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ABSTRACT ( ENGL ISH) # # 6070403421 : MAJOR MECHANICAL ENGINEERING 

KEYWORD: autonomous driving system, autonomous navigation system, path following 

system, obstacle avoidance system, global navigation satellite system 

 Kanin Kiataramgul : PATH FOLLOWING AND OBSTACLE AVOIDANCE FOR 

AUTONOMOUS VEHICLE BASED ON GNSS LOCALIZATION. Advisor: Asst. Prof. 

NUKSIT NOOMWONGS, Ph.D. 

  

Nowadays, many systems, formerly operated by human beings, are now developed to 
minimize user control effort. One outstanding system that receives close attention is the autonomous 

driving system. However, several autonomous driving systems that are currently developed utilize 

expensive sensing devices, e.g., camera and laser scanner. Moreover, these devices cannot be solely 

employed but a high-performance processing unit is also required. These pricey components result 

in an expensive system that does not worth to be used in some practical applications. Therefore, this 

research intends to utilize other low-cost sensing devices so that the final price of the developed 

system can be reduced. Hence, the Global Navigation Satellite System (GNSS) with a Real-Time 

Kinematic (RTK) correction was applied to this research as a prior sensor. However, a laser scanner 

was still employed as a complementary sensor to detect obstacles which cannot be detected by the 

GNSS alone. This developed system was designed to effectively operate at a travel speed lower than 

15 kilometers per hour in a GNSS-friendly environment. In this research, the micro electric vehicle 
was modified by installing the steering control system and the speed control system, which consists 

of the acceleration control system and the braking control system. These supplementary systems are 

controlled by the high-level control system. Next, the high-level control system software was 

developed. This software controls a vehicle to follow a predefined route by using the GNSS in a 

localization process and using a laser scanner in the obstacle avoidance algorithm which was 

developed in this research, i.e., the Scored Predicted Trajectory. Then, the parameters, which affect 

the high and low-level control system characteristic, was tuned until a satisfactory response was 

achieved. Next, the developed autonomous navigation system evaluation experiment was conducted 

in a controlled environment area by separately evaluated the path following system and the obstacle 

avoidance system. After the path following system experiment was launched using a travel speed of 

10 and 15 kilometers per hour, it has been found that the developed system effectively performs 

even some portions of the test track are either covered by large trees or surrounded by buildings, i.e., 
the environment by which the performance of the GNSS is degraded. The result of this experiment 

shows the average deviation distance from the waypoint of about 10 centimeters. In the obstacle 

avoidance system experiment, the result shows that the developed system responds to the obstacle by 

evading it and safely converging to the predefined path according to the designed algorithm. 
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CHAPTER I 

INTRODUCTION 

 

1. Background and Significant of the Research Problem 

 Autonomous driving nowadays receiving great attention from the public and 

their authority throughout the world.  Several numbers of organizations, not only the 

originally automotive field companies, are now focusing on the development of the 

autonomous vehicle. Among these corporations, there appear a common objective 

between them in developing of an autonomous driving system which is to reach the 

solutions to any complications emerge from currently traffic situation, e.g., improving 

traffic congestion problem, enhancing road safety by diminishing human mistake, etc. 

However, before moving to further topics, a common convention on terminology 

should be established. In the following section, a definition of levels of driving 

automation is presented. 

 

1.1. Levels of Driving Automation According to SAE 

 According to the Society of Automotive Engineers (SAE) standard[1], levels 

of driving automation can be divided into 6 levels, ranging from 0th to 5th level, 

which a higher level represents a higher degree of driving automation, i.e. 0th and 5th 

level autonomous indicates no automation and full automation, respectively. The 

followings describe a narrative definition of each level. 

 

1.1.1. 0th Level, No Automation 

 In this level, the human driver performs full control all over the driving period. 

Some of the warning systems may be introduced to this level, however, the driver’s 

decision completely dominates the dynamics driving task. Example of mentioned 

warning systems which are now available is Lane Change Assistance (LCA), Lane 

Departure Warning (LDW), Forward Collision Warning (FCW), Park Distance 

Control (PDC), etc. 
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1.1.2. 1st Level, Driver Assistance 

 An assistance system is introduced to this level. This assistance system could 

be either by automated steering or acceleration control which performs on human 

driver request, however, other dynamic driving tasks are fully controlled by the 

driver. Available technologies of these assistance systems including Adaptive Cruise 

Control (ACC), Park Assist (PA), Lane Keeping Assist (LKA), etc. 

 

1.1.3. 2nd Level, Partial Automation 

 More assistance systems are applied to this level. Identical to the 1st Level, the 

system is still activated only when the human driver making a request. Nevertheless, 

other remaining dynamic driving tasks are fully controlled by the driver. The 

following named assistance systems are included in this level: Park Assistance, 

Traffic Jam Assist, etc. 

 

1.1.4. 3rd Level, Conditional Automation 

 All dynamics driving tasks perform automatedly by automated assistant 

systems. However, in some situations, an automated assistant system could request a 

human driver to take control of a dynamic driving task. Some features included in this 

level are Traffic Jam Chauffeur, Motorway Chauffeur (MWC), etc. 

 

1.1.5. 4th Level, High Automation 

 The distinction between this 4th Level and the 3rd Level of driving automation 

is that in this level, whenever in some defined situations and a human driver is 

requested by an automated system to intervene. If the driver does not respond to this 

request appropriately, the automated system should have the ability to perform a 

proper dynamic driving task. Highway Pilot and Piloted Parking are some of the 

example functions in this level. 

 

1.1.6. 5th Level, Full Automation 

 A fully automated system in this level performs all dynamic driving tasks for 

the overdriving period. There will be no request for a human driver to intervene in a 
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dynamic driving task in any situation. However, the human driver still possesses an 

ability to manage the roadways and environmental conditions. 

 Table 1 shows a summary of the level of driving automation according to the 

SAE. Note here for named technologies, features, and assistant systems mention 

above are not all commercially introduced[1]. 

 

Table 1 Summary of level of driving automation according to SAE[1] 

 

 

1.2. Level of Driving Automation According to BASt 

 According to the report from Transportation Research Board (TBR), the 

German Federal Highway Research Institute (BASt)[2].  The level of driving 

automation can be classified as 5 levels including 1) Driver Only 2) Driver Assistance 

3) Partial Automation 4) High Automation and 5) Full Automation. For the first 3 

levels, their definitions are identical to the first 3 levels described by the Society of 

Automotive Engineers (SAE). For the last 2 levels, their definition can also be 

described by the 3rd and 4th Levels of the SAE classification, respectively. Table 2 

describes a narrative summary of the level of driving automation according to the 

BASt. 
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Table 2 Summary of level of driving automation according to BASt[3] 

 

 

 From here on, any levels of automation mentioned will refer to the levels 

classified by the Society of Automotive Engineers.  

Throughout this text, the main attention is given to the 2nd to 5th levels of driving 

automation. Since driver assistance systems are fundamentals for autonomous or self-

driving vehicles, the following section gives a brief explanation for theses selected 

systems. 

 

1.3. Driver Assistance Systems 

Driver assistance systems are fundamentals for vehicles categorized in the 2nd to 5th 

driving automation level. Longitudinal and lateral directions control are mainly 

systems applied to an autonomous driving system. In this section, cruise control 

collision avoidance and lane-keeping assist systems are taken to be introduced[4]. 

 

1.3.1. Cruise Control 

The cruise control system is applied to a vehicle to maintain the speed of a vehicle or 

space between the host and a preceding vehicle. The cruise control system can be 

classified as 2 different types, standard and adaptive cruise control systems. In the 

standard cruise control system, only speed is to be maintained by means of controlling 

vehicle acceleration or deceleration. For adaptive cruise control (ACC), both spacing, 

refer to space between vehicles, and speed are controlled. By comparing space to a 
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certain threshold, depending on the vehicle’s speed, an adaptive cruise control system 

can then determine whether space or speed control is safe and appropriate to the 

current driving situation. 

 

1.3.2. Collision Avoidance 

Like the adaptive cruise control system, however, the collision avoidance system 

contains some different details that differ from the adaptive cruise control system. 

Collision avoidance system operates by deciding whether a current driving speed is 

safe or not, then, if dynamics driving take is indispensable to avoid a collision, 

deceleration, or even emergency braking is performed. Collision warning may also be 

included in this system. 

 Furthermore, there appear several researches suggest that collision avoidance 

cannot be performed by only braking or deceleration[5, 6]. But in some situations, 

depending mainly on the time to collision (TTC), a duration which a host vehicle will 

collide with a preceding one if a current velocity is maintained, evasive steering man 

 

1.3.3. Lane Keeping Assist 

Lane-keeping assist (LKA) system provides an automated lateral position control for 

a vehicle to keep the vehicle’s lateral position in a proper region between lane 

marking and prevent a vehicle from an unintended lane changing. This system is 

extended from the lane departure warning (LDW) system by including actuators to 

control and perform the dynamic driving task. The crucial part of the system is to 

detect and estimate the lateral position of a vehicle. Several organizations have 

proposed different techniques in measuring a lateral position, e.g., magnetic field 

guided, vision base measurement, a global positioning system (GPS). 

 This research will utilize these driver assistance systems as fundamentals, and 

by further system implementation, to develop an autonomous, or a self-driving car, 

based on the global navigation satellite system (GNSS). 

 

2. Objectives of Research 

2.1. To develop the hardware segment of the low-level control system including 

the speed control system, braking control system, and steering control system. 
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2.2. To develop a software of the high-level control system based on the global 

navigation satellite system localization. 

2.3. To develop the obstacle avoidance algorithm for the collision avoidance 

system 

 

3. Scope of the Research 

3.1. To develop hardware as implementations that can be used in an autonomous 

driving system.  

3.2. A developed autonomous navigation system mainly relies on the GNSS 

positioning system, which effectively operates in an open sky area. 

3.3. The expected operation speed in this research is set to be under 15 kilometers 

per hour. 

3.4. A developed autonomous vehicle can safely interact with a detected threat in 

a predefined scenario. 

 

4. Expected Benefits 

 Since other autonomous vehicle systems that were recently developed mostly 

utilize an expensive sensing device, e.g., 3D lasers scanner, and require a high-

performance processing unit. Hence, this research aims to develop an alternative 

autonomous navigation system that employs a lower cost sensing device compare to 

other developed systems that are currently available. However, the developed system 

is not intended to be used in the same application level as the available systems. The 

developed system will be designed to be used in a low-speed application, i.e. below 

15 kilometers per hour, and operates in a constrained environment. 
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CHAPTER II 

LITERATURE REVIEW 

 

1. Localization Techniques 

 To set a navigation course, an autonomous vehicle needs to know its position, 

either global or local position. Besides position in space, orientation, or pose, is also 

required for autonomous driving navigation. Localization is, therefore, one of the 

most crucial parts of mobile robotics which can also be applied to a low speed 

autonomous, the main consideration of this research topic. The following presents 

reviews of some literature on the localization method in a different technique. 

 

1.1. Landmark-based Localization 

 Landmark-based localization can be classified as 2 main types, i.e. natural and 

artificial landmark-based localization. 

 

1.1.1. Natural Landmark-based Localization 

 Natural landmark-localization is the localization method by which a position is 

determined using features extracted from the actual unmodified environment. Various 

types of sensing information can be used as input for feature extraction, e.g., radial 

distance from a laser rangefinder. According to R. Madhavana and H. F. Durrant-

Whyte in “Natural landmark-based autonomous vehicle navigation”[7], Their 

research focuses on developing an algorithm to effectively extract natural dominant 

point landmarks obtained by using a laser range finder. In their research, features 

from the unmodified environment are extracted by applying a specific technique 

called the Curvature Scale Space (CSS) algorithm. In brief, extracted curvatures are 

derived from segmented range images from a laser rangefinder. These segmented 

range images are convoluted by Gaussian kernel with different levels of scale, 

depending on kernel’s width to produce preferable curvature values. Dominant 

curvatures, extrema curvatures, are then identified by applying to a certain condition. 

 In the localization section, these dominant curvatures are used as natural 

landmarks along with the odometry method, i.e. relative positioning by dead-
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reckoning estimation, by applying the Extended Kalman Filter (EKF) to determined 

vehicle position. After comparing with reference ground truth position, i.e. Real-Time 

Kinematic (RTK) Global Positioning System (GPS), they state that error results in 

lower than 25 centimeters for the position and 2 degrees for orientation. 

 

 

Figure 1 Extracted natural landmark (dominant curvature) and laser rangefinder 

image[7] 

 

 From the last article mentioned, several landmarks, more than one, are 

required to identify a position in the matching process. However, instead of detecting 

several landmarks, one can perform a modified approach by detecting only single 

landmarks but twice by different positions. According to Bais et al. in “Single 

landmark based self-localization of mobile robots”[8], a robot’s position is 

determined by range measurement of a single landmark in 2 different arbitrary 

positions. The displacement between these 2 positions is assumed to be known 

exactly, by adopting a dead-reckoning measurement, and be used along with 2 range 

measurements of this landmark from 2 different positions, determined by stereo vision 

approach, in geometrical approach, namely triangulation, to estimate the position 

relative to this landmark. Furthermore, vision-based measurement, i.e. color 
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transition, line detection, is used in this research to extract landmarks, e.g., color 

transition, corner, line intersection, and junction. 

 

1.1.2. Artificial Landmark-based Localization 

 Several artifacts are utilized as artificial landmarks for landmark-based 

localization, most of them are vision-based landmarks, and however, different 

approaches are presented in some article. In vision-based landmark research, various 

types of machine-readable codes are mentioned. According to Kartashov et al. in 

“Fast artificial landmark detection for indoor mobile robots”[9], QR code is employed 

as an artificial landmark. Their work concentrates on the implementation of an 

additional color plate to a plane QR code. The additional part consists of 4 different 

color regions, and by selecting an appropriate color, the contour of the QR code panel 

is detected and QR code information is identified. Figure 2 illustrates their designed 

artificial landmark and Figure 3 depicts the result. 

 

 

Figure 2 Designed landmark[9] 

 

 

Figure 3 a) Detected label b) extracted QR code 

 

 Another vision-based landmark technique proposed by Salahuddin et al., “An 

efficient artificial landmark-based system for indoor and outdoor identification and 
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localization”[10] can be used for the outdoor environment. A landmark label mainly 

depends merely on the encoded color pattern, however, more than one pattern in each 

landmark label is suggested. According to this article, this approach can also be used 

in determining the distance between vehicle, or sometimes called headway distance, 

by attaching this label, containing more than a single pattern, to preceding vehicle. 

Figure 4 depicts the examples of the proposed landmark label for license plate and 

road sign. 

 

 

Figure 4 Sample artifact landmarks 

 

 Apart from the vision-based artificial landmark, a technique that is frequently 

mentioned in several literatures is the Radio Frequency Identification (RFID)-based 

localization. One research on this type of landmark, “A RFID Landmark Navigation 

Auxiliary System”[11], illustrate the potential of RFID to be used instead of vision-

based or other natural artificial landmark localization. According to this article, 7 

RFID tags are organized in the hexagon array form, and by this configuration with 

knowledge of antenna detection radius, tag array dimension, body speed and time 

duration of tag detection, the position including orientation of vehicle can be 

identified. 

 According to the “Machine learning approach to self-localization of mobile 

robots using RFID tag”[12] by Senta et al., a different approach from the previously 

mentioned article for RFID landmark localization is proposed. Instead of determining 

position and orientation by solving the kinematic or geometric problem, this research 

applying the machine learning approach, namely the support vector machine (SVM), 

to avoid some difficulties, e.g., define every tag’s position, complex kinematic 

problem. 
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1.2. Localization Base on Global Navigation Satellite System 

 Global Navigation Satellite System (GNSS), nowadays, receives great 

attention from any system developers who involve in determining a global position. In 

the early of global positioning by using earth-orbiting satellite, the Doppler shift 

technique was used in determining global position, the American Navy Navigation 

Satellite System (NNSS), or TRANSIT, is an example for this technology. However, 

TRANSIT shows the main disadvantage, i.e. lack of accuracy and its complexity[13], 

Global Positioning System (GPS), the American GNSS, are thereby developed to 

replace the TRANSIT. 

Although GPS, and other equivalent systems, other GNSS, such as GLONALL, 

Galileo, etc., are widely acceptable, complexity and limitation still occur in 

determining the position. According to Zhu et al. in “GNSS Position Integrity in 

Urban Environments: A Review of Literature”[14], GNSS application in the urban 

environment may emerge from signal reception. In an urban environment, lots of 

obstacles, e.g., trees, buildings, etc., may cause a signal to be distorted or attenuated 

or sometimes these obstacles even totally block the entire signal to the receiver, even 

though the GNSS was designed to provide at least 4 satellite signals anytime for 

receiver anywhere on earth. Figure 5 depicts 2 different phenomena that cause 

complexity for GNSS in the urban environment, i.e. multipath interference and Non-

Line of Sight (NLOS) phenomena. 

 

 

Figure 5 a) Multipath interference b) NLOS reception[14] 

 

 Apart from the terrestrial object, the ionosphere and atmosphere environment 

can cause the signal to undergo perturbation. From these phenomena, positioning 

accuracy of about 2 to 4 meters may be determined. One method, that currently is 

given great attention, used to reduce this deviation is the Real-Time Kinematic (RTK) 
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approach. Several low-cost commercial GNSS devices currently equipped with this 

technology. According to Jackson et al., in “A performance assessment of low-cost 

RTK GNSS receivers”[15], 5 low-cost (lower than 500 USD), i.e. Piksi Multi, 

NV08C-RTK, Reach, NEO-M8P and S2525F8-RTK, and 1 relatively expensive 

(more than 1,000 USD), i.e. Eclipse P307, receivers are taken to be investigated in 

performance. Five types of standard performance metrics are used as criteria for 

performance comparison, i.e. accuracy, continuity, availability, and time to first fix 

metric type. Metrics and their summary descriptions are given in Table 3. 

 

Table 3 Summary of the performance metrics[15] 

 

 

 This research reveals that all the 6 receivers reached a centimeter-level 

accuracy up to the 95th percentile of the measurement. Another interesting result is 

that the performance evaluated also depends on the antenna type, i.e. rover or patch 

antenna. 

 

1.3. Summary of Localization Technique 

 The different techniques in localizations undergo different drawbacks. In 

landmark-based localization, for natural landmark case, the introduced article[7] 

suggests that a high dynamic environment should not be used as a resource for natural 

landmark extraction. Since our research objectives concentrate on autonomous driving 

which test experiment intends to perform in a considerably dynamic environment. 

Then natural landmarks may not be totally suitable for this research. However, some 

techniques, such as maxima curvature extraction by laser rangefinder, could be 

applied to our system. 

Another research in natural landmark-based localization presented[8] tries to utilize 

only a single detected landmark to determine the robot position. However, the 
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assumption they used, i.e. the exact relative position is known by a dead-reckoning 

estimation, is mentioned by several literatures[11, 16] that will gradually encounter 

the commutative error along the navigation path. Figure 6 and Figure 7 depict that 

commutative error growth along the distance traveled. 

 

 

Figure 6 Uncertainty area from odometry reading only[11] 

 

 

Figure 7 Experimental results from odometry and localization[16] 

 

 For vision based-landmark localization, most complexities come from 

environmental factors, such as ambient light. However, difficulties may emerge from 

the detection algorithm itself that required sophistication and robustness to effectively 

detect and extract information from any pattern label[9, 10]. 

 GNSS can also provide a very precise location, however, further technique, 

e.g., Differential Global Positioning Systems (DGPS), Real-Time Kinematic (RTK), 

need to be applied to achieve a high accuracy positioning. Although high precision 

localization can be achieved by GNSS, as performance evaluation shown in the article 
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above[15], GNSS still cannot be used as a single localization approach due to lack of 

continuity. 

 

2. Path Follower Autonomous 

 Path follower robot can be examined as basic for a more sophisticated 

autonomous driving system. At first glance, several path follower robots utilized 

numbers of the proximity sensor in determining their position. With a simple 

hysteresis controller, many of them perform an application acceptable result[17, 18]. 

Apart from a simple hysteresis controller, several more sophisticated controllers are 

proposed, e.g., legendary Proportional Integral Derivative (PID) controller. According 

to A. Al Arabi et al. in “Autonomous Rover Navigation Using GPS Based Path 

Planning”[19], the autonomous rover utilized the PID controller by selecting the path 

deviation distance derived from the GNSS positioning system as a controlled 

parameter, the result shows that the autonomous rover properly follows the predefined 

path. Furthermore, from M. Engin et al. in “Path Planning of Line Follower 

Robot”[20], the PID controller shows better results than the simple hysteresis 

controller in both maximum velocity used and tendency to astray from a predefined 

path.  

 However, a complicated autonomous driving application required more 

control techniques to achieve a satisfactory performance, furthermore, several real 

situation incidents need to be taken into consideration, e.g., the appearance of an 

unpredicted obstacle. Consequently, the high-level algorithm for autonomous path 

planning is utilized. 

 

2.1. The Dynamic Window Approach (DWA) 

 Besides prescribing a fixed predefined path for an autonomous car to follow, 

the instantaneous path generating algorithm is popularly adopted by numbers of 

research, one outstanding algorithm is the Dynamic Window Approach (DWA). 

According to D. Fox, W. Burgard, and S. Thrun, in “The Dynamic Window Approach 

to Collision Avoidance”[21], DWA is a local path planner which optimized robot 

velocities base on its performance, i.e. maximum linear and angular acceleration or 

deceleration, such that results in the optimal admissible path. For this algorithm, an 
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admissible local path is calculated by maximizing the cost-like function, called the 

objective function, considering target heading, clearance to the obstacle, and robot 

velocity from dynamic window search space. 

 

 

Figure 8 Dynamic window from the Dynamic Window Approach (DWA)[21] 
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CHAPTER III 

RELATED THEORY 

 

1. Global Navigation Satellite System (GNSS)[22] 

 The Global Navigation Satellite System (GNSS) is a localization system using 

signal broadcasted Medium Earth Orbiting (MEO) satellites whose altitude are about 

20,000 km above the earth's surface. Nowadays, GNSS systems that available for 

civilian applications are the Global Positioning System (GPS – Unites States), 

GLObal NAvigation Satellite System (GLONASS – Russia), Galileo (European 

Union), and BeiDou (China). Among all these GNSS systems, GPS is the most 

outstanding system that was first developed before other systems, originally for 

military purposes. Therefore, a general principle of the GPS will be introduced in this 

section as an example that represents an overview of the GNSS. 

 

1.1. The Global Positioning System (GPS) 

 By April 2020, the GPS already has 31 satellites in operation and 9 in reserve. 

Originally, 24 satellites are expected to be a number of the least satellites operated by 

the GPS. The principle underlying the GPS ability to localize a certain terrestrial 

object is simply measuring the distances between at least 4 satellites and a receiver 

attached to such object. Basic components of the GPS consist of 3 parts, i.e. a control 

station, satellites, and a receiver. The first component, i.e. control stations, located 

around the world, keeps tracking and monitoring all satellites. Each satellite’s 

ephemeris, a satellite’s predicted position and velocity, is updated by these control 

stations providing a precise localization to the system. Inside each satellite contain a 

high precision atomic clock, this atomic clock is used to generate 2 GPS carrier waves 

with different frequencies, i.e. 1575.42 and 1227.60 megahertz, known as L1 and L2, 

respectively. Each wave is modulated with a stream of bit called a Pseudo Random 

Noise (PRN) determined by a precise mathematic algorithm. These waves later are 

broadcasted to the earth and received by a terrestrial receiver. Two methods are 

available in distance measurement, i.e. a code ranging and a carrier-phase ranging. In 

a code ranging, The receiver determines a distance toward the satellite by measuring a 
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time lag between a received signal and a synchronous receiver-satellite generated 

signal, as shown by Figure 9. The equation relates a time lag and the distance between 

a receiver and the satellite is given by Equation (1). 

 p c=   (1)  

Where p  denotes the distance between a receiver and the satellite, known as the 

pseudorange. c  represents the signal traveling speed and   is a measured time lag as 

shown by Figure 9. 

