectivity is defined as:
% Selectivity = P XMole of Cp produced X100 (B.4)
R XMole of ¢ r converted

(B3)

where
p = number of carbon atom in product
R =number of carbon atom in reactant
Cp = product that has carbon p atom
Cr = reactant that has carbon R atom
The second selectivity is defined as:
% Selectivity = Mole of product X100 (B.5)
Total mole of all products

To determine the energy efficiency of corona discharge system, the specific
energy consumption was calculated in a unit of electron-volt per molecule of
converted carbon (eV/mc) from the following equation:

Specific energy consumption = ---eeeeeeees A eVimol 6 6
(1.602 X10~19) xN xM¢

Where p = Power ( )
N = Avogadro’s number = 6.02 X 1023 molecules.g-mole'l
Me = Rate of carbon in feed gas converted (g-mole.min"])
leV =1602 X 109

To determine the UV light intensity of corona discharge system, the intensity
was calculated in a unit of pW. In this work, the following assumption was that the
UV light spread out in all direction.



Intensity () = Intensity measured from UV meter ( /cm2)
Area of sphere (cm2)

4r2
15cm

Where Area of sphere
]



Appendix B Experimental data.

Table B.I Effect of total feed flow rate at 15,000, 500 Hz, a gap distance of
10 mm, and 1,500 ppm benzene in air

Feed flow rate

mimin) 9
60 1
)
3
4
158 |
)
3
!
235 |
)
3
]
380 |
)
3
4

= below the GC detecting limit

% Conversion
CEHE
81.02
88.61
85.93
90.43
47.30
65.73
75.71
83.75
41,72
58.21
69.67
76.56
22.83
44,96
59.06
70.56

% Selectivity

CO
10.39
6.44
591
6.90
23.49
21.34
16.20
15.63
29.29
28.05
21.68
22.32
24.16
28.18
32.97
32.47

co2 Cl c2
71.69
75.65
75.32
78.54
63.52
72.41
76.88
7417
64.49
61.21
69.33
67.62
55,65
48.51
53.88
55.84
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Table B.2 Effect of frequency at 21,000, feed flow rate 500 mi/min, a gap distance
of 10 mm, and 1,500 ppm benzene in air

Frequency
(Hz)
50

100

200

300

400

500

S

E= N IS I S R N .- I ) & RO Y S5 R NG G L S CC I G BTG~ J6 T L I A o N S I N

tage ()

% Conversion
CEHE
73.02
80.54
88.11
90.24
55.21
74.73
81.49
84.55
41.38
54.59
70.21
76.20
29.43
51.99
68.71
71.97
27.30
41.44
53.81
60.71
23.26
43.83
50.72
59.44

% Selectivity

CO
13.09
8.02
411
3.30
14.96
9.31
5.79
4.04
17.45
14.78
1131
8.34
20.58
2141
16.44
15.21
27.38
22 87
1777
15.91
24.72
33.84
24.57
22.84

C02 C,
65.26
69.39
710.52
74.90
57.79
65.75
65.55
11.27
62.01
62.58
68.36
69.98
53.67
58.96
62.15
67.01
58.13
62.82
65.29
67.16
48.92
54.53
58.23
59.06

2
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Table B.2 Effect of frequency at 21,000, feed flow rate 500 mI/min, a gap distance
of 10 mm, and 1,500 ppm benzene in air

Frequency
(Hz)
600

700

Stage ()

WO N e W N

% Conversion
CoH6
27.90
44.34
52.53
63.04
22,52
36.31
49.41
58.43

% Selectivity

CO
40.62
4137
35.40
32.52
48.90
46.92
45.12
41.64

coz2 Ccl
36.36
42.82
53.84
48.65
33.30
42.56
42.23
41.43

c2
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Table B.3 Effect of frequency on current and power consumption at 21,000, feed
flow rate 500 ml/min, a gap distance of 10 mm, and 1,500 ppm benzene in air

Current
Frequency (Hz) Stage () " Power Consumption(eV/ CoHft Molecule)

50 1 2.280 113.20
2 3.690 176.80
3 5.850 251.67
4 7.160 302.90
100 1 1,539 87.81
2 2.260 103.19
3 3.650 149.75
4 4.440 179.19
200 1 1.083 84.10
2 1546 93.67
3 2.460 118.05
4 2.900 127.85
300 1 0.927 89.47
2 1.256 75.89
3 2.020 89.41
4 2.300 100.75
400 1 0.821 85.94
2 1.070 79.71
3 1.834 101.15
4 2.000 103.98
500 1 0.786 88.69
2 0.979 67.21
3 1.700 95.97
4 1.870 93.11
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Table B.3 Effect of frequency on current and power consumption at 21,000, feed
flow rate 500 ml/min, a gap distance of 10 mm, and 1,500 ppm benzene in air

Frequency (Hz)

600

700

Stage ()

S~ W N s B N e

Curren

0.738
0.886
1.553
1.728
0.733
0.872
1.537
1.664

t

Power Consumption(eW COHO Molecule)

710.29
59.92
84.87
82.15
88.82
12.74
92.89
85.00
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Table B.4 Effect of voltage at feed flow rate 500 ml/min, 300 Hz, a gap distance of
10 mm, and 1,500 ppm benzene in air

Voltage

(V)
12,000

15,000

18,000

24,000

S

tage ()

% Conversion
CEHE
27.13
39.33
50.09
56.87
28.40
41.61
54.76
61.27
29.42
41.16
57.81
63.49
32.40
57.20
69.24
73.90

% Selectivity

CO
31.38
24.74
23.70
20.30
23.76
21.94
19.50
16.66
23.22
20.14
16.44
13.07
20.95
17.47
14.07
11.21

co2 Q c2
49.87
58.49
62.29
64.01
55.44
62.62
70.21
69.15
60.48
68.69
69.76
71.34
66.53
68.91
68.54
75.81
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Table B.5 Effect of voltage on current at feed flow rate 500 ml/min, 300 Hz, a gap
distance of 10 mm, and 1,500 ppm benzene in air

Voltage (V) Stage () Current

12,000 0.755

1.443
1.598
1.755
0.806
1,530
1.750
1.963
0.863
1.642
1.920
2.140
0.960
1.781
2.100
2.490

15,000

18,000

24,000

B W N s B Y, B Y e B0 Y -
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