 

 

Figure 9 Time lag determined from GPS signal 

 

 The GPS signal carrier wave’s phase is measure in a carrier-phase ranging 

method providing a higher precision than what obtained by a code ranging method. 

However, the carrier-phase ranging only determines the fractional phase part of the 

total pseudorange, i.e.   in Figure 10, leading to the unknown number of complete 

wavelengths N , known as an integer ambiguity. To determine this integer ambiguity, 

the code ranging along with more receiver is utilized by a certain technique called a 

double differencing. Equation (2) shows the relationship of parameters in a carrier-

phase ranging method. 

 ( )p N  = +
 

(2) 

Where p , N ,  , and   denote a pseudorange, integer ambiguity, measured phase, 

and the carrier signal’s wavelength. 
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Figure 10 Phase-carrier ranging 

 

1.2. Source of GNSS Measurement’s Error 

 The error in measuring a pseudorange of the GNSS may emerge in different 

levels of the system. In the satellite level, an inaccurate ephemeris of the satellite may 

be broadcasted to the geodesic receiver. Therefore, the receiver will output the false 

position. This sort of error may be caused by insufficient monitoring by the ground 

station. Also, gravitational attraction by other planets, moon, or sun, and the solar 

radiation pressure can deviate the actual satellite position away from the prediction, 

i.e. an ephemeris. While traveling from the satellite to a receiver, the GNSS signal’s 

speed is distorted along the way through the earth’s atmosphere. According to 

Equation (1), since the signal traveling speed changes, then the pseudorange 

determined by using a speed of light will be invalid. This error in an atmosphere level 

occurs in both the ionosphere and troposphere layer. In these layers, charged and 

neutral particles contribute to a change in the traveling velocity of a signal. Moreover, 

the indirect path of the signal may occur by reflecting any terrestrial objects before 

reaching the receiver’s antenna, this kind of error is called a multipath error.  

 In code ranging, the measured time lag plays a major role in determining a 

pseudorange. Therefore, the precise pseudorange must be determined by a precise 

time measurement. One major problem existed in the receiver level is a clock error. 

However, a clock error also happens in a satellite level but compared to the receiver 

level, an error in a receiver clock results in more severe to the measured pseudorange. 

 

1.3. Pseudorange Equations 

 An unknown position point in 3-dimensional space can be determined by 

using three distances between that unknown position point and the other three 
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reference points whose position is exactly known. However, as previously mentioned, 

the measured pseudorange can be deviated from the actual distance toward a satellite 

by the clock error. Therefore, the relation between a pseudorange and the actual 

distance toward a satellite can be stated by Equation (3). 

 p  = +   (3)  

Where p  is the pseudorange,   is the actual distance toward a satellite, and   is the 

distance error due to a clock error. Since the position of the satellite is assumed to be 

known exactly from the satellite’s ephemeris. Then, Equation (3) can be rewritten to 

Equation (4). 

 ( ) ( ) ( )
2 2 2

r r rp x x y y z z c= − + − + − +
 

 (4)  

Where x , y , and z denote the position of a satellite in a cartesian coordinate system. 

rx
, ry

, and rz
represent the position of a receiver in a cartesian coordinate system. c  

is the carrier wave traveling speed and   is the clock error time. Since the clock 

variation among satellites is negligible compare to the time difference between a 

satellite and a receiver. Then the clock error time is considered to be equal for every 

pseudorange measured by one certain receiver. Also, by assuming that the carrier 

wave traveling speed is known, the pseudorange equations constructed as shown by 

Equation (5). 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

1 1 1 1

2 2 2

2 2 2 2

2 2 2

3 3 3 3

2 2 2

4 4 4 4

r r r

r r r

r r r

r r r

p x x y y z z c

p x x y y z z c

p x x y y z z c

p x x y y z z c









= − + − + − +

= − + − + − +

= − + − + − +

= − + − + − +
 

 (5)  

Where ix
, iy

, and iz
denote the position of the i  satellite in a cartesian coordinate 

system, and ip
 is the pseudorange of the i  satellite. Since 4 unknowns with 4 

equations appear in Equation (5), then the position of the receiver can be solved using 

the measure pseudorange from 4 satellites.  Moreover, the result has included the 

clock error effect. Figure 11 illustrates the parameters used in the pseudorange 

equation. 
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 It can be shown that if the receiver is operated in a static positioning mode, i.e. 

the receiver is held in place measuring a static position, one can utilize only 2 

satellites in pseudorange measurement at a time, however, the measurement process 

has to be repeated at least 3 times. Whereas in kinematic positioning, i.e. the receiver 

is moving while receiving the GNSS signal, at least 4 satellites are required for each 

measurement. 

 

 

Figure 11 Parameters used in the pseudorange equation. 

 

1.4. Differential Global Positioning System (DGPS) 

 The accuracy of the GNSS positioning can be improved by introducing the 

second receiver. This second receiver is employed as a base station, i.e. base receiver, 

of which the exact position is assumed to be known. The Differential Global 

Positioning System (DGPS) determines the error in pseudorange according to 

Equation (6), assuming the position of both the satellite and a base receiver is known 

exactly. The correction obtained from this equation is called a Pseudorange 

Correction (PRC). 

 ( ) ( ) ( )
2 2 2

1i i b i b i b ip x x y y z z p = − + − + − −
 

 (6)  

Where ip
 represents the Pseudorange Correction (PRC) for the i  satellite. ix

, iy
, 

and iz
 denote the position of the i  satellite in a cartesian coordinate system. bx

, by
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and bz
 denote an exactly known position of the base receiver and 1ip

 is the 

pseudorange of the i  satellite measured by the base receiver. 

 However, if the distance between the base receiver and the rover receiver, i.e. 

another receiver that the position is needed to be found, is not too long, the PRC can 

be applied to the corresponding pseudorange measured by the rover receiver since the 

atmosphere for 2 areas in close proximity is considered to be the same, hence, leading 

to identical pseudorange corrections. Therefore, the corrected pseudorange of the 

rover receiver is given by Equation (7). 

 2 2i i ip p p= + 
  (7)  

Where 2ip
 denotes the corrected pseudorange of the i  satellite measured by a rover 

receiver. 2ip
 is the original pseudorange of the i  satellite measured by a rover 

receiver. Figure 12 depicts the DGPS configuration and explains the parameters used 

in the above equations. 

 

 

Figure 12 The Differential Global Positioning System (DGPS) configuration 

 

 The pseudorange used in determining the PRC can be determined by the code 

ranging or the carrier-phase ranging method. By utilizing the code-pseudorange, one 

can obtain the accuracy down to the decimeter level in real-time application. 

However, to enhance more accuracy, one famous algorithm named Real-Time 
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Kinematic (RTK) applies the carrier-phase pseudorange to the DGPS fundamentals, 

resulting in an accuracy of about 2 to 5 centimeters. 

 

1.5. Relative Positioning 

 Instead of correcting the pseudorange measured by receivers that are in close 

proximity, the relative positioning method determines the relative position using the 

raw pseudorange from both the base receiver and the rover receiver. Then, similar to 

the DGPS, the assumed known exact position of the base receiver is added to the 

relative position, giving a final position. However, this method is intended to be used 

in post-process application in which the carrier-phase pseudorange is performed. 

Equation (8) describes the mathematic form of the relative positioning method. 

 ( ) 0r r b= − +x x x x
 

 (8)  

Where rx
 is the corrected rover position by the relative positioning method. rx

 and 

bx
 denote the position of the rover and base receiver, respectively, determined by 

Equation (5) using the original pseudorange. 0x
 is the assumed known exact position 

of the base receiver. 

 

2. Proportional-Integral-Derivative Controller 

 A classical feedback controller block diagram is shown in Figure 13. The 

dynamic error is controlled and minimized by this feedback configuration. Depending 

on the plant transfer function, system disturbance, and the reference signal, different 

types of controllers can be applied results in the different dynamic responses of the 

controlled parameters. Normally, the sensor transfer function is neglect and assumed 

to be unity, thus the plant output y  then equals the sensor output y . 
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Figure 13 Classical feedback controller block diagram 

 The well-known feedback controller used for the low-level controller system 

in this research is the Proportional-Integral-Derivative controller, as known as the PID 

controller. The general control equation form of such controller is shown by Equation 

(9). 

 ( ) ( ) ( ) ( )
0

t

p i d

t

d
u t K e t K e d K e t

dt
 = + +   (9)  

Where pK , iK , and dK  are the proportional, integral, and derivative coefficient, 

respectively, all coefficients are non-negative value. e  denotes the dynamic error 

defined as a difference between the reference signal and the sensor output, stated 

mathematically by Equation (10). u  represents the controller output. 

 e r y r y= − = −   (10)  

 The PID controller can be separated and utilized as a combination of the 

individual controller. Typical combinations that always used are a proportional-

integral (PI) controller and a proportional-derivative (PD) controller, depending on 

the characteristic of the controlled system. However, each controller has its own 

remarkable response to different types of dynamic errors. 

 

2.1. Proportional Controller 

 The proportional controller, described by Equation (11), gives the output 

proportional to the dynamic error without imposing any dynamic to the output. This 

controller is a basic for every combination to be included. The proportional controller 

impacts the early portion of the response from the feedback controller by shortening a 

response’s rise time whenever the proportional coefficient is increased and vice versa. 

However, increasing the coefficient also leads to an increase in response overshoot 

and oscillation as shown in Figure 14. Also, using only the proportional controller 

will not guarantee the zero steady-state error. 

 ( ) ( )pu t K e t=   (11)  
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Figure 14 (a) Low proportional coefficient response (b) High proportional coefficient 

response 

 

2.2. Integral Controller 

 As state earlier, using the proportional controller only may result in a non-zero 

steady-state error. This constant steady-state error may emerge from the system plant 

which doesn’t possess any integrator of the number of integrators is not enough to 

cope with a certain reference signal. Also, the mechanical defect can cause the steady-

state error. The integral controller, shown by Equation (12), can manage to eliminate 

this type of error. According to Equation (12), the integral controller can output the 

non-zero control signal even when the error is zero, which in case of the proportional 

controller will give a zero output. However, increasing the integral coefficient too 

high can cause a response to be unstable. 

 ( ) ( )
0

t

i

t

u t K e d =    (12)  

   

2.3. Derivative Controller 

 The derivative controller, shown by Equation (13), resists the rapid change in 

a dynamic error. Considering the proportional controller with a high proportional 

coefficient, the response of such a controller will encounter a large overshoot and 

sometimes turn to constantly oscillate. The derivative controller can deal with this 

response behavior by decrease the other controller's output whenever the error 

changes too quickly. 
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 ( ) ( )d

d
u t K e t

dt
=   (13)  

 The result response from this derivative controller can be classified into 3 

types, i.e. underdamped, critically damped, and overdamped response, illustrated by 

Figure 15. The low derivative coefficient may lead to the underdamped response 

which still possesses an oscillating behavior. In an overdamped case, caused by a high 

derivative coefficient, time takes until reaching the steady state will be long, however, 

without oscillating behavior. The correct derivative coefficient gives a non-oscillating 

response by using the least time to reach a steady state. 

 

 

Figure 15 (a) Underdamped response (b) Critically damped response (c) Overdamped 

response 

 

2.4. Implementation 

 Instead of using an analog device, the digital implementation of the PID 

controller is deployed in this research. The continuous PID controller Equation (9) is 

digitalized to Equation (14) using the rectangular approximation. However, the 

digitalized version of the PID controller may develop an overshoot behavior in the 

dynamic response. Thus, the sample period of the digitized PID controller used in this 

research will keep at a relatively low, about 5 milliseconds, such that the digitized 

version can imitate the continuous PID controller. 

 ( ) ( ) ( ) ( ) ( ) 
0

k

s p s i s d s s s

n

u kT K e kT K e nT K e kT e kT T
=

= + + − −   (14)  

Where k I +  denotes the sampling number. 
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CHAPTER IV 

DEVELOPMENT OF AUTONOMOUS DRIVING SYSTEM 

 

1. Low-level Control System 

 The first step in creating the autonomous driving system is to develop a low-

level system. In this research, an electric vehicle available in the market, i.e. the 

TOYOTA COMS, is modified by introducing the steering control and speed control 

system to the original car. The detail in vehicle modification is described below. 

 

 

Figure 16 The TOYOTA COMS with modified low-level systems 

 

1.1. Power Supply System Modification 

 Additional modified systems are supplied by a set of batteries that are 

separated from the car's original batteries. These batteries power the steering control 

system, speed control system, and sensors used in autonomous navigation, i.e. a 

GNSS receiver and a laser scanner. As shown by Figure 17, a set of 4 12V-45Ah 

LiFePO4 batteries is divided into 2 separate supply circuits. Two batteries in the left 

are connected in series producing a supply voltage of 24 volts for high current 

drawing devices, including a brake motor and a steering motor. Two batteries on the 

right are also connected in series producing a 24 volts supply for electronic devices 
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that consume less current, e.g. a GNSS receiver, laser scanner, control circuits, etc. 

when the 220V power is supplied to the charge controller, all batteries are 

disconnected from devices they supplied and parallelly charged by the charge 

controller. 

 

 

Figure 17 Power supply system’s configuration 

 

1.2. Electronic System Modification 

 Motor rotational direction, turn signal lights, a hazard light, a wiper system, 

etc. are controlled using an electronic signal. Thus, to convert a vehicle into an 

autonomously controlled car, a modification on the electronics system needed to be 

made. 

 

1.2.1. Modified Switch Circuits 

 Figure 18 illustrates the component diagram of the modified electronics 

system. Formerly, the control signal from switches is connected to the Electronic 

Control Unit (ECU) directly. However, the modified system utilizes selector circuits 

that switch the control signal between the microcontroller and mechanical switch 

outputs so that the car can be controlled manually and automatically. These 3 selector 

circuits are employed for 3 switch circuits, i.e., a shifter switch, signal lights switch, 
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and wiper switch circuit. The 16-Relay module receives the control signal from 

selector circuits and outputs the final control signal to the ECU. 

 

 

Figure 18 Electronics system components diagram 

 

 The modified circuit of a shifter, signal lights, and wiper control switch is 

shown by Figure 19, Figure 20, and Figure 21, respectively. These modified circuits 

switch the ECU input signal using signal selectors, i.e. 2-to-1 digital multiplexers. 

Note that all multiplexers’ selector input is connected together and controlled by the 

electronics system microcontroller. Also, all mechanical relays appear in these figures 

belong to the 16-relay module. 
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Figure 19 Modified shifter switch circuit 

 

 

Figure 20 Modified signal lights switch circuit 
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Figure 21 Modified wiper switch circuit 

 

 The modified system is installed by replacing the direct connection between 

car and switches with modified circuits in between. The obvious advantage of this 

configuration is that the car can be converted back to the original circuit system easily 

by removing the modified circuit connector and connect the switch connector back to 

the corresponding car side connector. 

 

1.2.2. Microcontroller software 

 Figure 22 describes the workflow of the electronics system controller 

software. Firstly, a microcontroller starts an initialization routine. This includes 

binding the relay module to output ports and initializing the corresponding initial state 

to these ports. Then, a loop routine is entered starting by looking for the incoming 

command message from the high-level controller.  If the command message is 

received and verified to be valid, then the controller will execute the instruction 

according to the received command message. Finally, the new loop routine begins 

repeatedly. 
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Figure 22 Electronics system controller software’s flowchart 

 

1.3. Steering Control System 

 In modifying the steering control of the car to be used for the autonomous 

navigation system, three main subsystems must be installed, i.e. mechanical actuator 

system, electronics system, and the low-level steering control system. These 

subsystems are explained below. 

 

1.3.1. Mechanical Actuator System 

 The car used in this research originally came without a steering assistant 

system, e.g. power steering system. Thus, the steering wheel of a car cannot be 

controlled using the Controller Area Network (CAN) protocol communication. To 

control a steering wheel, hence steering angle, an electric motor is installed as shown 
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in Figure 23. The motor transmits power through a speed reduction gearbox of a 

1:9.78 gear ratio, and then by a chain-sprockets system with a sprocket ratio of 1:1 to 

a steering rack.  

 

 

Figure 23 Steering control actuator system 

 

 To control the position of a steering wheel, the sensor for measuring the 

steering wheel position is required. Here, the sensor is chosen to be a 10-round audio 

potentiometer with a total resistance of 10 kiloohms. Since the steering wheel of the 

car can be turned for about 4 rounds, lock to lock, then a gear set that increases a 

turning round of the potentiometer should be applied so that a full measurement range 

of 10 rounds can be properly utilized. For this reason, a gear set of 4:9 gear ratio is 

installed. A 1 round excess is introduced in case the steering wheel undergoes an 

overturn resulted from unexpected situations. The steering wheel position sensor is 

attached to a steering column as shown by Figure 24. 

 

 

Figure 24 Steering wheel position sensor 
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1.3.2. Electronics System 

 A DC motor is driven by the H-bridge DC motor driver which is controlled by 

a microcontroller unit of the low-level steering controlled system. Power supplied to 

the motor has a voltage of 24 volts but limited by a pulse width modulation of 50 

percent for safety reasons. The steering wheel position sensor, i.e. a potentiometer, is 

connected to an Analog to Digital Converter (ADC) which provides a digitalized 

steering wheel position to the microcontroller unit. An emergency stop switch and a 

circuit breaker are installed for the user to manually disconnects the motor and the 

supply battery, respectively. The electronic components diagram is shown by Figure 

25. 

 

 

Figure 25 Steering control system’s electronic components diagram 

 

 Also, note that the voltage level of links between each component is 

represented by a corresponding line type, i.e. a dashed line represents a 24-volt power 

line and a solid line represents a low voltage signal, typically a 3.3 volts COMS logic 

level communication line. 
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1.3.3. Low-level Steering Control System 

 A 1-dimensional Proportional Integral Derivative (PID) controller model is 

utilized in a low-level steering control system. By receiving a required steering wheel 

position, i.e. a reference signal, from the high-level control system, the controller then 

determines the output signal which, for this system, is defined as a duty cycle of the 

pulse width modulated 24 volts power supply, according to PID control law using a 

set of predefined tuned gain coefficient. Note that a unity gain transfer function 

assumption is applied to the steering wheel position sensor. A control bock diagram of 

the steering control system block diagram is shown by Figure 26. 

 

 

Figure 26 Steering control system block diagram 

 

1.3.4. Microcontroller Software 

 In order that the low-level steering control system can be controlled or 

communicates with the high-level control system, a certain interface software need to 

be applied. This software manipulates the incoming command from a high-level 

controller and executes a certain routine corresponding to a received command.  

 The software begins with initializing parameters by reading from the 

microcontroller’s Electrically Erasable Programmable Read-only Memory 

(EEPROM). The initialized parameters are listed below. 

❖ An initial reference steering wheel position for the automatic control mode 

❖ PID controller gain coefficients, including proportional, integral, and 

derivative coefficient 

❖ Limited positions of a steering wheel, both minimum and maximum limit 

position 

❖ A controlled loop time interval 

 After finish initialization, the current steering wheel position is measured. 

Subsequently, the microcontroller will check for the incoming command message 
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from a high-level controller. If the command message is available and verified, the 

microcontroller then executes a routine requested by a high-level controller. Then, if 

the automatic control mode is engaging, the microcontroller will calculate the output 

duty cycle using the PID control model and output a result to the motor driver. Note 

that the PID controller used in this system is discretized to be utilized in this system. 

However, if the controller is not in the automatic control mode, a motor will be 

released from a motor driver allows the driver to manually control a steering wheel. 

Next, the microcontroller will broadcast the system parameters if they are required by 

the high-level system. Eventually, the loop time interval control has proceeded before 

the new computational loop begins. Figure 27 illustrates a workflow of the low-level 

steering control system software. 

 

 

Figure 27 low-level steering control software’s flowchart 
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 This control software is embedded in the microcontroller belongs to this 

system. A communication protocol between this steering controller system and the 

high-level controller is a serial communication through a Universal Serial Bus (USB) 

connection. 

 

1.3.5. Steering Units Relationship 

 Early in this section, the steering wheel position is described by several units. 

In the beginning, a steering wheel position is mentioned in a geometry degree. Then, 

the steering position is measured using a potentiometer through a gear set which gives 

a unit of voltage. Subsequently, this voltage is converted by the 16 bit-analog to 

digital converter with a service range of ±6.144 volts which return a measured voltage 

in signed-integer bits ranged from -32768 to 32767 bits. 

 The steering position unit relationship between an actual steering angle and a 

potentiometer measured voltage is determined by Equation (15) since a gear set of a 

4:9 gear ratio is presented to convert a full range of 4 steering wheel revolutions to 9 

turns of a 3.3-volt supplied potentiometer. 

 0.04125 1.65E = +   (15)  

Where E  and   denote a measured voltage in volts and the actual steering angle in 

degrees. 

 A second relationship is between a measured voltage and the ADC output. 

Since the ADC range of operation is ±6.144 volts which correspond to the output 

range from -32768 to 32767 bits. Also, a potentiometer is supplied by a 3.3-volt 

source. Thus, the relationship between these 2 units can be given by Equation (16). 

 5333.33E =   (16)  

Where   denotes the ADC output in bits. 

 By combining Equation (15) and Equation (16) we may obtain the relationship 

between the actual steering angle and the ADC output as shown by Equation (17). 

Figure 28 illustrates the relationship among these units. 

 220 8800 = +   (17)  
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Figure 28 Relationships among different steering position units 

 

1.3.6. PID Controller Output Description 

 Previously in the microcontroller section, the output of the PID control model 

is in a duty bit. Here, a duty cycle bit is defined as a duty cycle-like value that 

corresponds to a 100 percent duty cycle when such value equals 4095 bits. Equation 

(18) describes the definition of this value. 

 0
duty 

%
cyc

 
le

l
 b

y
i

d
t

 ut cyc e 10
4095

=    (18)  

 

1.3.7. Parameters Tuning 

 Since the mathematical model of the steering system is not available. Then, 

the gain coefficient tuning cannot be done by using a mathematical design method.  

Consequently, the empirical tuning method is employed instead of determining a 

complex model of the whole system. Later, a satisfactory response is achieved by 

manually tuning gain coefficients. Equation (19) describes the values of the 

mentioned coefficients. 

 

280
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d
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K

=

=

=

  (19)  

Where pK , iK , and dK  are the proportional, integral, and derivative coefficient, 

respectively. Figure 29 depicts an example of a steering control system’s step 

response with the initial position at 11477 bits and a reference position at 12000 bits. 

Note that tuning is done at a controlled loop time interval of 5 milliseconds and these 

controller coefficients are intended to be used in a designed microcontroller software 

only. 
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Figure 29 Step response of a steering control system 

 

1.3.8. Response Model 

 In developing a high-level autonomous navigation algorithm, an important 

part is to determine a predicted trajectory of the vehicle. In the later section, the 

steering response model will be required to generate several predicted trajectories. 

Later, the steering response model will be referred to as a steering profile. A steering 

profile is a sequence of a steering position at any time instance. 

 Same as modeling a mathematic model of the steering system, determining an 

accurate response mathematic model takes many resources to accomplish. Thus, 

instead of investigating the response for a mathematic model, the direct recording of 

the steering profile is employed. 

 In high-level navigation software that will be introduced in the later chapter, 

the algorithm will determine the suitable steering position periodically. Hence, the 

steering command signal, i.e. reference steering position, may be considered as a step 

function of a certain value. Consequently, the steering profile is recorded by executing 

a step reference steering position of different values to several initial positions. In this 

research, an equal interval of 500 bits range from 2500 bits to 15500 bits is set to be 

both the initial position and reference signal. The record time is set to be 10 seconds 

for each record. Finally, 729 steering profiles of different initial and reference steering 

position is obtained. This set of steering profiles will be used later in the navigation 
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section instead of using an exact mathematic model. Another advantage of using 

recorded steering profile is that the computational effort will be greatly reduced, 

however, induce loads on the memory. Figure 29 is also one of the steering profiles 

in a recorded set. 

 

1.4. Speed Control System 

 The primary objective of the speed control system is to regulate the vehicle 

speed in response to the desire speed command received from the high-level 

controller. Same as the steering control system, a modification for the speed control 

system is divided into 3 parts, i.e. mechanical actuator system, electronics system, and 

the low-level speed control system. Furthermore, controlling speed in an automotive 

application involving 2 actuators system, including acceleration and braking system. 

 

1.4.1. Mechanical Actuator System 

 Since the existed braking system of the car used in this research is a hydraulic 

type without a booster. Then, a desire brake pressure cannot be achieved using the 

electrical intervention. Consequently, the additional brake actuator is designed and 

installed in the original system.  This additional brake actuator was designed such that 

the brake pressure can be applied by both user and low-level controller. 

 

 

Figure 30 Designed brake actuator 
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 A designed brake module is illustrated in Figure 30. This actuator consists of 

2 hydraulic master cylinders for 2 available brake circuits, i.e. front and rear circuit. 

This actuator introduces the brake pressure to a circuit by pushing a piston at one end 

of the cylinder using an electric motor through a 4:3 sprocket ratio chain transmission 

and a 3-millimeter pitch lead screw which transforms a rotational motion to linear 

motion. 

 

 

Figure 31 Section views of a designed master cylinder 

 

 Figure 31 shows section views of a designed master cylinder at 2 working 

positions. Inside this master cylinder, 2 pistons are working together. A piston on the 

left is connected to a lead screw set and a right piston is floating inside the cylinder. 

Not showing in the figure is 2 springs loaded inside the cylinder to maintain both 

pistons to be in a position shown by Figure 31 (a), whenever the driving motor is 

inactive. Figure 31 (a) illustrate the idle position state of the master cylinder. At this 

position, the user applied pressure from the original brake master cylinder enters the 

top port of the designed master cylinder and freely leave at the right port to a wheel 

cylinder. In the activated state, shown by Figure 31 (b), force is applied to a piston on 

the left by a motor. The left piston will also push the floating piston, isolating the 

brake line from the original master cylinder and generating pressure in a brake circuit, 

thus activates the wheel cylinder. The designed brake actuator is installed to the 

original braking system by replacing a portion for the original brake line as shown by 

Figure 32. 
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Figure 32 Installation of the designed brake actuator 
 

1.4.2. Electronics System 

 The previous section presents the modification of a braking system which 

allows the deceleration of a car to be controlled by a high-level controller. For 

acceleration, the original motor controller is controlled by the microcontroller. 

Originally, the motor controller of the car receives the acceleration command from the 

accelerator pedal. Thus, to take control of a motor controller, a sensed voltage signal 

from the accelerator pedal is replaced by a voltage signal generated by the low-level 

controller. 

 

 

Figure 33 Modified accelerator pedal position sensor circuit wiring diagram 

 

 The Accelerator Pedal Position Sensor (APP) of the car generates 2 voltage 

signals and measured by the Electronic Control Unit (ECU). One of such voltage 

signals is offset to the other by 750 millivolts. The ECU converts these voltage signals 

into a driving motor torque command and then sent to the motor using a vehicle CAN. 
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The modified circuit of the accelerator pedal position sensor is shown in Figure 33. In 

this figure, VCP1 and VCP2 are 5-volt sensor supply lines from the ECU. EP1 and 

EP2 are the reference ground lines of VCP1 and VCP2, respectively. The voltage 

signal lines mentioned above are VPA1 and VPA2. In a modified circuit, the 

microcontroller of the speed control system controls a vehicle acceleration through 

the generated voltage signals, shown by DAC1 and DAC2 lines in Figure 33. These 

signals generated from the dual 12-bit Digital to Analog Converter (DAC) by the 

microcontroller and replace the signals from the APP using 2 Single-Pole-Double-

Throw (SPDT) type mechanical relays. Furthermore, the actual odometry speed of the 

car is obtained from the vehicle CAN bus. 

 Similar to the steering control system, an electric motor of the brake actuator 

is driven by the H-bridge DC motor driver supplied by a 24-volt battery, however, 

limited by 75 percent of the maximum power to prevent the brake module from 

damage caused by a motor running at maximum power. This motor driver is directly 

controlled by the microcontroller. Figure 34 illustrates the overview component 

diagram of the steering control electronics system. 

 

 

Figure 34 Speed control system’s electronic components diagram 
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Note that the dashed line denotes the 24-volt power line and all low voltage level 

signal lines are represented by solid lines. 

 

1.4.3. Low-level Speed Control System 

 A simple PID is implemented in the speed control system as in the steering 

control system. However, 2 actuators are presented in this section, i.e. the brake 

actuator and the modified APP circuit. Thus, a modification is applied to the PID 

controller output part such that both 2 actuators can be implemented in the PID 

controller. The modified output PID controller is shown by Figure 35. 

 

 

Figure 35 Speed control system block diagram 

 

 As shown in Figure 35, a sensed actual speed is subtracted from the reference 

speed received from the high-level control system result in a speed error. Then, the 

PID controller with a set of coefficients is fed by this speed error, given an output   

that later plugged into a discontinuous gain transfer function F  and G . The transfer 

function F  and G  give the APP sensor voltage and the brake actuator motor driver’s 

pulse duty cycle, respectively, and defined by the following Equation (20) and 

Equation  (21). 

 ( )F H =   (20)  

 ( )( )1 1G H


  


  
= − + +  

  
  (21)  
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Where ( )H x  represents the Heaviside step function. Since the vehicle regenerative 

braking is activated when is accelerator pedal is in a released position which leads to a 

deceleration. And similar to a human driving characteristic in which a brake force is 

not applied for every time the speed needed to be reduced. Then, an actuator dormant 

interval   is introduced to the brake actuator gain transfer function, i.e. G . Also, 

because of a different actuator, a linear proportion to the PID controller output   

assumption is applied by introducing the brake actuator constant gain   to G . The 

output of the discontinuous gain G  and F  versus the PID controller output   is 

shown by Figure 36. 

 

 

Figure 36 Output of the discontinuous gain transfer function 

 

1.4.4. Microcontroller Software 

 A workflow of the low-level speed control system software is illustrated by 

Figure 37. Start by algorithm initialization, the microcontroller retrieves the initial 

parameters listed below from its EEPROM. 

❖ The initial reference speed used in automatic control mode 

❖ The proportional, integral and derivative coefficients of the PID controller 

❖ An actuator dormant interval and a brake actuator constant gain 

❖ A controlled loop time interval 
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 Then, the car speed is read from a vehicle CAN providing an odometry speed 

in kilometer per hour with a resolution of 0.004 kilometers per hour. Since this 

odometry speed measured by using a resolver contains signal noise. Then, a simple 

moving average digital filter of 10 previous samples is applied to the received speed. 

Next, the microcontroller will check whether there is a valid command received from 

a high-level controller. If so, the corresponding action to the received command will 

be executed. Subsequently, if the emergency braking mode is engaged, the 

microcontroller will check for the speed and activates the brake actuator in case the 

car is moving. In case the automatic control mode is engaged, the controller will 

determine the output using the digital PID controller. The output will be classified 

into 3 intervals, including a deceleration, acceleration, and dormant interval. The 

microcontroller will release an accelerator pedal and activate the brake actuator 

according to the output classified into a deceleration interval. On the other hand, the 

brake actuator will be released and the accelerator pedal will be activated if the output 

is classified into an acceleration interval. If the output is in a dormant interval, then 

both the brake actuator and the accelerator pedal are released. However, if the 

controller is neither in the emergency nor the automatic control mode, a brake 

actuator and an accelerator pedal will be released. Finally, the microcontroller will 

return the required parameters to the high-level controller and idly wait for the 

controlled loop time interval to be reached, and then begin the next computational 

loop. 
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Figure 37 low-level speed control software’s flowchart 
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Figure 37 low-level speed control software’s flowchart (continued) 

 

1.4.5. Parameters Tuning 

 The proportional, integral, and derivative coefficient of the PID controller, a 

brake actuator constant, and the actuator dormant interval is manually tuned in this 

tuning process since the exact mathematical model is not available at the moment. 

This tuning process’s controlled loop time interval is set at 5 milliseconds. By tuning 

until the satisfactory result is achieved, the tuned parameters are obtained as shown by 

Equation (22). 
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Where pK , iK , dK ,  , and   denote the proportional, integral, and derivative 

coefficient of the PID controller, a brake actuator constant, and the actuator dormant 

interval, respectively. Figure 38 illustrates the step response from the initial speed of 

3.6 kilometers per hour to the reference speed of 30.0 kilometers per hour. Note that 

these tuned coefficients and constants must be used only in the designed low-level 

software so that the response illustrated by Figure 38 will be obtained. 

 

 
Figure 38 Step response of a speed control system 

 

2. High-level Control System 

 All components that contribute to the development of the autonomous 

navigation software are introduced in this section. Start by considering the vehicle 

model, the relationship between a controlled input and the vehicle trajectory is 

obtained and later used in a developed path planning algorithm, i.e., a scored 

predicted trajectory. Eventually, this algorithm is implemented in the developed 

autonomous navigation high-level software. 

 

2.1. Vehicle Model 

 To obtain a predicted trajectory of the vehicle to be used in the path evaluation 

process, a certain vehicle model needs to be obtained. There are several vehicle 
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models available to be used in determining the vehicle trajectory. However, they 

come with different levels of complexity and, of course, providing different accuracy. 

 Since the objective of this research is to navigate the autonomous vehicle at 

low speed, also 2-dimensional GNSS is equipped in a localization system. 

Consequently, a 2-dimensional single-track kinematic model is considered to be the 

most suitable model here for sake of simplicity and a relatively low computational 

power. 

 

2.1.1. Single-Track Kinematic Model 

 

 

Figure 39 Single-track vehicle model 

 

 By considering Figure 39, we may obtain the kinematic relation of a single-

track vehicle model as shown in Equation (23). 

 ˆ
f r tre= + v v ω   (23)  

Where ˆ
r tse=v  denotes the rear wheel velocity with a magnitude of s  in ˆ

te  direction, 

fv  is the front wheel velocity and k̂=ω  is the vehicle angular velocity with a 

magnitude of   in ˆ ˆ ˆ
t nk e e=   direction. 

By applying a vector product between both sides of Equation (23) with ˆ
te  we may 

obtain Equation (24). 

 sinf r =v   (24)  

And by applying a scalar product between both sides of Equation (23) with ˆ
te , we 

also get the tangential component relation as shown in Equation (25). 
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 cosf s =v   (25)  

Eventually, Equation (26) can be derived by combining Equation (24) and Equation 

(25). 

 
tan

s r

 
=   (26)  

From Equation (26) we can see that both sides of the equation represent a curvature of 

a certain vehicle trajectory. Hence, for simplicity's sake, we may use 
s


 =  to denote 

a trajectory curvature. Consequently, Equation (26) can be rearranged and results in 

Equation (27). 

 
tan

r


 =   (27)  

 

2.1.2. Approximated Linear Relationship 

 A range of a steering angle in a typical commercial car is around 70 degrees, 

which can be divided into around 35 degrees inner steering angle and around 35 

degrees outer steering angle. The car used in this research has a steering angle range 

of 74 degrees, say 38 degrees inner and 34 degrees outer steering angle, and a 

wheelbase of 1.53 meters. By applying a steering angle range and a wheelbase to 

Equation (27), we may obtain the plot of the curvature at a different steering angle 

which is depicted by Figure 40. 

 

 

Figure 40 Trajectory curvature from the single-track kinematic model at any steering 

angles 
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 From Figure 40, it can be observed that the relationship between a trajectory 

curvature and a steering angle is linearly proportional to each other. Consequently, by 

introducing Equation (27) to an infinite series expansion at 0 =  we may obtain the 

result as Equation (28). 

 
3 5 72 17

...
3 15 315r r r r

   
 = + + + +   (28)  

By considering only the first term of the right-hand side of Equation (28), an 

approximated linear relationship between trajectory curvature and steering angle is 

then obtained as Equation (29). 

 
r


 =   (29)  

 

2.1.3. Effective Inverse Wheelbase Calibration 

 To use the Equation (29) in autonomous navigation one crucial parameter 

needs to be substituted, namely a vehicle wheelbase r . Even though the vehicle 

wheelbase can be measured directly from the car or get from a car technical manual, 

that figure still cannot be used since there will be some other effects from other 

components of the car that will deviate the actual trajectory curvature from the result 

of Equation (29). 

 For this reason, an effective wheelbase that will be used in predicting the car 

trajectory must be obtained. To determine the value of this effective wheelbase, one 

can directly measure actual curvatures at various steering angles from a certain 

empirical experiment. However, directly measuring actual curvatures would be 

difficult without a precise localization system. Hence, instead of measuring the 

curvature directly, the angular velocity and the vehicle speed will be measured. 

 After the actual angular velocity, occasionally yaw rate, and the vehicle speed 

at various steering angles are collected, the regression analysis is then introduced.  

Since the steering position obtained from the car steering position sensor comes in 

scale and offset to the actual steering angle, then a more suitable Equation (30) for 

regression analysis is introduced to include all scale and offset parameters in one 

single equation. 

   = +   (30)  
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As mention earlier, 
s


 =  where   is a collected yaw rate and s  is vehicle speed. 

  denotes the inverse effective wheelbase and   demotes the steering position 

center. 

The inverse effective wheelbase and steering position center can be determined by the 

following Equation (31). 

 ( )
1

T T




− 
= 

 
A A A κ   (31)  

Where 1 =  A  and =κ , which   and   are 1m  vector of m  collected 

steering positions and corresponding trajectory curvatures, respectively. 

By substitute collected trajectory curvatures and steering positions into Equation (31), 

we may obtain the following parameters. 

 
54.980133239 10 −=    (32)  

 0.4317661517 = −   (33)  

Units of an inverse effective wheelbase and a steering position center are (meters · 

steering position sensor output unit)-1 and (meters)-1, respectively. Figure 41 depicts a 

least-square regression analysis result. 

 

 

Figure 41 Actual trajectory curvature and approximated linear relationship 
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2.2. Scored Predicted Trajectory 

 Scored Predicted Trajectory is the algorithm developed in this research to be 

used in the autonomous navigation section. This algorithm determines the most 

suitable steering angle such that the car will follow a given waypoint according to the 

score weight that will dominate the path following behavior of a vehicle which is 

arbitrarily predefined by the user. However, the algorithm doesn’t determine a 

vehicle-controlled speed as vehicle speed is one of the algorithm input parameters. 

 

2.2.1. Trajectory Prediction 

 The single-track kinematic model has been introduced in the previous section. 

In this section, that model is applied again to determine the trajectory of a vehicle, 

namely predicted trajectories, for used score evaluation process. 

 

 

Figure 42 single-track kinematic model 

 

 Instead of locating a vehicle position reference at the center of geometry or the 

center of mass of a vehicle, here the center of a rear axle P  is utilized. By considering 

Figure 42, also with the assumption that the steering system is a perfect Ackermann 

steering geometry so that the velocity of the car reference point P  will always align 

with a car heading direction. Hence, we may construct the equation of the predicted 

trajectory of a point P as follow. 

 ( ) ( )
0

t

rt d = ρ v   (34)  
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Where ( )tρ  is a car position reference vector of a point P  and rv  is a velocity of a 

point P  attached to a vehicle body. 

Rearranging Equation (34) gives Equation (35) that splits all parameters in Equation 

(34) into 2 components, namely along inertia reference axis î  and ĵ . 

 
( )

( )
( )

( )

( )0

cos

sin

t
x

r

y

t
v d

t

  
 

  

   
=   

  
   (35)  

Where ( ) ( ) ( )
T

x yt t t  =  ρ , ( )x t  and ( )y t  are magnitudes of a car reference 

vector ( )tρ  at any time instance t . 

Since ( ) ( )
0

t

t d   =   where ( )t  is the angular speed or yaw rate of a vehicle 

body, also of the velocity rv  and a vehicle heading direction. Then Equation (35) can 

be rearranged as follow. 

 
( )

( )
( )

( )

( )

0

0

0

cos

sin

t

t
x

r t
y

d
t

v d
t

d

  


 


  

 
 

   =   
   

  






  (36)  

Furthermore, it has been shown earlier that for a single-track kinematic model with a 

perfect Ackermann steering geometry, the trajectory curvature can be approximately 

considered as linearly proportional to a steering angle with a certain gain, 

independently from the vehicle speed. 

 ( )
( )

( )
( )

t
t t

s t


  = = +   (37)  

Rearranging Equation (37) gives Equation (38). 

 ( ) ( ) ( )( )t s t t  = +   (38)  

Since ( ) ( ) ( )r rt v t s t= =v . Then, combining Equation (36) and Equation (38) results 

in the following Equation (39). 
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( )

( )
( )

( ) ( )( )

( ) ( )( )

0

0

0

cos

sin

t

t
x

t
y

s d
t

s d
t

s d

    


 


    

 
+ 

   =   
   +

  






  (39)  

 Equation (39) above will provide several predicted trajectories for different 

steering angles to be evaluated by the score weight mentioned early in this section. 

This evaluation process will be introduced in a section below. 

 

2.2.2. Trajectory Evaluation and Scoring 

 After several trajectories corresponding to several arbitrary predefined steering 

angles are obtained by solving the trajectory Equation (39). These trajectories will be 

brought into a scoring evaluation process which is mainly considered in three 

different topics, namely, a linear deviation, an angular deviation, and a collision 

distance. Then, each of the trajectories will be assigned by three scores from the three 

topics evaluation mention earlier and will be combined later according to weights that 

arbitrary given by the user. 

 

2.2.2.1. Linear Deviation Evaluation 

 Linear deviation evaluation of the trajectory determines the distance between a 

certain trajectory and a given waypoint in cartesian space. This evaluation can be 

done by performing the integration of the shortest cartesian distance between along 

the trajectory need to be evaluated. 

 

 

Figure 43 Linear deviation evaluation of a certain trajectory 
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 Figure 43 depicts a linear deviation of a certain trajectory ( )ρ , as shown by a 

continuous line, from a waypoint ( )p , as shown by a dashed line. Point B  is the 

point closest to point A  that lies on a waypoint ( )p . Let us rewrite the waypoint as 

shown by Equation (40). 

 ( ) ( ) ( )
T

x yp p   =  p   (40)  

And so do the trajectory. 

 ( ) ( ) ( )
T

x y     =  ρ   (41)  

Let us assume that point A  locates on a trajectory ρ  where  =  and point B  

locates on a waypoint p  where  = . 

 ( ) ( ) ( )
T

x yA      = =  ρ   (42)  

 ( ) ( ) ( )
T

x yB p p   = =  p   (43)  

Since B  is the point closest to point A , then a formal condition for   is stated by the 

following Equation (44). 

 ( ) ( ) ( )( )argmin


   = −ρ p   (44)  

It can be shown that   happens when Equation (45) is satisfied. 

 ( ) ( )( ) ( ) ( ) ( )( ) ( )x x x y y y

d d
p p p p

d d
   

       
 

= =

− = −   (45)  

To perform an integration over the trajectory length, an infinitesimal length along the 

trajectory needs to be defined. This infinitesimal length is shown by Equation (46). 

 ( ) ( )
2 2

x y

d d
d d

d d
     

 

   
= +   

   
  (46)  

Here, the evaluation integral can be performed and results in the following Equation 

(47). 

 ( ) ( )( ) ( ) ( )( )( ) ( ) ( )
2 2

22

0

T

l x x y y x y

d d
p p d

d d
           

 
= − + − +

    
    
    

  
 

(47)  

Note here that l  denotes a linear deviation score of a trajectory ρ  that is evaluated 

over a given waypoint p . 
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2.2.2.2. Angular Deviation Evaluation 

 Angular deviation evaluation determines the difference of gradient between a 

trajectory and a given waypoint. This process is done in the same manner as the linear 

deviation evaluation. However, in this process, the parameter used in the comparison 

is the gradient instead of a cartesian distance. 

 Considering again on Figure 43, ( )η  denotes the tangential vector to a 

trajectory at   and ( )h  represents the tangential vector to the waypoint at  . The 

relationship between a trajectory, waypoint, and their tangential vectors are stated in 

the following Equation (48) and Equation (49). 

 ( ) ( )
d

d
 


=η ρ   (48)  

 ( ) ( )
d

d
 


=h p   (49)  

Since the angular deviation in this process is defined as a difference in a gradient or 

heading between a trajectory and a waypoint. Hence, the following Equation (50) 

defines the formulation of an angular deviation . 

 ( )
( ) ( )

( ) ( )
arccos

 
 

 

 
=  

 
 

η h

η h
  (50)  

Combining Equation (46) and Equation (50) gives the following Equation (51). 

 
( ) ( )

( ) ( )
( ) ( )

2 2

0

arccos

T

a x y

d d
d

d d

 
     

  

       
= +              


η h

η h
  (51)  

Where a  represents the angular deviation score of a trajectory ρ  that is evaluated 

over a waypoint p . 

 

2.2.2.3. Collision Distance Evaluation 

 Similar to the linear deviation evaluation, this collision distance evaluation 

utilizes a cartesian distance in a scoring process. However, instead of using a 

waypoint, this section uses the obstacle point scan to evaluate the score. 
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Figure 44 Collision distance evaluation of a certain trajectory 

 

 Figure 44 depicts an obstacle point represented by ( )λ  and a vehicle 

trajectory ( )ρ . Also N  is the obstacle point whose closest point on a trajectory is 

M . Since this evaluation process is done the same way as linear deviation 

evaluation, except using an obstacle scan instead of using a waypoint. Then, the 

formulation of this score can be modified from the linear deviation score Equation 

(47). Consequently, the collision distance score can be determined by the following 

Equation (52). 

 ( ) ( )( ) ( ) ( )( )( ) ( ) ( )
2 2

22

0

T

c x x y y x y

d d
d

d d
             

 
= − + − +

    
    
    

  
 

(52)  

Where c  is the collision distance score of a trajectory ρ  that is evaluated over a 

given waypoint p , ( ) ( ) ( )
T

x y     =  λ , and   is determined by the following 

Equation (53). 

 ( ) ( ) ( )( )argmin


   = −ρ λ   (53)  

 

2.2.2.4. Overall Score Combination 

 As mentioned earlier in this section, to determine the total score of an 

individual trajectory, three scores, namely, linear deviation score, angular deviation 

score, and collision distance score, will be linearly combined using their 

corresponding arbitrary user predefined weights. Equation (54) states a mathematical 

formulation of the overall score combination. 
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  
l

l a c a

c

w w w



 



 
 

=
 
  

  (54)  

Where lw + , aw + , and cw −  are the linear deviation, angular deviation, 

and collision distance weight, respectively. These weights can be interpreted as 

priorities of their corresponding score in the autonomous navigation routine, i.e., a 

high absolute value of w  indicates a high priority of a corresponding score. 

 

2.2.3. A Modification for Algorithm Implementation 

 Since the Score Predicted Trajectory derived from continuous functions of a 

trajectory, waypoint, and obstacle scan. However, in the actual situation, those 

mentioned come in discrete and discontinue functions. Then, all scoring formulas 

need to be modified to deal with a discrete and discontinue function. Also, some parts 

or parameters will be neglected for the sake of computation complexity that may 

affect the computational time which is a critical topic in real-time implementation of 

the autonomous navigation algorithm. 

 

2.2.3.1. Vehicle Trajectory Approximation 

 A trajectory Equation (39) indicates that the speed s  varies over the time used 

in a trajectory integration process. Since the time used in one computational loop, i.e. 

a computational time interval, will and short. Also, the objective of this research is to 

deal with a low-speed navigation system. Then a constant speed over a finite time 

interval that will be used in a finite trajectory integration should be a reasonable 

approximation assumption. The approximated trajectory equation then states as 

Equation (55). 

 ( )
( )

( )

( )( )

( )( )

0

0

0

cos

sin

t

t
x

t
y

s d
t

t s d
t

s d

   





   

 
+ 

   = =   
   +

  






ρ   (55)  

 To utilize the trajectory Equation (55) in software programming, a discretized 

form of Equation (55) is more preferable. By replacing all true integration terms by a 
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trapezoidal numerical integration, Equation (55) then results in the following 

Equation (56). 

 ( ) 1

1

1 1

cos cos

sin sin2

i
xi j j

i j j

jyi j j

s  
 

  

+

+

= +

+   
= = −   

+   
ρ   (56)  

Where j  is defined by Equation (57). 

 ( ) ( ) ( )( )( )1 1

1

2
2

j

j k k k k

k

s
        + +

=

= − + +   (57)  

Also, i  is a discretized time of t  interval defined by the following Equation (58). 

 ( )1i i t = −    (58)  

In which a total time interval T  of the trajectory is determined by Equation (59). 

 ( )1T N t= −    (59)  

 

2.2.3.2. Discrete Linear Deviation Evaluation 

 In a previous derivation of a continuous linear deviation scoring formula, the 

definite integral over the trajectory length is performed. However, a linear deviation 

scoring intends to set a parameter that indicates a measure of the total cartesian 

distance between a trajectory and a given waypoint along such trajectory. 

Consequently, instead of including the infinitesimal distance, i.e., Equation (46), this 

distance will be neglected in the discrete version for linear scoring Equation (60). 

 
1

N

l i i

i


=

= − ρ p   (60)  

Where ip  is the closest point to a point iρ  lying on a waypoint p  and can be 

determined by the following Equation (61). 

 i j=p p   (61)  

where ( )argmin ij 


= −ρ p . 

 

2.2.3.3. Discrete Angular Deviation Evaluation 

 In software implementation of the algorithm, the waypoint used will not be in 

continuous function form since the waypoint will be recorded directly from a 
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localization system. Therefore, performing a true differentiate of a waypoint to get the 

tangential vector as in equation cannot be done. Also, applying a finite differentiate 

will result in a diffuse tangential vector. Consequently, in this research both heading 

angle and position will be recorded directly and will be used as a reference tangential 

vector direction and a waypoint, respectively.  

Similar to the previous section, the infinitesimal distance determined by Equation (46) 

is neglected here. Thus, Equation (62) below defines an angular deviation scoring for 

a discrete system. 

 
1

N

a i i

i

h 
=

= −   (62)  

Where i  represents the heading angle of trajectory at iρ  and ih  is a recorded heading 

of the point closest to a point iρ  lying on a waypoint p  which can be determined by 

the following Equation (63). 

 i jh h=   (63)  

where ( )argmin ij 


= −ρ p  and h  is a set of recorded heading corresponding to a 

recorded waypoint. 

 

2.2.3.4. Discrete Collision Distance Evaluation 

 The obstacle scan data returned from a laser scanner device is a set of a 

discrete point cloud of obstacles in range relative to the device position. To use this 

set of obstacle points, again discretization of the evaluate equation need to be 

performed first. Similar to a discrete linear deviation scoring Equation (60), the 

cartesian distance between trajectory and a set of obstacle points is utilized. By 

modifying Equation (60) for the usage in this context, we then obtained an equation 

for discrete collision distance scoring as follows. 

 
1

N

c i i

i


=

= − ρ λ   (64)  

Where iλ  is the closest point to a point iρ  which is a member of a set of obstacle 

points λ  and can be determined by Equation (65). 
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 i j=λ λ   (65)  

As identical to previous sections. 

 ( )argmin ij 


= −ρ p   (66)  

 

2.2.3.5. Critical Obstacle Distance Evaluation 

 In all previous sections, the trajectory used in all scoring equation is derived 

from a particle model. However, in a practical situation, the vehicle cannot be 

considered as a particle and represented by merely a single point. Depending on the 

geometry of a vehicle used in a practical implementation, there must be a certain 

boundary for the distance between a trajectory and an obstacle point such that this 

boundary will act as a buffer area and preventing collision between vehicle and 

obstacle. 

 Similar to linear deviation and collision distance scoring, this critical obstacle 

distance evaluation also uses the cartesian distance in determining the score. This 

section utilized the same distance which was used in discrete collision distance 

evaluation, however, some modification to Equation (60) is applied and result in the 

following equation. 

 
( ), if min

0, otherwise

i i m
i I i N

m


 +  

 − 
= 


ρ λ
  (67)  

 

Where m  is the critical obstacle distance score and m  is the critical obstacle 

distance which is specified according to a vehicle geometry. 

 

 

Figure 45 Critical obstacle distance and the buffer area 
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 Figure 45 depicts the relationship between trajectory ρ , critical obstacle 

distance m , and a buffer area, represented by a dot space enclosed by dashed lines. 

The buffer area of 2 m  wide resulted from Equation (67). If there was any obstacle 

scan point located in this buffer area, the critical obstacle distance score belongs to the 

trajectory ρ will be given by  . This infinity score causes its corresponding trajectory 

to the lowest preferable track for a vehicle to follow, compare to other possible 

trajectories. 

 

2.2.3.6. Overall Discrete Score Combination 

 All discrete scores, i.e. a discrete linear deviation, discrete angular deviation, 

discrete collision distance, and critical obstacle distance score, can be combined the 

same way as performing by Equation (54). However, since the additional critical 

obstacle distance score is not included by Equation (54). Then, a new linear 

combination equation of all discrete scores is presented by Equation (68). 

  1

l

a

l a c

c

m

w w w










 
 
 =
 
 
 

  (68)  

Where lw + , aw + , and cw −  are the discrete linear deviation, discrete 

angular deviation, and discrete collision distance weight, respectively.   is a final 

score of a certain trajectory that indicates the suitability of its corresponding 

trajectory. 

 

2.2.4. Software Implementation 

 Scored Predicted Trajectory software determines several trajectories 

corresponding to the steering position command signals. These trajectories will later 

be evaluated by means of scoring processes introduced above. Figure 46 describes the 

algorithm details. 
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Figure 46 Scored Predicted Trajectory algorithm 

 

Inputs: Vehicle current position p , vehicle current heading angle  , vehicle 

current steering angle   , vehicle current speed s , steering profile model ψ , 

denotes the inverse effective wheelbase  , steering position center  , 

corresponding discrete time space τ , route waypoint λ , route heading angle υ

, obstacle scan μ , score critical obstacle distance  0r , and weight w  

Outputs: Trajectory scores corresponding to the input steering profile model 

γ , and most suitable steering command signal   

Definitions: 

1. η  a set of predicted trajectory heading of ψ  

2. iδ  a set of initial steering angles of ψ  

3. fδ  a set of final steering angles of ψ  

4. ρ  a set of predicted trajectory 

5. σ  a score array of all predicted trajectory 

Function: 

1. 
( )argmin ,i i i

i

p    − δ
  

2. 
( )  argmin ,i i i p

i

q     −  −δ
  

3. ,p i p  δ
  

4. ,q i q  δ
  

5. 

q p p q

t

p q

   

 

− + −


−

ψ ψ
δ

  

6. for every final steering angle index i  in fδ  do 

7.  ,0i η
 

8.  
( ) ( )( ), 1 , , 1 , ,

0

2 ,
2

k

i k m m t j m t j m

m

s

k I k N

    + +

=

+

 − + + +

  

η δ δ
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Figure 46 Scored Predicted Trajectory algorithm (continued) 

  

9.  ,0i ρ p
  

10.  

( )
, 1 ,

, 1

0 , 1 ,

cos cos
,

sin sin2

k
i m i m

i k m m

m i m i m

s
k I k N 

+ +

+

= +

+ 
 − +    

+ 


η η
ρ p

η η
 

11.  
0l 

 

12.   
0a 

 

13.  
0c 

  

14.  
0m 

 

15.  for every points index j  in iρ  do 

16.   
( ),argmin i j k

k

  −ρ λ
  

17.   ,l l i j   + −ρ λ
 

18.   ,a a i j   + −η υ
 

19.   
( ),argmin i j k

k

  −ρ μ
 

20.   ,c c i j   + −ρ μ
 

21.   

, 0if 

otherwise

i j

m

m

r




  − 
 



ρ μ

 

22.  endfor 

23.  
 i l a c m   σ

 

24.  i i γ σ w
  

25. endfor 

26. 
( )argmin i

i

  γ
 

27. ,f   δ
 

28. return γ ,   
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2.3. High-level Autonomous Navigation Software 

 The speed-independent and speed-dependent autonomous navigation software 

are developed in this section. First, speed-independent software is introduced. This 

software benefits the tuning process since the traveling speed can be controlled 

manually. Later, speed-dependent software is presented. This software is employed as 

a complete path following autonomous navigation software. 
 

2.3.1. Speed-independent Navigation System Algorithm 

 After the Scored Predicted Trajectory is developed, a speed-independent 

navigation system algorithm is now ready to be established. Figure 47 describes the 

workflow of the designed speed-independent autonomous navigation software. 

 

 

Figure 47 Speed-independent autonomous navigation software flowchart 
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 The developed autonomous navigation software starts by initializing several 

parameters used in the algorithm. These parameters are listed below. 

❖ GNSS receiver configuration 

❖ Laser scanner configuration 

❖ Geographical coordinate to local coordinate conversion factors 

❖ Steering profile model 

❖ Score predicted trajectory algorithm parameters 

o Score weights, including a linear deviation, angular deviation, and collision 

distance weight 

o Algorithm controlled loop time interval 

o Forward predicted trajectory distance 

❖ Exponential gain compensation algorithm parameters 

o Initial gain increment 

o Gain increment base 

o Saturation boundary 

 A software enters the repeated controlled loop after initialized. This loop 

begins with retrieving a vehicle speed by request from a vehicle cruise control system. 

Then, the vehicle's geographical position is known by measuring from a GNSS 

receiver.  Following by scanning the obstacle using a laser scanner, then all 

information needed is ready for a navigation algorithm. 

 All sensed inputs obtained by the previous step is then applied to the scored 

predicted trajectory algorithm. The result of this algorithm is the most suitable 

command steering which may be directly used as a command signal sent to a car’s 

steering control system. However, since the steering calibration is done under a static 

condition. Since the character and response of the steering control system will be 

different from the calibration result when used in a dynamic environment. Then, the 

gain compensation is required to overcome this dynamic effect. Here, the Exponential 

Gain Compensation algorithm is introduced to solve this problem. A detail of the 

algorithm will be presented later in this section. 

 After the gain compensation is applied to the results from the navigation 

algorithm, the result of gain compensation then proceeds to the steering control 

system. The software display then illustrates all predicted trajectories and their 
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corresponding scores to the user. Eventually, the software is idly waiting for the 

controlled loop time interval to be reached and prepare to be terminated by the user. 

 

2.3.2. Exponential Gain Compensation 

 Exponential Gain Compensation, as implied by the name, is the algorithm 

used to determine the compensation gain for the steering command signal resulted 

from the main navigation algorithm. The compensation gain is defined by the 

following Equation (69). 

 ( )     = − +   (69)  

Where    is the compensated steering command signal,   is the steering command 

signal compensation gain,   is the steering command signal result from a navigation 

algorithm, and   is the current steering position of a vehicle. 

 The compensation gain is exponentially changed for every single controlled 

loop. The value of this gain is limited to a certain boundary by a user’s predefined 

setting. The algorithm for Exponential Gain Compensation is described by Figure 48 

below. 

 After the gain compensation is obtained from the algorithm presented in 

Figure 48, it is then substituted into equation to determine the final steering command 

signal, i.e. the compensated steering command signal. Finally, this command signal is 

then sent to the low-level steering controller. Besides, the gain transition and gain 

increment that also returned from the algorithm will later be used for the next 

calculation loop. 

 

 

Figure 48 Exponential Gain Compensation algorithm 

 

Input: Previous compensation gain   , previous gain increment  , previous 

gain transition   , increment base  , current steering angle  , expected 

steering angle  ,  lower saturation boundary l , and upper saturation 

boundary u  

Output: Compensation gain  , gain increment  , and gain transition   
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Figure 48 Exponential Gain Compensation algorithm (continued) 

 

Definitions: 

A previous gain transition    is defined as a transition direction of a previous 

loop’s compensation gain, i.e. increase, decrease, or remain the same.    is 

positive when     in a previous calculation loop, and negative when 

    in a previous calculation loop, otherwise 0  = . 

Expected steering angle   is the steering angle forecasted by a previous 

control loop from a known control loop time interval 

Function: 

1.    −   

2. if 0    then 

3.      

4. else if 0    then 

5.  






  

6. else 

7.  0   

8.    +  

9. endif 

10. if u   then 

11.  u    

12.     

13. else if l   then 

14.  l    

15.     

16. else 

17.      

18. return  ,  ,    
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2.3.3. Speed-dependent Autonomous Navigation Algorithm 

 The previous topic deals with a speed-independent autonomous navigation 

system only. However, to include the speed control to the algorithm, some 

modifications may be applied to a speed-independent system. Also, the user override 

mode is included in this algorithm.  

 In controlling vehicle speed, the speed map is introduced. As in recording a 

waypoint, the speed map can be done in the same manner, i.e. by directly record a 

vehicle odometry speed corresponding to a certain recorded waypoint. A controlled 

speed is then determined by the following Equation (70) and directly sent to a vehicle 

cruise control system. 

 c js v=   (70)  

Where ( )argmin ij 


= −ρ p  which ρ  is a vehicle current position and p  is a 

waypoint. cs  is a controlled speed, and v  is a speed map corresponding to a waypoint 

p .  

 For the user override mode, the condition to engage this mode is determined 

by the scored predicted trajectory algorithm output, i.e. the user override mode 

engaged whenever the trajectory scores returned from the algorithm is all infinity. 

Equation (71) states the user override mode condition and Figure 49 presents the 

speed-dependent autonomous navigation software’s workflow. 

 1[ ... ] N=   γ   (71)  

Where γ  is a trajectory score array of N  trajectories returned from the scored 

predicted trajectory algorithm. 
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Figure 49 Speed-dependent autonomous navigation software flowchart 
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3. Geographic Conversion Factor Calibration 

 The GNSS receiver generally return the measured position in a geographical 

angular coordinate, however, the designed software needs a real-time position in 

linear cartesian coordinate. Therefore, the conversion formula must be constituted so 

that the position returned from the GNSS receiver can be utilized in the developed 

software. Even though, a distance between two points on a spherical surface can be 

determined by the haversine formula by given 2 spherical coordinate positions. 

However, to use that formula one needs to know a certain radius of the sphere. In 

determining the distance between two points on the earth’s surface, given a longitude 

and latitude of those points, the haversine formula can be applied along with a known 

earth radius. Since the earth’s radius located at the testing ground is not known 

exactly, then the conversion factor used in this research is determined by empirical 

experimentation. The procedure begins with recording a longitude and latitude 

position from the GNSS receiver and then brought to analyze mathematically to get a 

correlation between a geographical coordinate and a linear distance on the earth’s 

surface. 

 In collecting data, a geographical coordinate of a certain circular path is 

recorded via the GNSS receiver. As shown by dots in Figure 50, a true circular path of 

radius 1.16 meters recorded from the testing ground appears to be an elliptic path 

when represented by geographical coordinate. Consequently, the ellipse Equation (72) 

is selected as a model for a least-square regression of the centralized circular path. 

 
2 2 1 + =   (72)  

Where   is longitude in degree,   is latitude in degree,   and   are regression 

analysis coefficients which are determined by Equation  (73). 

 ( )
1

T T




− 
= 

 
A A A b   (73)  

Where 
2 2  =

 
A  and 1=b , which

2 and
2 are 1m  vectors of m  collected 

circular path’s longitude and latitude, respectively. 

By substitute circular path’s longitude and latitude into Equation (73), the regression 

coefficients can be obtained as shown by Equation (74). 
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8782319993.5

9228460728.4



=

=
  (74)  

The earth’s surface actual path should follow a 1.16 meters radius circle. 

Consequently, a circle equation with a 1.16 meters radius will be used as an exact 

path for a meter coordinate system, as shown by Equation (75), where x and y are 

position of points in a circular path. 

 
2 2 21.16x y+ =   (75)  

Assuming that the longitude to meter and latitude to meter conversion factor is 

constant everywhere for a testing ground, which is considered to be an infinitesimal 

area compare to the earth’s surface, the longitude and latitude to meter conversion 

factor can be defined by Equation (76) and Equation (77), where xf and yf are longitude 

to meter and latitude to meter conversion factor, respectively. 

 xx f =   (76)  

 yy f =   (77)  

By substitute Equation (76) and Equation (77) into Equation (75) and comparing the 

resulted equation with Equation (72), we can state the correlation between conversion 

factors and regression coefficients as Equation (78) and Equation (79). 

 10861 5.1 7.3 346 24xf = =   (78)  

 1.16 111456.76004yf = =   (79)  

Note that xf  and yf  are in meters per longitudinal degrees and meters per latitudinal 

degrees, respectively. 
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Figure 50 Recorded circular path and ellipse least square regression 
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CHAPTER V 

SYSTEM EVALUATION EXPERIMENT 

 

1. Experiment Setup 

 The experiment takes place after the prototype navigation software is 

completely developed. Figure 51 depicts the Graphical User Interface (GUI) of this 

software showing inside are the waypoint, current GNSS position, detected obstacle 

scan, and the predicted trajectories. Predicted trajectories are displayed in different 

colors corresponding to their scores determined by the scored predicted trajectory 

algorithm. The enlarged predicted trajectories display is shown in Figure 52. 
 

 

Figure 51 Prototype navigation software’s graphical user interface 

 

 

Figure 52 Enlarged predicted trajectories display 
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 Before performing the experiment using a real vehicle, the algorithm is tested 

using the developed simulator software. This simulator is designed base on the 

assumption that the car will exactly follow the selected predicted trajectory. The result 

of testing the algorithm with a simulator code is the approximated controlled loop 

time interval, which is found playing an important role in autonomous path following 

characteristics, and the algorithm score weights. 

 The test vehicle is equipped with a 2D laser scanner and the GNSS receiver. 

As shown in Figure 53, 2 receiver antennas are installed along the longitudinal 

direction of the car. The primary antenna is installed at the same horizontal position as 

the rear axle, providing the position according to the assumption used in developing 

the scored predicted trajectory algorithm. The secondary antenna is installed 1 meter 

apart from the primary antenna toward the front of the car. 

 

 

Figure 53 Test vehicle with the 2D laser scanner and the GNSS receiver installed 

 

 The route by which the test autonomous vehicle supposed to follow, i.e. the 

waypoint, is generated by manually drive and record the GNSS position along the 

desired path. In this experiment, the test route is set to be a close loop track located in 

Chulalongkorn University campus as shown in Figure 54. Furthermore, the heading 

angle along the desired route corresponding to the waypoint is also recorded. Note 

that the test experiment was performed by nighttime to avoid the undesired situation 

from daytime traffics inside the campus. The parameters resulted from tuning during 
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the experiment compared to the result from simulator tuning are shown in Table 4. 

Note that the dimensions of parameters in Table 4 are the same as introduced in 

previous sections. 

 

 

Figure 54 Test track located in Chulalongkorn University 

 

 The experiment is divided into 2 sections, the first section is the evaluation test 

of the autonomous path following navigation system only, and the second deals with 

the obstacle avoidance system only. The first section on the path following evaluation 

is conducted first to determine the suitable tuned score weights which are prerequisite 

parameters for the obstacle avoidance evaluation section. 

 

2. Autonomous Path Following Navigation Evaluation 

 Since the test track is a close loop route, then the starting point can be 

arbitrarily chosen. From the starting point, the test vehicle will be autonomously 

navigated along the recorded waypoint without any intervention from the 

experimenter, however, still sit in a car ready to take over whenever encounter an 

emergency situation. The experiment is performed at 2 speeds, i.e. 10 and 15 

kilometers per hour. The parameters used by the algorithm in the software are also 

shown in Table 4. 
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Table 4 Parameters in the designed autonomous software 

Parameter class Parameter name 
Value 

Experiment Simulator 

Device parameters 

longitude conversion factor 108657.3243 - 

latitude conversion factor 111456.7600 - 

inverse effective wheelbase 4.98E-05 - 

steering position center -0.43 - 

Exponential gain 

compensation 

algorithm parameters 

initial gain increment 0.005 - 

increment base 1.1 - 

Scored predicted 

trajectory algorithm 

parameters 

linear deviation score weight 1.5 1.5 

angular deviation score weight 0.1 0.5 

collision distance score weight -0.1 -0.1 

controlled loop time interval 0.2 0.2 

predicted trajectory length 10 10 

 

 The actual paths recorded from the test car which autonomously navigated at 

the speed of 10 and 15 kilometers per hour with the corresponding waypoint are 

shown by Figure 55 and Figure 56, respectively. The autonomous navigation heading 

angle compares to the waypoint heading angle of the 10 and 15 kilometers per hour 

are shown in Figure 57 and Figure 58. A linear deviation is defined as a distance to 

the closest point on the waypoint from the test vehicle's actual position. The 

histogram of the linear deviation of the 10 and 15 kilometers per hour track are 

illustrated by Figure 59 and Figure 60. Also, an angular deviation is defined as a 

difference between the test car actual heading and navigation heading of the point on 

the waypoints closest to the car actual position. The mathematical representation of 

linear and angular deviations are described by Equation (80) and Equation (81), 

respectively. 

 ( )minl


= −
i w

ρ i   (80)  

 a h = −   (81)  
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Where l  and a  denote the linear and angular deviation, respectively. w is the 

waypoint and ρ  is the test vehicle's actual position. h  is the actual heading and 

j =  where ( )argmin i
i

j = −ρ w . 

 Considering Figure 55 to Figure 58, the developed autonomous system can 

perfectly navigate the car tracking almost exactly every point on the test waypoints. 

However, the actual heading is lightly fluctuating around the waypoint’s heading 

angle. This small fluctuation implies that the real scenario, while the autonomous 

system is engaged, is somehow jerky and may be uncomfortable for the passenger in 

the test vehicle. According to Figure 59 and Figure 60, arithmetic means of recorded 

linear deviation of 10 and 15 kilometers per hour track are 0.13 and 0.20 meters. 

These linear deviations are considered to be relatively small compare to the operation 

scale, i.e. the typical lane width which is about 3.6 meters. By using this figure, then 

the linear deviation is merely 3.61 and 5.56 percent of a typical lane width for 10 and 

15 kilometers per hour track, respectively. Also, according to Figure 61 and Figure 

62, 95 percent of the angular deviation sample falls between -2.65 and 1.85 degrees in 

10 kilometers per hour track and between -4.02 and 4.04 degrees in 15 kilometers per 

hour track, which are acceptable to be used in the objective application.  

 Moreover, the navigation speed also affects the tracking characteristics. In 15 

kilometers per hour track, the standard deviation of the linear deviation is 0.12 meters, 

which is 1.68 times of one from the 10 kilometers per hour track which is 0.07 meters. 

Also, a linear deviation increase at higher traveling speed, from 1.13 degrees in 10 

kilometers per hour track to 2.02 degrees in 15 kilometers per hour track. The original 

cause of this is the gradual increase of the vehicle dynamics effect. At high speed, the 

vehicle model developed in the previous section based on a vehicle kinematic model 

which is utilized in the scored predicted trajectory is not accurate and will completely 

fail over a certain speed. 
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Figure 55 Autonomous path following trace at 10 kilometers per hour 

 

 

Figure 56 Autonomous path following trace at 15 kilometers per hour 
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Figure 57 Autonomous path following heading angle at 10 kilometers per hour 

 

 

Figure 58 Autonomous path following heading angle at 15 kilometers per hour 
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Figure 59 Linear deviation histogram of 10 kilometers per hour track 

 

 

Figure 60 Linear deviation histogram of 15 kilometers per hour track 
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Figure 61 Angular deviation histogram of 10 kilometers per hour track 

 

 

Figure 62 Angular deviation histogram of 15 kilometers per hour track 
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3. Obstacle Avoidance Evaluation 

 In this section, the path-following autonomous system is engaged by using the 

tuned parameters resulting from the previous experiment. Initially, the obstacle is 

placed in the middle of the waypoint, hinder the test vehicle from tracing such 

waypoint. Then, the test vehicle is launched, and autonomously follows the waypoint 

towards the obstacle. 

 Figure 63 shows the recorded position of the obstacle using a GNSS receiver. 

The recorded data scatter around a certain area as shown in the figure. However, such 

an area is relatively small compared to the application scale, i.e. about 4 centimeters 

in a horizontal direction and 2 centimeters in a vertical direction. The centroid of 

recorded data is employed to represents the position of the obstacle. Moreover, the 

obstacle shape is considered to be a circle with a diameter of 0.4 meters. 

 The experiment is conducted twice, both using the vehicle speed of 15 

kilometers per hour. The trace record of 2 experiments is shown in Figure 64 and 

Figure 65. It can be seen from these figures that in the beginning, the test car was 

tracing the waypoint moving from the right side of the figure toward the left. Then, 

the test car detected the obstacle and avoided the impending collision by refusing to 

follow the waypoint and steered itself toward its left. Thereafter, when the obstacle 

disappears or does not obstruct the car from tracing the waypoint, the test car then 

autonomously converged to the waypoint again as shown in by the left portion of 

these figures. 

 Figure 66 and Figure 67 depict the linear deviation from the waypoints of both 

experiments. These figures affirm that the collision avoidance algorithm does work 

properly. Considering both figures, the test vehicle initially tracing the waypoint by 

keeping the linear deviation to the waypoint to be about 0.15 and 0.2 meters in the 

first and second experiment, respectively. Subsequently, at about 10 meters away 

from the starting point, the linear deviation starts increasing imply that the developed 

autonomous navigation algorithm realizes the impending collision and starts ignoring 

to follow the waypoint. Eventually, the test car merges with the waypoint again 

around 35 meters away from the beginning. 

 Figure 68 and Figure 69 show a displacement to the obstacle of the first and 

second experiment, respectively. The shortest displacement to the obstacle of the first 
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and second experiment are 1.19 and 1.22 meters. Figure 70 and Figure 71, obtained 

by combining Figure 66 and Figure 67 with the corresponding Figure 68 and Figure 

69, shows the plot of linear deviation against displacement to the obstacle of the first 

and second experiment, respectively. According to these figures, the obstacle 

avoidance algorithm actives when the obstacle is about 10 meters away from the test 

vehicle, and the linear deviation increases the same time the displacement to obstacle 

decrease. 
 

 

Figure 63 Recorded obstacle position 
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Figure 64 Autonomous path following with obstacle avoidance result (1st experiment) 

 

 

Figure 65 Autonomous path following with obstacle avoidance result (2nd 

experiment) 
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Figure 66 Linear deviation resulted from obstacle avoidance (1st experiment) 

 

 

Figure 67 Linear deviation resulted from obstacle avoidance (2nd experiment) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 88 

 

Figure 68 Displacement to obstacle at any instance (1st experiment) 

 

 

Figure 69 Displacement to obstacle at any instance (2nd experiment) 
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Figure 70 Linear deviation versus displacement to obstacle (1st experiment) 

 

 

Figure 71 Linear deviation versus displacement to obstacle (2nd experiment) 
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4. Discussion 

 In low-speed application, the path following algorithm with the obstacle 

avoidance function, i.e. the scored predicted trajectory, gives a satisfactory result. 

However, unwanted jerky driving still presents when the higher speed is attempted, 

lead to an uncomfortable ride for the passenger. This problem can be solved by 

introducing the more sophisticated vehicle model, including all involved dynamics 

systems, to the algorithm so that the more accurate predicted trajectory can be 

determined. Still, only the exponential gain compensation deals with a steering system 

model deviation due to changes in the operating speed. Then, the applicable range of 

this system is limited by the deviation in a vehicle model since no model correction is 

applied in this part of the system. Also, in determining the possible trajectories, the 

speed is assumed constant at one certain speed, i.e. current measured speed. If 

different speeds are included in the algorithm, then more plausible trajectories can be 

determined, inducing more possibility to encounter the more suitable trajectory. 

 The angular deviation score weight plays an important role in controlling the 

traveling direction. By setting this weight to be zero, the traveling direction defined 

by the waypoint heading angle is disregarded, the car then can trace the waypoint in 

either same or oppose the prescribed direction. However, setting the angular deviation 

score weight too high cab results in a constant offset distance to the waypoint or even 

leaving the waypoint since the predicted trajectory with a high angular deviation score 

will overcome the trajectory with a high linear deviation score which leads the car 

back to the waypoint. A suitable angular deviation score weight will ensure the 

waypoint tracing smoothness, thus increase ride quality. 

 According to Figure 70 and Figure 71, the obstacle avoidance function seems 

to overshadow the waypoint tracing algorithm at about 10 meters away to the 

obstacle. This 10-meter distance relates to the predicted trajectory length that is set to 

be 10 meters in the experiment. This distance can be reduced such that a reasonable 

forward-collision distance can be achieved. Moreover, the least displacements to the 

obstacle of the first and second experiment, which are 1.19 and 1.22 meters, 

respectively, imply that the algorithm operate properly since the critical obstacle 

distance, described in the previous section, is set to be 1.0 meters and the obstacle 

used in this experiment has a width of 0.2 meters. 
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 This autonomous navigation algorithm can be improved by revising some 

parts of the algorithm. For example, in the obstacle avoidance part, it has been pointed 

out that the algorithm suddenly changes its priority whenever the predicted trajectory 

length is reached. Here, if the continuous function is applied to the critical obstacle 

distance scoring procedure to obtain the suitable forward-collision distance. 

Furthermore, the linear deviation variant function can be introduced to the angular 

deviation scoring process to eliminate the constant offset from a waypoint and prevent 

the car from leaving the waypoint. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

1. Conclusions 

 The three main objectives have been done in this research. The first objective 

is to develop a low-level control system, including the steering control system and the 

speed control system. Second, the high-level controller software for the autonomous 

path-following navigation system using the Global Navigation Satellite System 

(GNSS) was developed. The third objective that has been accomplished is the 

development of the obstacle avoidance software. 

 First of all, the ultra-small electric vehicle, i.e. the Toyota COMS, has been 

modified for a speed control system and a steering control system. In the speed 

control modification, the existed braking system was modified by introducing a 

designed brake actuator module to the original brake line in series. This modified 

brake system allows both driver and autonomous system to apply pressure to a vehicle 

brake line. Also, the accelerator pedal has been modified allowing the autonomous 

system to control the vehicle acceleration whenever required. The steering control 

system was also installed in this low-level modification. At the moment, the modified 

vehicle was ready to be autonomously navigated using the high-level navigation 

software. Then, the high-level autonomous navigation using GNSS was developed 

base on the kinematic model of the vehicle. The developed algorithm for path 

following navigation has been named the Scored Predicted Trajectory and 

implemented in the high-level software. The algorithm deals with both waypoint 

tracing and obstacle avoidance tasks at the same time, thus satisfies both the second 

and the third objective stated above. Furthermore, to cope with a model change 

impacted by vehicle speed, the Exponential Gain Compensation algorithm is 

developed and implemented to the high-level software. Eventually, the evaluation 

experiment was performed. The test site was located in Chulalongkorn University 

campus. The test track was set to be one the close-loop road inside the campus. The 

experiment on path-following performance evaluation was conducted by launching 

the test car, by which the developed software was deployed, to the test track. The 
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result shows satisfactory performance with an average linear deviation from the 

waypoint of 0.07 meters when the speed is 10 kilometers per hour and 0.12 meters 

when the speed is 15 kilometers per hour.  The desirable angular deviation of about 3 

degrees in 10 kilometers per hour test and about 4 degrees in 15 kilometers per hour 

test resulted from this experiment as well. The experiment on obstacle avoidance was 

performed later. In the experiment, the obstacle was placed in the middle of the 

waypoint. Then, the test car was launched and autonomously navigated toward the 

obstacle. The result shows that the test vehicle deals with the obstacle that blocks the 

waypoint by performing a steering evasive maneuver, as expected, keeping a 

minimum distance of 1.2 meters away from the obstacle which is the exact value 

configured in the navigation software. 

 From all mentioned above, the concept of using GNSS, with the Real-Time 

Kinematic (RTK) technique, as a sole localization system for the autonomous vehicle 

was proved that can work perfectly, even some portions of the route are covered by 

trees or surrounded by buildings. However, the obstacle sensing device, which is a 2D 

laser scanner in this research, still vital to the collision avoidance system. 

 

2. Recommendations 

 The vehicle model used in the algorithm is the key to high-speed application 

performance. Thus, deploying a more sophisticated vehicle model will extend the 

application range to a higher speed than 15 kilometers per hour. Also, some parts of 

the developed high-level software can be accelerated by applying the parallel 

computing technique. For instance, the exponential gain compensation which can be 

accelerated by the parallel computing technique will give a fast response to a change 

in vehicle speed when a high sample rate is utilized. 

 Besides, this research employs an expensive 2D laser scanner. However, since 

the developed system is intended to be used in a low-speed application, then an 

expensive laser scanner can be replaced by a lower class one, therefore, increasing the 

potential to be commercialized for use in the controlled environment, e.g. a low-

density residential area, factory, university campus, etc. 
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APPENDIX A 

NAVIGATION SENSORS 

 

POS LVX dual GNSS-inertial solution for high-accuracy positioning and 

orientation on autonomous ground vehicles[23] 

 

 

Figure 72 POS LVX dual GNSS-inertial[23] 

 

Technical Specifications 

❖ Advanced Applanix IN-Fusion™ GNSS-Inertial integration technology  

❖ Solid-state MEMS inertial sensors with Applanix SmartCal™ compensation 

technology 

❖ Advanced Trimble GNSS survey technology 

❖ Position antenna based on 336 Channels Maxwell 7 chip:  

o GPS: L1 C/A, L2E, L2C, L5  

o BeiDou B1, B2, B31  

o GLONASS: L1 C/A, L2 C/A, L3 CDMA2  

o Galileo3: E1, E5A, E5B, E5AltBOC, E62  

o IRNSS L5  

o QZSS: L1 C/A, L1 SAIF, L1C, L2C, L5, LEX 

o SBAS: L1 C/A, L5  

o MSS L-Band: OmniSTAR, Trimble RTX  

❖ Vector Antenna based on second 336 Channel Maxwell 7 chip: 

o GPS: L1 C/A, L2E, L2C, L5  

o BeiDou B1, B2, B31  
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o GLONASS: L1 C/A, L2 C/A, L3 CDMA2  

o Galileo3: E1, E5A, E5B, E5AltBOC, E62  

o IRNSS L5 

o QZSS: L1 C/A, L1 SAIF, L1C, L2C, L5, LEX  

❖ High precision multiple correlator for GNSS pseudorange measurements  

❖ Advanced RF Spectrum Monitoring and Analysis  

❖ Unfiltered, unsmoothed pseudorange measurements data for low noise, low 

multipath error, low time domain correlation and high dynamic response  

❖ Very low noise GNSS carrier phase measurements with <1 mm precision in a 

1 Hz bandwidth • Proven Trimble low elevation tracking technology  

❖ 100 Hz real-time position and orientation output  

❖ IMU data rate 200 Hz  

❖ Navigation output format: ASCII (NMEA-0183), Binary (Trimble GSOF)  

❖ Supported Reference input: – CMR, CMR+, sCMRx, RTCM 2.1, 2.2, 2.3, 3.0, 

3.1, 3.2 • Support for POSPac MMS post-processing software (sold 

separately)  

❖ No export permit required  

❖ Supports Fault Detection & Exclusion (FDE), Receiver Autonomous Integrity 

Monitoring (RAIM)  

 

Performance Specification 

 

Table 5 Performance without GNSS outages 

Performance SPS DGPS RTK 

Position (m) 
1.5 H 0.1 H 0.02 H  

3.0 V 0.5 V 0.05 V 

Roll & pitch (deg) 0.04 0.03 0.03 

True heading (deg) 0.12 0.09 0.09 
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Table 6 Performance with 1 km or 1 minute GNSS outages 

Performance SPS DGPS RTK 

Position (m) 
2.0 H 2.0 H 1.0 H  

5.0 V 3.0 V 2.0 V 

Roll & pitch (deg) 0.09 0.09 0.09 

True heading (deg) 0.35 0.35 0.30 

 

LMS511 Laser measurement sensor[24] 

 

 

Figure 73 LMS511 Laser measurement sensor[24] 

 

Table 7 LMS511 laser measurement sensor technical specifications 

Specification Detail 

Field of application Outdoor 

Version Mid-Range 

Variant Lite 

Resolution power Standard Resolution 

Light source Infrared (905 nm) 

Laser class 1 (IEC 60825-1:2014) EN 60825-1:2014 

Field of view 190 ° 

Scanning frequency 25 Hz / 35 Hz / 50 Hz / 75 Hz 

Angular resolution 0.25°, 0.5°, 1° 
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Table 7 LMS511 laser measurement sensor technical specifications (continued) 

Specification Detail 

Heating Yes 

Operating range 80 m 

Max. range with 10 % reflectivity 40 m 

Spot size 11.9 mrad  

Amount of evaluated echoes 2 

 

Table  8 LMS511 laser measurement sensor performance specification 

Performance Detail 

Fog correction Yes 

Response time ≥ 13 ms 

Detectable object shape: Almost any 

Systematic error 

± 25 mm (1 m ... 10 m) 

± 35 mm (10 m ... 20 m) 

± 50 mm (20 m ... 30 m) 

Statistical error 

± 14 mm (20 m ... 30 m) 

± 6 mm (1 m ... 10 m) 

± 8 mm (10 m ... 20 m) 

Integrated application Field evaluation 

Number of field sets 4 fields 

Simultaneous processing cases 4 
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APPENDIX B 

PROCESSING UNIT 

 

Lenovo Legion Y530‑15ICH[25] 

 

 

Figure 74 Lenovo Legion Y530‑15ICH[25] 

 

Table 9 Lenovo Legion Y530‑15ICH technical specification 

Specification Detail 

Manufacturer Lenovo 

Model Legion Y530‑15ICH 

Central Processing Unit (CPU) Intel(R) Core(TM) i5-8300H 2.30GHz  

Random-Access Memory (RAM) 20.0 GB 

Operating System Windows 10 Home 64bit 
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APPENDIX C 

CAR SPECIFICATION 

 

Toyota COMS ZAD-TAK30-DS[26] 

 

 

Figure 75 Toyota COMS ZAD-TAK30-DS[27] 

 

Table 10 Toyota COMS ZAD-TAK30-DS general specification 

Specification Detail 

Manufacturer Toyota 

Model ZAD-TAK30-DS 

Curb weight (kg) 420 

Gross vehicle weight (kg) 475 

Fuel type Electricity 

Driving range (km) 50 

Minimum turning radius (m) 3.2 

Maximum payload (kg) 30 

Maximum passengers 1 

Total length (mm) 2395 

Total width (mm) 1095 

Total height (mm) 1495 
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Table 10 Toyota COMS ZAD-TAK30-DS general specification (continued) 

Specification Detail 

Wheelbase (mm) 1530 

Track width (mm) 930 (front), 920 (rear) 

Tire 145/70R12 69Q (S)  

Traction battery 6 Lead-acid batteries 12V 52Ah 

Auxiliary battery 1 Lead-acid battery 12V 17Ah 

Charging times (hr) 6 

AC charging voltage (V) 100 

AC charging current (A) 9.5 

 

Table 11 Toyota COMS ZAD-TAK30-DS motor specification 

Specification Detail 

Type Permanent magnet synchronous motor 

Typical voltage (V) 72 

Typical power (kW) 0.59 

Controller Transistor inverter 

Maximum power (kW) 5.0 / 1200 ~ 1400 rpm 

Maximum torque (Nm) below 40 / 1200 rpm 

 

Table 12 Toyota COMS ZAD-TAK30-DS steering mechanism specification 

Specification Detail 

Steering wheel diameter (mm) 350 

Gear system Rack and pinion 

Steering angle 
38° (inner) 

36° (outer) 

Lock mechanism Steering wheel lock 
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Table 13 Toyota COMS ZAD-TAK30-DS braking mechanism specification 

Specification Detail 

type 
hydraulic drum (front) 

hydraulic drum (rear) 

Master cylinder inner diameter (mm) 17.4 

Wheel cylinder inner diameter (mm) 
17.4 (front) 

17.4 (rear) 

Brake fluid grade DOT3 
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APPENDIX D 

DEVELOPED MASTER CYLINDER 

 

 

Figure 76 Master cylinder assembly view 
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APPENDIX E 

LOW-LEVEL CONTROLLER CIRCUIT 

 

 

Figure 77 Low-level controller circuit diagram 
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Figure 77 Low-level controller circuit diagram (continued) 
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Figure 78 Low-level controller printed circuit board component outline 
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Figure 79 Low-level controller printed circuit board top layer 
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Figure 80 Low-level controller printed circuit board bottom layer 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 111 

APPENDIX F 

SOURCE CODE 

 

Table 14 Electronic system controller source code (Arduino IDE) 

Line Code Line Code 
1 const byte REL_PIN[14] = {4, 33, 

32, 14, 25, 26, 27, 15, 13, 5, 18, 

19, 21, 22}; 

104 else if (input_buffer[2] == 2) { 

2 const byte SEL_PIN = 23; 105 digitalWrite(REL_PIN[3], HIGH); 

3 
 

106 digitalWrite(REL_PIN[4], HIGH); 

4 const byte DESCRIPTION_MSG[9] = 

{71, 82, 83, 87, 67, 84, 82, 2, 

44}; 

107 digitalWrite(REL_PIN[5], LOW); 

5 const byte INVALID_MSG[9] = {71, 

82, 73, 78, 86, 76, 68, 2, 22}; 

108 } 

6 
 

109 else if (input_buffer[2] == 3) { 

7 byte SYSTEM_STATUS[10] = {0, 0, 0, 

0, 0, 0, 0, 0, 0, 0}; 

110 digitalWrite(REL_PIN[3], LOW); 

8 
 

111 digitalWrite(REL_PIN[4], LOW); 

9 void setup() { 112 digitalWrite(REL_PIN[5], LOW); 

10 pinMode(SEL_PIN, OUTPUT); 113 } 

11 for (int i = 0; i < 14; 

i++)pinMode(REL_PIN[i], OUTPUT); 

114 } 

12 
 

115 else if (input_buffer[1] == 3) { 

13 digitalWrite(SEL_PIN, HIGH); 116 if (input_buffer[2] == 0) { 

14 for (int i = 0; i < 14; 

i++)digitalWrite(REL_PIN[i], HIGH); 

117 digitalWrite(REL_PIN[6], HIGH); 

15 
 

118 } 

16 Serial.begin(57600); 119 else if (input_buffer[2] == 1) { 

17 Serial.setTimeout(5); 120 digitalWrite(REL_PIN[6], LOW); 

18 } 121 } 

19 
 

122 } 

20 void loop() { 123 else if (input_buffer[1] == 4) { 

21 byte input_buffer[5]; 124 if (input_buffer[2] == 0) { 

22 byte output_buffer[6]; 125 digitalWrite(REL_PIN[7], HIGH); 

23 byte status_buffer[14]; 126 digitalWrite(REL_PIN[8], HIGH); 

24 short input_checksum; 127 } 

25 short output_checksum; 128 else if (input_buffer[2] == 1) { 

26 short status_checksum; 129 digitalWrite(REL_PIN[7], LOW); 

27 short receive_checksum; 130 digitalWrite(REL_PIN[8], HIGH); 

28 
 

131 } 

29 Serial.readStringUntil('G'); 132 else if (input_buffer[2] == 2) { 

30 if (Serial.available()) { 133 digitalWrite(REL_PIN[7], LOW); 

31 Serial.readBytes(input_buffer, 8); 134 digitalWrite(REL_PIN[8], LOW); 

32 input_checksum = 71 + 

input_buffer[0] + input_buffer[1] + 

input_buffer[2] + input_buffer[3] + 

input_buffer[4] + input_buffer[5]; 

135 } 

33 receive_checksum = (input_buffer[6] 

<< 8) | input_buffer[7]; 

136 } 
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34 if (input_checksum == 

receive_checksum) { 

137 else if (input_buffer[1] == 5) { 

35 if (input_buffer[0] == 73) { 138 if (input_buffer[2] == 0) { 

36 if (input_buffer[1] == 0) { 139 digitalWrite(REL_PIN[9], HIGH); 

37 Serial.write(DESCRIPTION_MSG, 9); 140 } 

38 } 141 else if (input_buffer[2] == 1) { 

39 else { 142 digitalWrite(REL_PIN[9], LOW); 

40 Serial.write(INVALID_MSG, 9); 143 } 

41 } 144 } 

42 } 145 else if (input_buffer[1] == 6) { 

43 if (input_buffer[0] == 82) { 146 if (input_buffer[2] == 0) { 

44 if (input_buffer[1] == 10) { 147 digitalWrite(REL_PIN[10], HIGH); 

45 status_buffer[0] = 71; 148 } 

46 status_buffer[1] = 83; 149 else if (input_buffer[2] == 1) { 

47 status_checksum = 154; 150 digitalWrite(REL_PIN[10], LOW); 

48 for (int i = 0; i < 10; i++) { 151 } 

49 status_buffer[i + 2] = 

SYSTEM_STATUS[i]; 

152 } 

50 status_checksum +=  

SYSTEM_STATUS[i]; 

153 else if (input_buffer[1] == 7) { 

51 } 154 if (input_buffer[2] == 0) { 

52 status_buffer[12] = 

highByte(status_checksum); 

155 digitalWrite(REL_PIN[11], HIGH); 

53 status_buffer[13] = 

lowByte(status_checksum); 

156 } 

54 Serial.write(status_buffer, 14); 157 else if (input_buffer[2] == 1) { 

55 } 158 digitalWrite(REL_PIN[11], LOW); 

56 else if (input_buffer[1] < 10) { 159 } 

57 output_buffer[0] = 71; 160 } 

58 output_buffer[1] = 82; 161 else if (input_buffer[1] == 8) { 

59 output_buffer[2] = input_buffer[1]; 162 if (input_buffer[2] == 0) { 

60 output_buffer[3] = 

SYSTEM_STATUS[input_buffer[1]]; 

163 digitalWrite(REL_PIN[12], HIGH); 

61 output_checksum = 153 + 

output_buffer[2] + 

output_buffer[3]; 

164 digitalWrite(REL_PIN[13], HIGH); 

62 output_buffer[4] = 

highByte(output_checksum); 

165 } 

63 output_buffer[5] = 

lowByte(output_checksum); 

166 else if (input_buffer[2] == 1) { 

64 Serial.write(output_buffer, 6); 167 digitalWrite(REL_PIN[12], LOW); 

65 } 168 digitalWrite(REL_PIN[13], HIGH); 

66 else { 169 } 

67 Serial.write(INVALID_MSG, 9); 170 else if (input_buffer[2] == 2) { 

68 } 171 digitalWrite(REL_PIN[12], HIGH); 

69 } 172 digitalWrite(REL_PIN[13], LOW); 

70 else if (input_buffer[0] == 65) { 173 } 

71 if (input_buffer[1] == 0) { 174 else if (input_buffer[2] == 3) { 

72 if (input_buffer[2] == 0) { 175 digitalWrite(REL_PIN[12], LOW); 

73 digitalWrite(REL_PIN[0], HIGH); 176 digitalWrite(REL_PIN[13], LOW); 

74 } 177 } 
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75 else if (input_buffer[2] == 1) { 178 } 

76 digitalWrite(REL_PIN[0], LOW); 179 else if (input_buffer[1] == 9) { 

77 } 180 for (int i = 0; i < 14; 

i++)digitalWrite(REL_PIN[i], HIGH); 

78 } 181 for (int i = 0; i < 10; 

i++)SYSTEM_STATUS[i] = 0; 

79 else if (input_buffer[1] == 1) { 182 if (input_buffer[2] == 0) { 

80 if (input_buffer[2] == 0) { 183 digitalWrite(SEL_PIN, HIGH); 

81 digitalWrite(REL_PIN[1], HIGH); 184 } 

82 digitalWrite(REL_PIN[2], HIGH); 185 else if (input_buffer[2] == 1) { 

83 } 186 digitalWrite(SEL_PIN, LOW); 

84 else if (input_buffer[2] == 1) { 187 } 

85 digitalWrite(REL_PIN[1], LOW); 188 } 

86 digitalWrite(REL_PIN[2], HIGH); 189 if (input_buffer[1] < 10) { 

87 } 190 SYSTEM_STATUS[input_buffer[1]] = 

input_buffer[2]; 

88 else if (input_buffer[2] == 2) { 191 output_buffer[0] = 71; 

89 digitalWrite(REL_PIN[1], HIGH); 192 for (int i = 0; i < 5; i++) 

output_buffer[i + 1] = 

input_buffer[i]; 

90 digitalWrite(REL_PIN[2], LOW); 193 Serial.write(output_buffer, 6); 

91 } 194 } 

92 } 195 else { 

93 else if (input_buffer[1] == 2) { 196 Serial.write(INVALID_MSG, 9); 

94 if (input_buffer[2] == 0) { 197 } 

95 digitalWrite(REL_PIN[3], HIGH); 198 } 

96 digitalWrite(REL_PIN[4], HIGH); 199 else { 

97 digitalWrite(REL_PIN[5], HIGH); 200 Serial.write(INVALID_MSG, 9); 

98 } 201 } 

99 else if (input_buffer[2] == 1) { 202 } 

100 digitalWrite(REL_PIN[3], HIGH); 203 else { 

101 digitalWrite(REL_PIN[4], LOW); 204 Serial.write(INVALID_MSG, 9); 

102 digitalWrite(REL_PIN[5], HIGH); 205 } 

103 } 206 } 

  
207 } 

 

Table 15 Steering control system controller source code (Arduino IDE) 

Line Code Line Code 

1 #include "EEPROM.h" 134 #include "EEPROM.h" 

2 #include <Wire.h> 135 #include <Wire.h> 

3 #include <Adafruit_ADS1015.h> 136 #include <Adafruit_ADS1015.h> 

4 
 

137 
 

5 Adafruit_ADS1115 ENCODER(0x48); 138 Adafruit_ADS1115 ENCODER(0x48); 

6 
 

139 
 

7 const byte MTR_PWM = 26; 140 const byte MTR_PWM = 26; 

8 const byte MTR_IN2 = 25; 141 const byte MTR_IN2 = 25; 
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9 const byte MTR_IN1 = 33; 142 const byte MTR_IN1 = 33; 

10 const byte MTR_PWM_CHN = 0; 143 const byte MTR_PWM_CHN = 0; 

11 
 

144 
 

12 const byte DESCRIPTION_MSG[9] = 

{71, 82, 83, 67, 67, 84, 82, 2, 

24}; 

145 const byte DESCRIPTION_MSG[9] = 

{71, 82, 83, 67, 67, 84, 82, 2, 

24}; 

13 const byte INVALID_MSG[9] = {71, 

82, 73, 78, 86, 76, 68, 2, 22}; 

146 const byte INVALID_MSG[9] = {71, 

82, 73, 78, 86, 76, 68, 2, 22}; 

14 
 

147 
 

15 //{KP, KI, KD, INITIAL_STEERING, 

MINIMUM_STEERING_OUTPUT, 

MAXIMUM_STEERING_OUTPUT, 

CONTROLLED_LOOP_INTERVAL} 

148 //{KP, KI, KD, INITIAL_STEERING, 

MINIMUM_STEERING_OUTPUT, 

MAXIMUM_STEERING_OUTPUT, 

CONTROLLED_LOOP_INTERVAL} 

16 const byte EEPROM_ADDR[7] = {0, 4, 

8, 12, 16, 20, 24}; 

149 const byte EEPROM_ADDR[7] = {0, 4, 

8, 12, 16, 20, 24}; 

17 
 

150 
 

18 //{REFERENCE_STEERING, MODE, KP, 

KI, KD, INITIAL_STEERING, 

MINIMUM_STEERING_OUTPUT, 

MAXIMUM_STEERING_OUTPUT, 

CONTROLLED_LOOP_INTERVAL, 

DIAGNOSTIC_STREAM_MODE, 

SENSE_STEERING, DEVIATION, 

FORMER_DEVIATION, 

COMMULATIVE_DEVIATION, 

DIFFERENT_DEVIATION, OUTPUT} 

151 //{REFERENCE_STEERING, MODE, KP, 

KI, KD, INITIAL_STEERING, 

MINIMUM_STEERING_OUTPUT, 

MAXIMUM_STEERING_OUTPUT, 

CONTROLLED_LOOP_INTERVAL, 

DIAGNOSTIC_STREAM_MODE, 

SENSE_STEERING, DEVIATION, 

FORMER_DEVIATION, 

COMMULATIVE_DEVIATION, 

DIFFERENT_DEVIATION, OUTPUT} 

19 long PARAMETERS[16] = {0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0}; 

152 long PARAMETERS[16] = {0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0}; 

20 byte DIAG_OUTPUT_BUFFER[68]; 153 byte DIAG_OUTPUT_BUFFER[68]; 

21 
 

154 
 

22 //{DECREASE_STEERING, 

INCREASE_STEERING} 

155 //{DECREASE_STEERING, 

INCREASE_STEERING} 

23 byte DIRECTION_CONTROL_DECREASE = 

1; 

156 byte DIRECTION_CONTROL_DECREASE = 

1; 

24 byte DIRECTION_CONTROL_INCREASE = 

1; 

157 byte DIRECTION_CONTROL_INCREASE = 

1; 

25 
 

158 
 

26 byte SENSOR_STREAM_STATUS = 0; 159 byte SENSOR_STREAM_STATUS = 0; 

27 byte DEBUGGER_STATUS = 0; 160 byte DEBUGGER_STATUS = 0; 

28 
 

161 
 

29 unsigned long LOOP_TIMESTAMP; 162 unsigned long LOOP_TIMESTAMP; 

30 
 

163 
 

31 void setup() { 164 void setup() { 

32 ledcSetup(MTR_PWM_CHN, 5000, 12); 165 ledcSetup(MTR_PWM_CHN, 5000, 12); 

33 ledcAttachPin(MTR_PWM, 

MTR_PWM_CHN); 

166 ledcAttachPin(MTR_PWM, 

MTR_PWM_CHN); 

34 pinMode(MTR_IN2, OUTPUT); 167 pinMode(MTR_IN2, OUTPUT); 

35 pinMode(MTR_IN1, OUTPUT); 168 pinMode(MTR_IN1, OUTPUT); 

36 FreeSteering(); 169 FreeSteering(); 

37 
 

170 
 

38 ENCODER.begin(); 171 ENCODER.begin(); 

39 
 

172 
 

40 EEPROM.begin(32); 173 EEPROM.begin(32); 

41 for (int i = 0; i < 7; 

i++)PARAMETERS[i + 2] = 

EEPROM.readLong(EEPROM_ADDR[i]); 

174 for (int i = 0; i < 7; 

i++)PARAMETERS[i + 2] = 

EEPROM.readLong(EEPROM_ADDR[i]); 
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42 
 

175 
 

43 Serial.begin(57600); 176 Serial.begin(57600); 

44 Serial.setTimeout(5); 177 Serial.setTimeout(5); 

45 
 

178 
 

46 PARAMETERS[0] = PARAMETERS[5]; 179 PARAMETERS[0] = PARAMETERS[5]; 

47 PARAMETERS[10] = 

ENCODER.readADC_SingleEnded(0); 

180 PARAMETERS[10] = 

ENCODER.readADC_SingleEnded(0); 

48 PARAMETERS[12] = PARAMETERS[0] - 

PARAMETERS[10]; 

181 PARAMETERS[12] = PARAMETERS[0] - 

PARAMETERS[10]; 

49 
 

182 
 

50 LOOP_TIMESTAMP = millis(); 183 LOOP_TIMESTAMP = millis(); 

51 } 184 } 

52 
 

185 
 

53 void loop() { 186 void loop() { 

54 byte input_buffer[8]; 187 byte input_buffer[8]; 

55 byte output_buffer[9]; 188 byte output_buffer[9]; 

56 short input_checksum; 189 short input_checksum; 

57 short output_checksum; 190 short output_checksum; 

58 short receive_checksum; 191 short receive_checksum; 

59 long receive_buffer; 192 long receive_buffer; 

60 
 

193 
 

61 PARAMETERS[10] = 

ENCODER.readADC_SingleEnded(0);    

//SENSED_STEERING 

194 PARAMETERS[10] = 

ENCODER.readADC_SingleEnded(0);    

//SENSED_STEERING 

62 
 

195 
 

63 Serial.readStringUntil('G'); 196 Serial.readStringUntil('G'); 

64 if (Serial.available()) { 197 if (Serial.available()) { 

65 Serial.readBytes(input_buffer, 8); 198 Serial.readBytes(input_buffer, 8); 

66 if (input_buffer[0] == 68 && 

input_buffer[1] == 69 && 

input_buffer[2] == 66 && 

input_buffer[3] == 85 && 

input_buffer[4] == 71 && 

input_buffer[5] == 71 && 

input_buffer[6] == 69 && 

input_buffer[7] == 82) { 

199 if (input_buffer[0] == 68 && 

input_buffer[1] == 69 && 

input_buffer[2] == 66 && 

input_buffer[3] == 85 && 

input_buffer[4] == 71 && 

input_buffer[5] == 71 && 

input_buffer[6] == 69 && 

input_buffer[7] == 82) { 

67 DEBUGGER_STATUS = !DEBUGGER_STATUS; 200 DEBUGGER_STATUS = !DEBUGGER_STATUS; 

68 } 201 } 

69 if (input_buffer[0] == 83 && 

input_buffer[1] == 69 && 

input_buffer[2] == 78 && 

input_buffer[3] == 68 && 

input_buffer[4] == 83 && 

input_buffer[5] == 84 && 

input_buffer[6] == 82 && 

input_buffer[7] == 77) { 

202 if (input_buffer[0] == 83 && 

input_buffer[1] == 69 && 

input_buffer[2] == 78 && 

input_buffer[3] == 68 && 

input_buffer[4] == 83 && 

input_buffer[5] == 84 && 

input_buffer[6] == 82 && 

input_buffer[7] == 77) { 

70 SENSOR_STREAM_STATUS = 

!SENSOR_STREAM_STATUS; 

203 SENSOR_STREAM_STATUS = 

!SENSOR_STREAM_STATUS; 

71 } 204 } 

72 else { 205 else { 

73 input_checksum = 71 + 

input_buffer[0] + input_buffer[1] + 

input_buffer[2] + input_buffer[3] + 

input_buffer[4] + input_buffer[5]; 

206 input_checksum = 71 + 

input_buffer[0] + input_buffer[1] + 

input_buffer[2] + input_buffer[3] + 

input_buffer[4] + input_buffer[5]; 

74 receive_checksum = (input_buffer[6] 

<< 8) | input_buffer[7]; 

207 receive_checksum = (input_buffer[6] 

<< 8) | input_buffer[7]; 
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75 if (input_checksum == 

receive_checksum) { 

208 if (input_checksum == 

receive_checksum) { 

76 if (input_buffer[0] == 73) { 209 if (input_buffer[0] == 73) { 

77 if (input_buffer[1] == 0) { 210 if (input_buffer[1] == 0) { 

78 if (SENSOR_STREAM_STATUS == 0) { 211 if (SENSOR_STREAM_STATUS == 0) { 

79 Serial.write(DESCRIPTION_MSG, 9); 212 Serial.write(DESCRIPTION_MSG, 9); 

80 } 213 } 

81 } 214 } 

82 else { 215 else { 

83 if (SENSOR_STREAM_STATUS == 0) { 216 if (SENSOR_STREAM_STATUS == 0) { 

84 Serial.write(INVALID_MSG, 9); 217 Serial.write(INVALID_MSG, 9); 

85 } 218 } 

86 } 219 } 

87 } 220 } 

88 else if (input_buffer[0] == 82) { 221 else if (input_buffer[0] == 82) { 

89 if (input_buffer[1] == 16) { 222 if (input_buffer[1] == 16) { 

90 UpdateDiagOutputBuffer(); 223 UpdateDiagOutputBuffer(); 

91 if (SENSOR_STREAM_STATUS == 0) { 224 if (SENSOR_STREAM_STATUS == 0) { 

92 Serial.write(DIAG_OUTPUT_BUFFER, 

68); 

225 Serial.write(DIAG_OUTPUT_BUFFER, 

68); 

93 } 226 } 

94 } 227 } 

95 else if (input_buffer[1] < 16) { 228 else if (input_buffer[1] < 16) { 

96 output_buffer[0] = 71; 229 output_buffer[0] = 71; 

97 output_buffer[1] = 82; 230 output_buffer[1] = 82; 

98 output_buffer[2] = input_buffer[1]; 231 output_buffer[2] = input_buffer[1]; 

99 output_buffer[3] = 

(PARAMETERS[input_buffer[1]] >> 24) 

& 255; 

232 output_buffer[3] = 

(PARAMETERS[input_buffer[1]] >> 24) 

& 255; 

100 output_buffer[4] = 

(PARAMETERS[input_buffer[1]] >> 16) 

& 255; 

233 output_buffer[4] = 

(PARAMETERS[input_buffer[1]] >> 16) 

& 255; 

101 output_buffer[5] = 

(PARAMETERS[input_buffer[1]] >> 8) 

& 255; 

234 output_buffer[5] = 

(PARAMETERS[input_buffer[1]] >> 8) 

& 255; 

102 output_buffer[6] = 

PARAMETERS[input_buffer[1]]  & 255; 

235 output_buffer[6] = 

PARAMETERS[input_buffer[1]]  & 255; 

103 output_checksum = 153 + 

output_buffer[2] + output_buffer[3] 

+ output_buffer[4] + 

output_buffer[5] + 

output_buffer[6]; 

236 output_checksum = 153 + 

output_buffer[2] + output_buffer[3] 

+ output_buffer[4] + 

output_buffer[5] + 

output_buffer[6]; 

104 output_buffer[7] = 

highByte(output_checksum); 

237 output_buffer[7] = 

highByte(output_checksum); 

105 output_buffer[8] = 

lowByte(output_checksum); 

238 output_buffer[8] = 

lowByte(output_checksum); 

106 if (SENSOR_STREAM_STATUS == 0) { 239 if (SENSOR_STREAM_STATUS == 0) { 

107 Serial.write(output_buffer, 9); 240 Serial.write(output_buffer, 9); 

108 } 241 } 

109 } 242 } 

110 else { 243 else { 

111 if (SENSOR_STREAM_STATUS == 0) { 244 if (SENSOR_STREAM_STATUS == 0) { 

112 Serial.write(INVALID_MSG, 9); 245 Serial.write(INVALID_MSG, 9); 
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113 } 246 } 

114 } 247 } 

115 } 248 } 

116 else if (input_buffer[0] == 65) { 249 else if (input_buffer[0] == 65) { 

117 PARAMETERS[input_buffer[1]] = 

(input_buffer[2] << 24) | 

(input_buffer[3] << 16) | 

(input_buffer[4] << 8) | 

input_buffer[5]; 

250 PARAMETERS[input_buffer[1]] = 

(input_buffer[2] << 24) | 

(input_buffer[3] << 16) | 

(input_buffer[4] << 8) | 

input_buffer[5]; 

118 if (input_buffer[1] == 1) { 251 if (input_buffer[1] == 1) { 

119 PARAMETERS[0] = PARAMETERS[5]; 252 PARAMETERS[0] = PARAMETERS[5]; 

120 PARAMETERS[12] = PARAMETERS[0] - 

PARAMETERS[10]; 

253 PARAMETERS[12] = PARAMETERS[0] - 

PARAMETERS[10]; 

121 PARAMETERS[13] = 0; 254 PARAMETERS[13] = 0; 

122 } 255 } 

123 else if (input_buffer[1] > 1 && 

input_buffer[1] < 9) { 

256 else if (input_buffer[1] > 1 && 

input_buffer[1] < 9) { 

124 EEPROM.writeLong(EEPROM_ADDR[input_

buffer[1] - 2], 

PARAMETERS[input_buffer[1]]); 

257 EEPROM.writeLong(EEPROM_ADDR[input_

buffer[1] - 2], 

PARAMETERS[input_buffer[1]]); 

125 EEPROM.commit(); 258 EEPROM.commit(); 

126 } 259 } 

127 if (input_buffer[1] < 10) { 260 if (input_buffer[1] < 10) { 

128 output_buffer[0] = 71; 261 output_buffer[0] = 71; 

129 for (int i = 0; i < 8; 

i++)output_buffer[i + 1] = 

input_buffer[i]; 

262 for (int i = 0; i < 8; 

i++)output_buffer[i + 1] = 

input_buffer[i]; 

130 if (SENSOR_STREAM_STATUS == 0) { 263 if (SENSOR_STREAM_STATUS == 0) { 

131 Serial.write(output_buffer, 9); 264 Serial.write(output_buffer, 9); 

132 } 265 } 

133 } 266 } 

 

Table 16 Speed control system controller source code (Arduino IDE) 

Line Code Line Code 
1 #include "EEPROM.h" 176 } 

2 #include <SPI.h> 177 } 

3 #include "mcp_can.h" 178 else { 

4 
 

179 if (SENSOR_STREAM_STATUS == 0) { 

5 const byte MTR_LMS = 14; 180 Serial.write(INVALID_MSG, 9); 

6 const byte MTR_PWM = 33; 181 } 

7 const byte MTR_IN2 = 25; 182 } 

8 const byte MTR_IN1 = 26; 183 } 

9 const byte DAC_CS = 21; 184 else { 

10 const byte DAC_LDAC = 4; 185 if (SENSOR_STREAM_STATUS == 0) { 

11 const byte CAN_CS = 22; 186 Serial.write(INVALID_MSG, 9); 

12 
 

187 } 

13 MCP_CAN CAN(CAN_CS); 188 } 

14 
 

189 } 

15 unsigned short CAN_message_ID; 190 } 
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16 byte CAN_message_length = 0; 191 
 

17 byte CAN_input_buffer[8]; 192 if (PARAMETERS[1] == 2) { 

18 
 

193 if (PARAMETERS[11] > 50) { 

19 const byte DESCRIPTION_MSG[9] = 

{71, 82, 67, 67, 67, 84, 82, 2, 8}; 

194 AcceleratorPedalSignalWrite(0); 

20 const byte INVALID_MSG[9] = {71, 

82, 73, 78, 86, 76, 68, 2, 22}; 

195 ForwardBrake(2048000); 

21 
 

196 } 

22 //{KP, KI, KD, 

IDLE_DECELERATION_OFFSET, 

ACCELERATOR_SIGNAL_GAIN, 

BRAKE_ACTUATOR_GAIN, INITIAL_SPEED, 

CONTROLLED_LOOP_INTERVAL} 

197 else { 

23 const byte EEPROM_ADDR[8] = {0, 4, 

8, 12, 16, 20, 24, 28}; 

198 LockBrake(); 

24 
 

199 } 

25 //{REFERENCE_SPEED, MODE, KP, KI, 

KD, IDLE_DECELERATION_OFFSET, 

ACCELERATOR_PEDAL_SIGNAL_GAIN, 

BRAKE_ACTUATOR_GAIN, INITIAL_SPEED, 

CONTROLLED_LOOP_INTERVAL, 

DIAGNOSTIC_STREAM_MODE, 

SENSED_SPEED, DEVIATION, 

FORMER_DEVIATION, 

COMMULATIVE_DEVIATION, 

DIFFERENT_DEVIATION, OUTPUT} 

200 } 

26 long PARAMETERS[17] = {0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0}; 

201 else if (PARAMETERS[1] == 1) { 

27 byte DIAG_OUTPUT_BUFFER[72]; 202 PARAMETERS[12] = PARAMETERS[0] - 

PARAMETERS[11];    //DEVIATION 

28 
 

203 PARAMETERS[14] = PARAMETERS[14] + 

PARAMETERS[12];   

//COMMULATIVE_DEVIATION 

29 //{t, t-1, t-2, ...} 204 PARAMETERS[15] = PARAMETERS[12] - 

PARAMETERS[13];   

//DIFFERENT_DEVIATION 

30 short SENSED_SPEED_WINDOW[10] = {0, 

0, 0, 0, 0, 0, 0, 0, 0, 0}; 

205 PARAMETERS[13] = PARAMETERS[12];                    

//UPDATE 

31 
 

206 PARAMETERS[16] = 

long((PARAMETERS[2] * 

PARAMETERS[12]) + (PARAMETERS[3] * 

PARAMETERS[14]) / 100.0 + 

(PARAMETERS[4] * PARAMETERS[15])); 

32 byte DEBUGGER_STATUS = 0; 207 if (PARAMETERS[16] > 0) { 

33 byte SENSOR_STREAM_STATUS = 0; 208 PARAMETERS[16] = 

long(PARAMETERS[16] * PARAMETERS[6] 

/ 100.0); 

34 byte FIRST_LOOP_FLAG = 1; 209 } 

35 
 

210 else if (PARAMETERS[16] < 0) { 

36 unsigned long LOOP_TIMESTAMP; 211 PARAMETERS[16] = 

long(PARAMETERS[16] * PARAMETERS[7] 

/ 100.0); 

37 
 

212 } 

38 void setup() { 213 if (PARAMETERS[16] > 4095000) { 

39 pinMode(MTR_LMS, INPUT_PULLUP); 214 PARAMETERS[16] = 4095000; 

40 ledcSetup(0, 5000, 12); 215 PARAMETERS[14] = PARAMETERS[14] - 

PARAMETERS[12]; 

41 ledcAttachPin(MTR_PWM, 0); 216 } 

42 pinMode(MTR_IN2, OUTPUT); 217 else if (PARAMETERS[16] < -4095000) 

{ 

43 pinMode(MTR_IN1, OUTPUT); 218 PARAMETERS[16] = -4095000; 

44 
 

219 PARAMETERS[14] = PARAMETERS[14] - 

PARAMETERS[12]; 
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45 pinMode(DAC_CS, OUTPUT); 220 } 

46 pinMode(DAC_LDAC, OUTPUT); 221 if (PARAMETERS[16] > 0) { 

47 digitalWrite(DAC_CS, HIGH); 222 AcceleratorPedalSignalWrite(PARAMET

ERS[16]); 

48 digitalWrite(DAC_LDAC, HIGH); 223 if (digitalRead(MTR_LMS)) { 

49 
 

224 ReverseBrake(750000); 

50 Serial.begin(57600); 225 } 

51 Serial.setTimeout(5); 226 else { 

52 SPI.begin(); 227 LockBrake(); 

53 
 

228 } 

54 ReleaseBrake(); 229 } 

55 LockBrake(); 230 else if (PARAMETERS[16] > 

PARAMETERS[5] && PARAMETERS[16] <= 

0) { 

56 AcceleratorPedalSignalWrite(0); 231 AcceleratorPedalSignalWrite(0); 

57 
 

232 if (digitalRead(MTR_LMS)) { 

58 EEPROM.begin(64); 233 ReverseBrake(750000); 

59 for (int i = 0; i < 8; i++) 

PARAMETERS[i + 2] = 

EEPROM.readLong(EEPROM_ADDR[i]); 

234 } 

60 
 

235 else { 

61 while (CAN_OK != 

CAN.begin(CAN_1000KBPS)) delay(10); 

236 LockBrake(); 

62 
 

237 } 

63 LOOP_TIMESTAMP = millis(); 238 } 

64 } 239 else if (PARAMETERS[16] <= 

PARAMETERS[5]) { 

65 
 

240 AcceleratorPedalSignalWrite(0); 

66 void loop() { 241 ForwardBrake(abs(PARAMETERS[16])); 

67 byte input_buffer[8]; 242 } 

68 byte output_buffer[9]; 243 } 

69 short input_checksum; 244 else if (PARAMETERS[1] == 0) { 

70 short output_checksum; 245 AcceleratorPedalSignalWrite(0); 

71 short receive_checksum; 246 if (digitalRead(MTR_LMS)) { 

72 long receive_buffer; 247 ReverseBrake(750000); 

73 float sensed_speed_window_sum; 248 } 

74 short sensed_speed; 249 else { 

75 byte CAN_speed_detect = 0; 250 LockBrake(); 

76 
 

251 } 

77 while (CAN_speed_detect == 0) { 252 } 

78 if (CAN_MSGAVAIL == 

CAN.checkReceive()) { 

253 if (PARAMETERS[10] == 1) { 

79 CAN.readMsgBuf(&CAN_message_length, 

CAN_input_buffer); 

254 UpdateDiagOutputBuffer(); 

80 CAN_message_ID = CAN.getCanId(); 255 Serial.write(DIAG_OUTPUT_BUFFER, 

72); 

81 if (CAN_message_ID == 2) { 256 } 

82 sensed_speed = (CAN_input_buffer[2] 

<< 8) | CAN_input_buffer[3]; 

257 if (DEBUGGER_STATUS == 1) { 

83 sensed_speed_window_sum = 0.0; 258 Serial.print("DB"); 

84 for (int i = 9; i > 0; i--) { 259 Serial.print('\t'); 

85 SENSED_SPEED_WINDOW[i] = 260 for (int i = 0; i < 17; i++) { 
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SENSED_SPEED_WINDOW[i - 1]; 

86 sensed_speed_window_sum += 

SENSED_SPEED_WINDOW[i]; 

261 Serial.print(PARAMETERS[i]); 

87 } 262 Serial.print('\t'); 

88 SENSED_SPEED_WINDOW[0] = 

sensed_speed; 

263 } 

89 sensed_speed_window_sum += 

SENSED_SPEED_WINDOW[0]; 

264 Serial.println(); 

90 PARAMETERS[11] = 

long(sensed_speed_window_sum / 

25.6); 

265 } 

91 CAN_speed_detect = 1; 266 if (SENSOR_STREAM_STATUS == 1) { 

92 } 267 Serial.print("SS"); 

93 } 268 Serial.print('\t'); 

94 } 269 Serial.println(PARAMETERS[11]); 

95 
 

270 } 

96 if (FIRST_LOOP_FLAG == 1) { 271 while (millis() - LOOP_TIMESTAMP < 

PARAMETERS[9]) { 

97 PARAMETERS[13] = PARAMETERS[0] - 

PARAMETERS[11]; 

272 delayMicroseconds(10); 

98 FIRST_LOOP_FLAG = 0; 273 } 

99 } 274 LOOP_TIMESTAMP = millis(); 

100 
 

275 } 

101 Serial.readStringUntil('G'); 276 
 

102 if (Serial.available()) { 277 void UpdateDiagOutputBuffer() { 

103 Serial.readBytes(input_buffer, 8); 278 short diag_checksum; 

104 if (input_buffer[0] == 68 && 

input_buffer[1] == 69 && 

input_buffer[2] == 66 && 

input_buffer[3] == 85 && 

input_buffer[4] == 71 && 

input_buffer[5] == 71 && 

input_buffer[6] == 69 && 

input_buffer[7] == 82) { 

279 byte write_buffer; 

105 DEBUGGER_STATUS = !DEBUGGER_STATUS; 280 DIAG_OUTPUT_BUFFER[0] = 71; 

106 } 281 DIAG_OUTPUT_BUFFER[1] = 68; 

107 if (input_buffer[0] == 83 && 

input_buffer[1] == 69 && 

input_buffer[2] == 78 && 

input_buffer[3] == 68 && 

input_buffer[4] == 83 && 

input_buffer[5] == 84 && 

input_buffer[6] == 82 && 

input_buffer[7] == 77) { 

282 diag_checksum = 139; 

108 SENSOR_STREAM_STATUS = 

!SENSOR_STREAM_STATUS; 

283 for (int i = 0; i < 17; i++) { 

109 } 284 for (int j = 0; j < 4; j++) { 

110 else { 285 write_buffer = (PARAMETERS[i] >> (j 

* 8)) & 255; 

111 input_checksum = 71 + 

input_buffer[0] + input_buffer[1] + 

input_buffer[2] + input_buffer[3] + 

input_buffer[4] + input_buffer[5]; 

286 DIAG_OUTPUT_BUFFER[(4 * i) + j + 2] 

= write_buffer; 

112 receive_checksum = (input_buffer[6] 

<< 8) | input_buffer[7]; 

287 diag_checksum += write_buffer; 

113 if (input_checksum == 

receive_checksum) { 

288 } 

114 if (input_buffer[0] == 73) { 289 } 

115 if (input_buffer[1] == 0) { 290 DIAG_OUTPUT_BUFFER[70] = 

highByte(diag_checksum); 

116 if (SENSOR_STREAM_STATUS == 0) { 291 DIAG_OUTPUT_BUFFER[71] = 
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lowByte(diag_checksum); 

117 Serial.write(DESCRIPTION_MSG, 9); 292 } 

118 } 293 
 

119 } 294 void 

AcceleratorPedalSignalWrite(long v) 

{ 

120 else { 295 long output_buffer; 

121 if (SENSOR_STREAM_STATUS == 0) { 296 float val = (v * 0.0004776) + 

655.2; 

122 Serial.write(INVALID_MSG, 9); 297 unsigned short low_val = 

short(val);            //CHANNEL_B 

123 } 298 unsigned short high_val = short(val 

+ 655.2);   //CHANNEL_A 

124 } 299 output_buffer = 0b0111000000000000 

| low_val; 

125 } 300 digitalWrite(DAC_CS, LOW); 

126 else if (input_buffer[0] == 82) { 301 SPI.transfer((output_buffer >> 8) & 

255); 

127 if (input_buffer[1] == 17) { 302 SPI.transfer(output_buffer & 255); 

128 UpdateDiagOutputBuffer(); 303 digitalWrite(DAC_CS, HIGH); 

129 if (SENSOR_STREAM_STATUS == 0) { 304 digitalWrite(DAC_LDAC, LOW); 

130 Serial.write(DIAG_OUTPUT_BUFFER, 

72); 

305 delayMicroseconds(10); 

131 } 306 digitalWrite(DAC_LDAC, HIGH); 

132 } 307 
 

133 else if (input_buffer[1] < 17) { 308 output_buffer = 0b1111000000000000 

| high_val; 

134 output_buffer[0] = 71; 309 digitalWrite(DAC_CS, LOW); 

135 output_buffer[1] = 82; 310 SPI.transfer((output_buffer >> 8) & 

255); 

136 output_buffer[2] = input_buffer[1]; 311 SPI.transfer(output_buffer & 255); 

137 output_buffer[3] = 

(PARAMETERS[input_buffer[1]] >> 24) 

& 255; 

312 digitalWrite(DAC_CS, HIGH); 

138 output_buffer[4] = 

(PARAMETERS[input_buffer[1]] >> 16) 

& 255; 

313 digitalWrite(DAC_LDAC, LOW); 

139 output_buffer[5] = 

(PARAMETERS[input_buffer[1]] >> 8) 

& 255; 

314 delayMicroseconds(10); 

140 output_buffer[6] = 

PARAMETERS[input_buffer[1]]  & 255; 

315 digitalWrite(DAC_LDAC, HIGH); 

141 output_checksum = 153 + 

output_buffer[2] + output_buffer[3] 

+ output_buffer[4] + 

output_buffer[5] + 

output_buffer[6]; 

316 } 

142 output_buffer[7] = 

highByte(output_checksum); 

317 
 

143 output_buffer[8] = 

lowByte(output_checksum); 

318 void ReleaseBrake() { 

144 if (SENSOR_STREAM_STATUS == 0) { 319 while (digitalRead(MTR_LMS)) { 

145 Serial.write(output_buffer, 9); 320 ReverseBrake(750000); 

146 } 321 delay(1); 

147 } 322 } 

148 else { 323 LockBrake(); 

149 if (SENSOR_STREAM_STATUS == 0) { 324 } 

150 Serial.write(INVALID_MSG, 9); 325 
 

151 } 326 void ForwardBrake(long p) { 
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152 } 327 unsigned short pwm = short(p / 

1000.0); 

153 } 328 ledcWrite(0, pwm); 

154 else if (input_buffer[0] == 65) { 329 digitalWrite(MTR_IN1, LOW); 

155 PARAMETERS[input_buffer[1]] = 

(input_buffer[2] << 24) | 

(input_buffer[3] << 16) | 

(input_buffer[4] << 8) | 

input_buffer[5]; 

330 digitalWrite(MTR_IN2, HIGH); 

156 if (input_buffer[1] == 1) { 331 } 

157 PARAMETERS[0] = PARAMETERS[8]; 332 
 

158 PARAMETERS[13] = PARAMETERS[0] - 

PARAMETERS[11]; 

333 void ReverseBrake(long p) { 

159 PARAMETERS[14] = 0; 334 unsigned short pwm = short(p / 

1000.0); 

160 } 335 ledcWrite(0, pwm); 

161 else if (input_buffer[1] > 1 && 

input_buffer[1] < 10) { 

336 digitalWrite(MTR_IN1, HIGH); 

162 EEPROM.writeLong(EEPROM_ADDR[input_

buffer[1] - 2], 

PARAMETERS[input_buffer[1]]); 

337 digitalWrite(MTR_IN2, LOW); 

163 EEPROM.commit(); 338 } 

164 } 339 
 

165 if (input_buffer[1] < 11) { 340 void FreeBrake() { 

166 output_buffer[0] = 71; 341 ledcWrite(0, 0); 

167 for (int i = 0; i < 8; 

i++)output_buffer[i + 1] = 

input_buffer[i]; 

342 digitalWrite(MTR_IN1, LOW); 

168 if (SENSOR_STREAM_STATUS == 0) { 343 digitalWrite(MTR_IN2, LOW); 

169 Serial.write(output_buffer, 9); 344 } 

170 } 345 
 

171 } 346 void LockBrake() { 

172 else { 347 ledcWrite(0, 4095); 

173 if (SENSOR_STREAM_STATUS == 0) { 348 digitalWrite(MTR_IN1, LOW); 

174 Serial.write(INVALID_MSG, 9); 349 digitalWrite(MTR_IN2, LOW); 

175 } 350 } 

 

Table 17 High-level autonomous navigation dependency source code (Python) 

Line Code 

1 class SystemController: 

2 import serial 

3 
 

4 assign = ((b'GA\x00\x00\x00\x00\x00\x00\x88', 

b'GA\x00\x01\x00\x00\x00\x00\x89'), (b'GA\x01\x00\x00\x00\x00\x00\x89', 

b'GA\x01\x01\x00\x00\x00\x00\x8a', b'GA\x01\x02\x00\x00\x00\x00\x8b'), 

(b'GA\x02\x00\x00\x00\x00\x00\x8a', b'GA\x02\x01\x00\x00\x00\x00\x8b', 

b'GA\x02\x02\x00\x00\x00\x00\x8c', b'GA\x02\x03\x00\x00\x00\x00\x8d'), 

(b'GA\x03\x00\x00\x00\x00\x00\x8b', b'GA\x03\x01\x00\x00\x00\x00\x8c'), 

(b'GA\x04\x00\x00\x00\x00\x00\x8c', b'GA\x04\x01\x00\x00\x00\x00\x8d', 

b'GA\x04\x02\x00\x00\x00\x00\x8e'), (b'GA\x05\x00\x00\x00\x00\x00\x8d', 

b'GA\x05\x01\x00\x00\x00\x00\x8e'), (b'GA\x06\x00\x00\x00\x00\x00\x8e', 

b'GA\x06\x01\x00\x00\x00\x00\x8f'), (b'GA\x07\x00\x00\x00\x00\x00\x8f', 

b'GA\x07\x01\x00\x00\x00\x00\x90'), (b'GA\x08\x00\x00\x00\x00\x00\x90', 

b'GA\x08\x01\x00\x00\x00\x00\x91', b'GA\x08\x02\x00\x00\x00\x00\x92', 

b'GA\x08\x03\x00\x00\x00\x00\x93'), (b'GA\t\x00\x00\x00\x00\x00\x91', 

b'GA\t\x01\x00\x00\x00\x00\x92')) 
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5 request = (b'GR\x00\x00\x00\x00\x00\x00\x99', 

b'GR\x01\x00\x00\x00\x00\x00\x9a', b'GR\x02\x00\x00\x00\x00\x00\x9b', 

b'GR\x03\x00\x00\x00\x00\x00\x9c', b'GR\x04\x00\x00\x00\x00\x00\x9d', 

b'GR\x05\x00\x00\x00\x00\x00\x9e', b'GR\x06\x00\x00\x00\x00\x00\x9f', 

b'GR\x07\x00\x00\x00\x00\x00\xa0', b'GR\x08\x00\x00\x00\x00\x00\xa1', 

b'GR\t\x00\x00\x00\x00\x00\xa2', b'GR\n\x00\x00\x00\x00\x00\xa3', 

b'GI\x00\x00\x00\x00\x00\x00\x90') 

6 
 

7 device = None 

8 
 

9 def __init__(self, comport, baudrate): 

10 self.device = self.serial.Serial(comport, baudrate) 

11 
 

12 def set(self, subsystem, state): 

13 self.device.write(self.assign[subsystem][state]) 

14 
 

15 def poll(self, subsystem): 

16 self.device.reset_input_buffer() 

17 self.device.write(subsystem) 

18 if subsystem == 10: 

19 recv = self.device.read(9) 

20 if sum(recv[:-2]) == (recv[-2] << 8)| recv[-1]: 

21 val = recv[2:-2] 

22 val = (val[0] << 8) | (val[1] << 8) | (val[2] << 8) | val[3] 

23 return val 

24 else: 

25 return -1 

26 else: 

27 recv = self.device.read(14) 

28 if sum(recv[:-2]) == (recv[-2] << 8) | recv[-1]: 

29 return list(recv[2:-2]) 

30 else: 

31 return -1 

32 
 

33 
 

34 class CruiseController: 

35 import serial 

36 import numpy 

37 
 

38 request = (b'GR\x00\x00\x00\x00\x00\x00\x99', 

b'GR\x01\x00\x00\x00\x00\x00\x9a', b'GR\x02\x00\x00\x00\x00\x00\x9b', 

b'GR\x03\x00\x00\x00\x00\x00\x9c', b'GR\x04\x00\x00\x00\x00\x00\x9d', 

b'GR\x05\x00\x00\x00\x00\x00\x9e', b'GR\x06\x00\x00\x00\x00\x00\x9f', 

b'GR\x07\x00\x00\x00\x00\x00\xa0', b'GR\x08\x00\x00\x00\x00\x00\xa1', 

b'GR\t\x00\x00\x00\x00\x00\xa2', b'GR\n\x00\x00\x00\x00\x00\xa3', 

b'GR\x0b\x00\x00\x00\x00\x00\xa4', b'GR\x0c\x00\x00\x00\x00\x00\xa5', 

b'GR\r\x00\x00\x00\x00\x00\xa6', b'GR\x0e\x00\x00\x00\x00\x00\xa7', 

b'GR\x0f\x00\x00\x00\x00\x00\xa8', b'GR\x10\x00\x00\x00\x00\x00\xa9', 

b'GR\x11\x00\x00\x00\x00\x00\xaa', b'GI\x00\x00\x00\x00\x00\x00\x90') 

39 
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40 device = None 

41 
 

42 def __init__(self, comport, baudrate): 

43 self.device = self.serial.Serial(comport, baudrate) 

44 
 

45 def set(self, subsystem, state): 

46 state = self.numpy.int32(state) 

47 output_buffer = b'GA' + bytes([subsystem, (state >> 24) & 255, (state >> 16) & 

255, (state >> 8) & 255, state & 255]) 

48 checksum = sum(output_buffer) 

49 output_buffer = output_buffer + bytes([(checksum >> 8) & 255, checksum & 255]) 

50 self.device.write(output_buffer) 

51 
 

52 def poll(self, subsystem): 

53 self.device.reset_input_buffer() 

54 self.device.write(self.request[subsystem]) 

55 if subsystem == 17: 

56 recv = self.device.read(72) 

57 if sum(recv[:-2]) == (recv[-2] << 8) | recv[-1]: 

58 val = self.numpy.array(recv[2:-2]).reshape((17, 4)) 

59 val = val[:, 0] | (val[:, 1] << 8) | (val[:, 2] << 16) | (val[:, 3] << 24) 

60 val = val - (val >> 15) * (1 << 16) 

61 val = val.tolist() 

62 return val 

63 else: 

64 return -1 

65 else: 

66 recv = self.device.read(9) 

67 if sum(recv[:-2]) == (recv[-2] << 8) | recv[-1]: 

68 recv = recv[3:-2] 

69 val = (recv[0] << 24) | (recv[1] << 16) | (recv[2] << 8) | recv[3] 

70 val = val - (val >> 31) * (1 << 32) 

71 return val 

72 else: 

73 return -1 

74 
 

75 
 

76 class SteeringController: 

77 import serial 

78 import numpy 

79 
 

80 request = (b'GR\x00\x00\x00\x00\x00\x00\x99', 

b'GR\x01\x00\x00\x00\x00\x00\x9a', b'GR\x02\x00\x00\x00\x00\x00\x9b', 

b'GR\x03\x00\x00\x00\x00\x00\x9c', b'GR\x04\x00\x00\x00\x00\x00\x9d', 

b'GR\x05\x00\x00\x00\x00\x00\x9e', b'GR\x06\x00\x00\x00\x00\x00\x9f', 

b'GR\x07\x00\x00\x00\x00\x00\xa0', b'GR\x08\x00\x00\x00\x00\x00\xa1', 

b'GR\t\x00\x00\x00\x00\x00\xa2', b'GR\n\x00\x00\x00\x00\x00\xa3', 
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b'GR\x0b\x00\x00\x00\x00\x00\xa4', b'GR\x0c\x00\x00\x00\x00\x00\xa5', 

b'GR\r\x00\x00\x00\x00\x00\xa6', b'GR\x0e\x00\x00\x00\x00\x00\xa7', 

b'GR\x0f\x00\x00\x00\x00\x00\xa8', b'GR\x10\x00\x00\x00\x00\x00\xa9', 

b'GI\x00\x00\x00\x00\x00\x00\x90') 

81 
 

82 device = None 

83 
 

84 def __init__(self, comport, baudrate): 

85 self.device = self.serial.Serial(comport, baudrate) 

86 
 

87 def set(self, subsystem, state): 

88 state = self.numpy.int32(state) 

89 output_buffer = b'GA' + bytes([subsystem, (state >> 24) & 255, (state >> 16) & 

255, (state >> 8) & 255, state & 255]) 

90 checksum = sum(output_buffer) 

91 output_buffer = output_buffer + bytes([(checksum >> 8) & 255, checksum & 255]) 

92 self.device.write(output_buffer) 

93 
 

94 def poll(self, subsystem): 

95 self.device.reset_input_buffer() 

96 self.device.write(self.request[subsystem]) 

97 if subsystem == 16: 

98 recv = self.device.read(68) 

99 if sum(recv[:-2]) == (recv[-2] << 8) | recv[-1]: 

100 val = self.numpy.array(recv[2:-2]).reshape((16, 4)) 

101 val = val[:, 0] | (val[:, 1] << 8) | (val[:, 2] << 16) | (val[:, 3] << 24) 

102 val = val - (val >> 31) * (1 << 32) 

103 val = val.tolist() 

104 return val 

105 else: 

106 return -1 

107 else: 

108 recv = self.device.read(9) 

109 if sum(recv[:-2]) == (recv[-2] << 8) | recv[-1]: 

110 recv = recv[3:-2] 

111 val = (recv[0] << 24) | (recv[1] << 16) | (recv[2] << 8) | recv[3] 

112 val = val - (val >> 31) * (1 << 32) 

113 return val 

114 else: 

115 return -1 

116 
 

117 
 

118 class SteeringProfile: 

119 import numpy 

120 from scipy import integrate 

121 
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122 def __init__(self, filename, steering_gain, steering_offset): 

123 self.filename = filename 

124 self.steering_gain = steering_gain 

125 self.steering_offset = steering_offset 

126 with open(self.filename, 'r') as f: 

127 data = [i[:-1] for i in f.readlines()] 

128 data = self.numpy.array(data).astype(float) 

129 self.steering_position_axis_lower_bound = data[0] 

130 self.steering_position_axis_upper_bound = data[1] 

131 self.steering_position_axis_resolution = int(data[2]) 

132 self.steering_position_axis_interval = (self.steering_position_axis_upper_bound 

- self.steering_position_axis_lower_bound) / 

(self.steering_position_axis_resolution - 1) 

133 self.steering_position_axis = 

self.numpy.linspace(self.steering_position_axis_lower_bound, 

self.steering_position_axis_upper_bound, 

self.steering_position_axis_resolution) 

134 self.time_axis_lower_bound = data[3] 

135 self.time_axis_upper_bound = data[4] 

136 self.time_axis_resolution = int(data[5]) 

137 self.time_axis_interval = (self.time_axis_upper_bound - 

self.time_axis_lower_bound) / (self.time_axis_resolution - 1) 

138 self.time_axis = self.numpy.linspace(self.time_axis_lower_bound, 

self.time_axis_upper_bound, self.time_axis_resolution) 

139 
 

140 self.raw_profile = data[6:].reshape((self.steering_position_axis_resolution, 

self.steering_position_axis_resolution, self.time_axis_resolution)) 

141 self.raw_time = self.numpy.repeat(self.time_axis.reshape((1, -1)), 

self.steering_position_axis_resolution ** 2, 

axis=0).reshape((self.steering_position_axis_resolution, 

self.steering_position_axis_resolution, self.time_axis_resolution)) 

142 self.profile = self.integrate.cumtrapz((self.steering_gain * self.raw_profile) 

- self.steering_offset, self.raw_time, axis=2, initial=0) 

143 self.time = self.raw_time[:, 0, :] 

144 
 

145 def get_profile(self, steering_position, trim=None): 

146 if steering_position < self.steering_position_axis[0]: 

147 adjusted_steering_profile = self.profile[0, :, :] 

148 adjusted_raw_steering_profile = self.raw_profile[0, :, :] 

149 adjusted_time = self.time 

150 elif steering_position > self.steering_position_axis[-1]: 

151 adjusted_steering_profile = self.profile[-1, :, :] 

152 adjusted_raw_steering_profile = self.raw_profile[-1, :, :] 

153 adjusted_time = self.time 

154 else: 

155 dst = self.numpy.abs(self.steering_position_axis - steering_position) 

156 ind = self.numpy.argsort(dst) 

157 adjusted_steering_profile = ((dst[ind[0]] * self.profile[ind[1], :, :]) + 

(dst[ind[1]] * self.profile[ind[0], :, :])) / 

self.steering_position_axis_interval 

158 adjusted_raw_steering_profile = ((dst[ind[0]] * self.raw_profile[ind[1], :, :]) 

+ (dst[ind[1]] * self.raw_profile[ind[0], :, :])) / 

self.steering_position_axis_interval 

159 adjusted_time = self.time 
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160 if trim is not None: 

161 trim_index = self.numpy.abs(self.time_axis - trim).argmin() 

162 adjusted_steering_profile = adjusted_steering_profile[:, :trim_index] 

163 adjusted_raw_steering_profile = adjusted_raw_steering_profile[:, :trim_index] 

164 adjusted_time = self.time[:, :trim_index] 

165 
 

166 return adjusted_steering_profile, adjusted_raw_steering_profile, adjusted_time 

167 
 

168 
 

169 class WaypointsMap: 

170 import numpy 

171 from scipy.spatial import cKDTree 

172 
 

173 def __init__(self, filename, longitudinal_gain, latitudinal_gain): 

174 self.filename = filename 

175 self.conversion_gain = self.numpy.array([longitudinal_gain, latitudinal_gain]) 

176 with open(self.filename, 'r') as f: 

177 data = [i[:-1].split('\t') for i in f.readlines()] 

178 data = self.numpy.array(data).astype(float) 

179 self.geographic_waypoints = data[:, :2] 

180 self.heading = self.numpy.deg2rad(180 - ((data[:, 2] + 90) % 360)) 

181 self.speed = data[:, 3] / 3.6 

182 
 

183 self.geographic_origin = (self.geographic_waypoints.ptp(axis=0) / 2) + 

self.geographic_waypoints.min(axis=0) 

184 self.meter_waypoints = (self.geographic_waypoints - self.geographic_origin) * 

self.conversion_gain 

185 
 

186 self.geographic_manager = self.cKDTree(self.geographic_waypoints) 

187 self.meter_manager = self.cKDTree(self.meter_waypoints) 

188 
 

189 def to_meter(self, geographic_coordinate): 

190 ret = (geographic_coordinate - self.geographic_origin) * self.conversion_gain 

191 return ret 

192 
 

193 def to_mathematic_angle(self, navigation_angle): 

194 ret = self.numpy.deg2rad(180 - ((navigation_angle + 90) % 360)) 

195 return ret 

196 
 

197 def to_geographic(self, meter_coordinate): 

198 ret = (meter_coordinate / self.conversion_gain) + self.geographic_origin 

199 return ret 

200 
 

201 def to_navigation_angle(self, mathematic_angle): 

202 ret = 360 - ((self.numpy.rad2deg(mathematic_angle) - 90) % 360) 
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203 return ret 

204 
 

205 def get_trimmed_geographic_waypoints(self, trim_params): 

206 forward_trim = int(trim_params[2] * trim_params[1]) 

207 reverse_trim = trim_params[1] - forward_trim 

208 trim_lower_bound = trim_params[0] - reverse_trim 

209 trim_upper_bound = trim_params[0] + forward_trim 

210 if trim_lower_bound < 0: 

211 ret = self.numpy.row_stack((self.geographic_waypoints[trim_lower_bound:, :], 

self.geographic_waypoints[: trim_upper_bound, :])) 

212 elif trim_upper_bound > self.geographic_waypoints.shape[0]: 

213 ret = self.numpy.row_stack((self.geographic_waypoints[trim_lower_bound:, :], 

self.geographic_waypoints[: trim_upper_bound - 

self.geographic_waypoints.shape[0], :])) 

214 else: 

215 ret = self.geographic_waypoints[trim_lower_bound: trim_upper_bound, :] 

216 return ret 

217 
 

218 def get_trimmed_meter_waypoints(self, trim_params): 

219 forward_trim = int(trim_params[2] * trim_params[1]) 

220 reverse_trim = trim_params[1] - forward_trim 

221 trim_lower_bound = trim_params[0] - reverse_trim 

222 trim_upper_bound = trim_params[0] + forward_trim 

223 if trim_lower_bound < 0: 

224 ret = self.numpy.row_stack((self.meter_waypoints[trim_lower_bound:, :], 

self.meter_waypoints[: trim_upper_bound, :])) 

225 elif trim_upper_bound > self.meter_waypoints.shape[0]: 

226 ret = self.numpy.row_stack((self.meter_waypoints[trim_lower_bound:, :], 

self.meter_waypoints[: trim_upper_bound - self.meter_waypoints.shape[0], :])) 

227 else: 

228 ret = self.meter_waypoints[trim_lower_bound: trim_upper_bound, :] 

229 return ret 

230 
 

231 def get_trimmed_heading(self, trim_params): 

232 forward_trim = int(trim_params[2] * trim_params[1]) 

233 reverse_trim = trim_params[1] - forward_trim 

234 trim_lower_bound = trim_params[0] - reverse_trim 

235 trim_upper_bound = trim_params[0] + forward_trim 

236 if trim_lower_bound < 0: 

237 ret = self.numpy.concatenate((self.heading[trim_lower_bound:], self.heading[: 

trim_upper_bound])) 

238 elif trim_upper_bound > self.meter_waypoints.shape[0]: 

239 ret = self.numpy.concatenate((self.heading[trim_lower_bound:], self.heading[: 

trim_upper_bound - self.heading.shape[0]])) 

240 else: 

241 ret = self.heading[trim_lower_bound: trim_upper_bound] 

242 return ret 

243 
 

244 def get_trimmed_speed(self, trim_params): 
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245 forward_trim = int(trim_params[2] * trim_params[1]) 

246 reverse_trim = trim_params[1] - forward_trim 

247 trim_lower_bound = trim_params[0] - reverse_trim 

248 trim_upper_bound = trim_params[0] + forward_trim 

249 if trim_lower_bound < 0: 

250 ret = self.numpy.concatenate((self.speed[trim_lower_bound:], self.speed[: 

trim_upper_bound])) 

251 elif trim_upper_bound > self.meter_waypoints.shape[0]: 

252 ret = self.numpy.concatenate((self.speed[trim_lower_bound:], self.speed[: 

trim_upper_bound - self.speed.shape[0]])) 

253 else: 

254 ret = self.speed[trim_lower_bound: trim_upper_bound] 

255 return ret 

256 
 

257 def get_trimmed(self, trim_params): 

258 forward_trim = int(trim_params[2] * trim_params[1]) 

259 reverse_trim = trim_params[1] - forward_trim 

260 trim_lower_bound = trim_params[0] - reverse_trim 

261 trim_upper_bound = trim_params[0] + forward_trim 

262 if trim_lower_bound < 0: 

263 trimmed_geographic_waypoints = 

self.numpy.row_stack((self.geographic_waypoints[trim_lower_bound:, :], 

self.geographic_waypoints[: trim_upper_bound, :])) 

264 trimmed_meter_waypoints = 

self.numpy.row_stack((self.meter_waypoints[trim_lower_bound:, :], 

self.meter_waypoints[: trim_upper_bound, :])) 

265 trimmed_heading = self.numpy.concatenate((self.heading[trim_lower_bound:], 

self.heading[: trim_upper_bound])) 

266 trimmed_speed = self.numpy.concatenate((self.speed[trim_lower_bound:], 

self.speed[: trim_upper_bound])) 

267 elif trim_upper_bound > self.heading.shape[0]: 

268 trimmed_geographic_waypoints = 

self.numpy.row_stack((self.geographic_waypoints[trim_lower_bound:, :], 

self.geographic_waypoints[: trim_upper_bound - 

self.geographic_waypoints.shape[0], :])) 

269 trimmed_meter_waypoints = 

self.numpy.row_stack((self.meter_waypoints[trim_lower_bound:, :], 

self.meter_waypoints[: trim_upper_bound - self.meter_waypoints.shape[0], :])) 

270 trimmed_heading = self.numpy.concatenate((self.heading[trim_lower_bound:], 

self.heading[: trim_upper_bound - self.heading.shape[0]])) 

271 trimmed_speed = self.numpy.concatenate((self.speed[trim_lower_bound:], 

self.speed[: trim_upper_bound - self.speed.shape[0]])) 

272 else: 

273 trimmed_geographic_waypoints = self.geographic_waypoints[trim_lower_bound: 

trim_upper_bound, :] 

274 trimmed_meter_waypoints = self.meter_waypoints[trim_lower_bound: 

trim_upper_bound, :] 

275 trimmed_heading = self.heading[trim_lower_bound: trim_upper_bound] 

276 trimmed_speed = self.speed[trim_lower_bound: trim_upper_bound] 

277 return trimmed_geographic_waypoints, trimmed_meter_waypoints, trimmed_heading, 

trimmed_speed 

278 
 

279 
 

280 class Visualizer2D: 

281 import cv2 

282 import numpy 
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283 
 

284 def __init__(self, name, frame_width, frame_height, plotspace, division, 

waypoints): 

285 self.name = name 

286 self.canvas_size = self.numpy.array([frame_width, frame_height]) 

287 self.canvas_origin = self.canvas_size / 2 

288 self.original_canvas_origin = self.canvas_origin 

289 self.blank_canvas = self.numpy.zeros((frame_height, frame_width, 3), 

self.numpy.uint8) 

290 self.blank_canvas[:, :] = (65, 63, 60) 

291 self.division_interval = frame_width / division 

292 vertical_division = frame_height // self.division_interval 

293 vertical_division = self.numpy.linspace(0, frame_height, 

vertical_division+1).astype(int) 

294 horizontal_division = self.numpy.linspace(0, frame_width, 

division+1).astype(int) 

295 for i in horizontal_division[1:-1]: 

296 self.cv2.line(self.blank_canvas, (i, 0), (i, frame_height), (93, 91, 89), 1) 

297 for i in vertical_division: 

298 self.cv2.line(self.blank_canvas, (0, i), (frame_width, i), (93, 91, 89), 1) 

299 self.scale_text_position = (int(0.9 * frame_width), int(0.98 * frame_height)) 

300 self.canvas = self.blank_canvas.copy() 

301 self.plotspace = plotspace 

302 self.waypoints = waypoints 

303 self.waypoints_color = self.numpy.repeat(self.numpy.array([[255, 255, 255]]), 

self.waypoints.shape[0], axis=0) 

304 
 

305 self.scale = self.plotspace * self.canvas_size / self.waypoints.ptp(axis=0) 

306 self.scale = self.scale.min() 

307 self.original_scale = self.scale 

308 
 

309 self.points = self.numpy.array([[0, 0]]) 

310 self.points_color = self.numpy.array([[0, 255, 0]]) 

311 
 

312 self.update() 

313 
 

314 self.cv2.namedWindow(self.name) 

315 self.cv2.setMouseCallback(self.name, self.mouse_callback) 

316 self.mouse_drag_start = None 

317 self.start_canvas_origin = self.canvas_origin 

318 self.count = True 

319 
 

320 def update(self, text_info=None): 

321 points = self.numpy.row_stack((self.waypoints, self.points)) 

322 color = self.numpy.row_stack((self.waypoints_color, self.points_color)) 

323 pixel = self.canvas_origin + ((points * self.scale) * self.numpy.array([1, -

1])) 

324 self.canvas = self.blank_canvas.copy() 
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325 for i, j in zip(pixel.astype(int), color.astype(int).tolist()): 

326 self.cv2.circle(self.canvas, tuple(i), 0, j, 0) 

327 scale_tex = '%.2f m/div' % (self.division_interval / self.scale) 

328 self.cv2.putText(self.canvas, scale_tex, self.scale_text_position, 

self.cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 0)) 

329 if text_info is not None: 

330 text_position = self.canvas_origin + ((text_info[1] * self.scale) * 

self.numpy.array([1, -1])) 

331 self.cv2.putText(self.canvas, text_info[0], (int(text_position[0]), 

int(text_position[1])), self.cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 0)) 

332 self.cv2.imshow(self.name, self.canvas) 

333 return self.cv2.waitKey(5) 

334 
 

335 def reset_view(self): 

336 self.canvas_origin = self.original_canvas_origin 

337 self.scale = self.original_scale 

338 
 

339 def mouse_callback(self, event, x, y, flags, params): 

340 if flags == 7864320: 

341 self.scale *= 1.1 

342 self.update() 

343 elif flags == -7864320: 

344 self.scale /= 1.1 

345 self.update() 

346 if event == 1: 

347 self.mouse_drag_start = self.numpy.array([x, y]) 

348 self.start_canvas_origin = self.canvas_origin 

349 if flags == 1: 

350 self.count = not self.count 

351 if self.count: 

352 current = self.numpy.array([x, y]) 

353 self.canvas_origin = self.start_canvas_origin + (current - 

self.mouse_drag_start) 

354 self.update() 

355 
 

356 
 

357 class ScoredKinematicPath2D: 

358 import numpy 

359 from scipy import integrate 

360 from scipy.spatial import cKDTree 

361 
 

362 def __init__(self, waypoints, steering_profile, weight, collision_radius, 

predicted_distance, neglect_collision=False): 

363 self.waypoints = waypoints 

364 self.steering_profile = steering_profile 

365 self.weight = weight 

366 self.collision_radius = collision_radius 

367 self.predicted_distance = predicted_distance 
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368 self.neglect_collision = neglect_collision 

369 
 

370 def update(self, position, heading, speed, steering_position, obstacle=None, 

trim_params=None): 

371 adjusted_steering_profile, adjusted_raw_steering_profile, adjusted_time = 

self.steering_profile.get_profile(steering_position, 

trim=self.predicted_distance/speed) 

372 adjusted_steering_profile_resolution, adjusted_time_axis_resolution = 

adjusted_steering_profile.shape 

373 course = (speed * adjusted_steering_profile) + heading 

374 x = (speed * self.integrate.cumtrapz(self.numpy.cos(course), adjusted_time, 

axis=1, initial=0)) + position[0] 

375 y = (speed * self.integrate.cumtrapz(self.numpy.sin(course), adjusted_time, 

axis=1, initial=0)) + position[1] 

376 xy = self.numpy.column_stack((x.reshape((-1, )), y.reshape((-1,)))) 

377 
 

378 if trim_params is not None: 

379 _, trimmed_waypoints, trimmed_heading, trimmed_speed = 

self.waypoints.get_trimmed(trim_params) 

380 trimmed_waypoints_manager = self.cKDTree(trimmed_waypoints) 

381 distance_apart, closest_point_index = trimmed_waypoints_manager.query(xy) 

382 required_heading = trimmed_heading[closest_point_index] 

383 required_speed = trimmed_speed[closest_point_index[0]] 

384 else: 

385 trimmed_waypoints = None 

386 distance_apart, closest_point_index = self.waypoints.meter_manager.query(xy) 

387 required_heading = self.waypoints.heading[closest_point_index] 

388 required_speed = self.waypoints.speed[closest_point_index[0]] 

389 
 

390 distance_apart = distance_apart.reshape((adjusted_steering_profile_resolution, 

-1)) 

391 distance_score = distance_apart.sum(axis=1) 

392 distance_score = distance_score / distance_score.max() 

393 
 

394 required_heading = 

required_heading.reshape((adjusted_steering_profile_resolution, -1)) 

395 heading_score = required_heading - course 

396 heading_score = self.numpy.abs(heading_score).sum(axis=1) 

397 heading_score = heading_score / heading_score.max() 

398 
 

399 steering_smoothness_score = 

self.numpy.abs(self.steering_profile.steering_position_axis - 

steering_position) 

400 steering_smoothness_score = steering_smoothness_score / 

steering_smoothness_score.max() 

401 
 

402 emergency_brake_status = False 

403 
 

404 if obstacle is not None: 

405 obstacle_manger = self.cKDTree(obstacle) 

406 obstacle_distance, _ = obstacle_manger.query(xy) 

407 obstacle_distance = 

obstacle_distance.reshape((adjusted_steering_profile_resolution, -1)) 
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408 obstacle_score = obstacle_distance.sum(axis=1) 

409 obstacle_score = obstacle_score / obstacle_score.max() 

410 
 

411 collision_score = obstacle_distance.min(axis=1) 

412 if not self.neglect_collision: 

413 collision_score[collision_score <= self.collision_radius] = -self.numpy.inf 

414 max_collision_score = collision_score.max() 

415 if max_collision_score == -self.numpy.inf: 

416 emergency_brake_status = True 

417 else: 

418 collision_score = collision_score / max_collision_score 

419 else: 

420 obstacle_score = self.numpy.zeros(adjusted_steering_profile_resolution) 

421 collision_score = self.numpy.zeros(adjusted_steering_profile_resolution) 

422 
 

423 raw_score = self.numpy.column_stack((distance_score, heading_score, 

steering_smoothness_score, obstacle_score, collision_score)) 

424 weighted_score = self.weight * raw_score 

425 weighted_score = weighted_score.sum(axis=1) 

426 
 

427 if emergency_brake_status: 

428 xy_color = self.numpy.repeat(self.numpy.array([[0, 0, 255]]), xy.shape[0], 

axis=0) 

429 else: 

430 rank = self.numpy.zeros((adjusted_steering_profile_resolution, )) 

431 rank[weighted_score.argsort()] = 

self.numpy.arange(adjusted_steering_profile_resolution) 

432 
 

433 xy_color_blue = self.numpy.zeros(adjusted_steering_profile_resolution,) 

434 xy_color_red = rank / adjusted_steering_profile_resolution * 255 

435 xy_color_green = 255 - xy_color_red 

436 xy_color = self.numpy.column_stack((xy_color_blue, xy_color_green, 

xy_color_red)) 

437 xy_color = self.numpy.repeat(xy_color, adjusted_time_axis_resolution, axis=0) 

438 
 

439 required_steering_index = weighted_score.argmin() 

440 required_steering_position = 

self.steering_profile.steering_position_axis[required_steering_index] 

441 
 

442 return required_steering_position, required_steering_index, required_speed, 

emergency_brake_status, xy, course, xy_color, trimmed_waypoints, 

adjusted_raw_steering_profile, adjusted_steering_profile_resolution, 

adjusted_time_axis_resolution 

443 
 

444 
 

445 class PosLVX: 

446 import socket 

447 import threading 

448 
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449 TCPport = None 

450 thread_alive = False 

451 loop_thread = None 

452 received_message = None 

453 data = None 

454 index = None 

455 
 

456 GPHDTheading = None 

457 GPGGAlatitude = None 

458 GPGGAlongitude = None 

459 GPGGAquality = None 

460 GPGGAsatellitesinuse = None 

461 GPRMClatitude = None 

462 GPRMClongitude = None 

463 GPRMCspeedoverground = None 

464 GPRMCmode = None 

465 GPVTGtruetrack = None 

466 GPVTGtrackmagnetic = None 

467 GPVTGspeed = None 

468 GPVTGmode = None 

469 
 

470 def __init__(self, ip, port): 

471 self.TCPport = self.socket.socket(self.socket.AF_INET, self.socket.SOCK_STREAM) 

472 self.TCPport.connect((ip, port)) 

473 self.loop_thread = self.threading.Thread(target=self.loop) 

474 
 

475 def loop(self): 

476 while self.thread_alive: 

477 self.received_message = self.TCPport.recv(1024) 

478 self.data = self.received_message.decode().split('\r\n')[:-1] 

479 self.data = [i.split(',') for i in self.data] 

480 self.index = [i[0] for i in self.data] 

481 try: 

482 GNHDT = self.index.index('$GNHDT') 

483 GNRMC = self.index.index('$GNRMC') 

484 GNGGA = self.index.index('$GNGGA') 

485 GNVTG = self.index.index('$GNVTG') 

486 
 

487 if self.data[GNHDT][1] == '': 

488 self.GPHDTheading = None 

489 else: 

490 self.GPHDTheading = float(self.data[GNHDT][1]) 

491 if self.data[GNGGA][2] == '': 

492 self.GPGGAlatitude = None 
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493 else: 

494 self.GPGGAlatitude = float(self.data[GNGGA][2][:2]) + 

float(self.data[GNGGA][2][2:])/60 

495 if self.data[GNGGA][4] == '': 

496 self.GPGGAlongitude = None 

497 else: 

498 self.GPGGAlongitude= float(self.data[GNGGA][4][:3]) + 

float(self.data[GNGGA][4][3:])/60 

499 if self.data[GNGGA][6] == '': 

500 self.GPGGAquality = None 

501 else: 

502 self.GPGGAquality = float(self.data[GNGGA][6]) 

503 if self.data[GNGGA][7] == '': 

504 self.GPGGAsatellitesinuse = None 

505 else: 

506 self.GPGGAsatellitesinuse = float(self.data[GNGGA][7]) 

507 if self.data[GNRMC][3] == '': 

508 self.GPRMClatitude = None 

509 else: 

510 self.GPRMClatitude = float(self.data[GNRMC][3][:2]) + 

float(self.data[GNRMC][3][2:])/60 

511 if self.data[GNRMC][5] == '': 

512 self.GPRMClongitude = None 

513 else: 

514 self.GPRMClongitude = float(self.data[GNRMC][5][:3]) + 

float(self.data[GNRMC][5][3:])/60 

515 if self.data[GNRMC][7] == '': 

516 self.GPRMCspeedoverground = None 

517 else: 

518 self.GPRMCspeedoverground = float(self.data[GNRMC][7]) 

519 self.GPRMCmode = self.data[GNRMC][12][:1] 

520 if self.data[GNVTG][1] == '': 

521 self.GPVTGtruetrack = None 

522 else: 

523 self.GPVTGtruetrack = float(self.data[GNVTG][1]) 

524 if self.data[GNVTG][3] == '': 

525 self.GPVTGtrackmagnetic = None 

526 else: 

527 self.GPVTGtrackmagnetic = float(self.data[GNVTG][3]) 

528 if self.data[GNVTG][7] == '': 

529 self.GPVTGspeed = None 

530 else: 

531 self.GPVTGspeed = float(self.data[GNVTG][7]) 

532 self.GPVTGmode = self.data[GNVTG][9][:1] 

533 except: 

534 print('POSLVX ERROR') 

535 
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536 def start(self): 

537 self.thread_alive = True 

538 self.loop_thread.start() 

539 
 

540 def kill(self): 

541 self.thread_alive = False 

542 del self.loop_thread 

543 
 

544 
 

545 class LMS511: 

546 import socket 

547 import numpy 

548 
 

549 def __init__(self, ip, port, radius=0.0): 

550 self.ip = ip 

551 self.port = port 

552 self.radius = radius 

553 self.buffer = 2048 

554 self.angle = self.numpy.deg2rad(self.numpy.linspace(-5, 185, 381)) 

555 self.device = None 

556 
 

557 def start(self): 

558 self.device = self.socket.socket(self.socket.AF_INET, self.socket.SOCK_STREAM) 

559 self.device.connect((self.ip, self.port)) 

560 self.device.settimeout(0.01) 

561 
 

562 def get_scan(self, heading=None, origin=None): 

563 self.device.send(b'\x02sRN LMDscandata\x03') 

564 raw_data = b'' 

565 while True: 

566 try: 

567 raw_data += self.device.recv(self.buffer) 

568 if raw_data[-1] == 3: 

569 break 

570 except self.socket.timeout: 

571 pass 

572 raw_data = raw_data.decode().split(' ') 

573 data_length = int(raw_data[raw_data.index('DIST1') + 5], 16) 

574 distance = raw_data[raw_data.index('DIST1') + 6:raw_data.index('DIST1') + 6 + 

data_length] 

575 distance = [int(i, 16) for i in distance] 

576 distance = self.numpy.array(distance) * 0.002 

577 indx = (distance >= self.radius) 

578 filtered_distance = distance[indx] 
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579 filtered_angle = self.angle[indx] 

580 
 

581 x = filtered_distance * self.numpy.cos(filtered_angle) 

582 y = filtered_distance * self.numpy.sin(filtered_angle) 

583 ret = self.numpy.row_stack((x, y)) 

584 
 

585 if heading is not None: 

586 rotational_angle = heading - (self.numpy.pi / 2) 

587 c = self.numpy.cos(rotational_angle) 

588 s = self.numpy.sin(rotational_angle) 

589 rotational_matrix = self.numpy.array([[c, -s], [s, c]]) 

590 ret = self.numpy.matmul(rotational_matrix, ret) 

591 ret = ret.transpose() 

592 if origin is not None: 

593 ret = ret + origin 

594 
 

595 return ret 

596 
 

597 
 

598 class ExponentialGainAdjustment: 

599 
 

600 def __init__(self, initial, increment, exponent, minimum, maximum): 

601 self.gain = initial 

602 self.increment = increment 

603 self.exponent = exponent 

604 self.previous_direction = 0 

605 self.maximum = maximum 

606 self.minimum = minimum 

607 
 

608 def update(self, direction): 

609 if direction * self.previous_direction > 0: 

610 self.increment = self.increment * self.exponent 

611 self.gain = self.gain + (direction * self.increment) 

612 elif direction * self.previous_direction < 0: 

613 self.increment = self.increment / self.exponent 

614 self.gain = self.gain + (direction * self.increment) 

615 elif self.previous_direction == 0: 

616 self.gain = self.gain + (direction * self.increment) 

617 if self.gain < self.minimum: 

618 self.increment = self.increment / self.exponent 

619 self.gain = self.minimum 

620 elif self.gain > self.maximum: 

621 self.increment = self.increment / self.exponent 

622 self.gain = self.maximum 
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623 self.previous_direction = direction 

624 return self.gain 

 

Table 18 High-level autonomous navigation software source code (Python) 

Line Code Line Code 

1 import smrclib 127 os.mkdir(log_directory) 

2 import serial.tools.list_ports 128 except FileExistsError: 

3 import time 129 print('[WARNING] Output directory 

already exist') 

4 import numpy 130 log_filename = log_directory + 

datetime.datetime.now().strftime('

\\%S%M%H%d%m%y.lg') 

5 import datetime 131 
 

6 import os 132 # NAVIGATION ROUTINE 

7 import cv2 133 # system_controller.set(9, 1) 

8 from scipy.spatial import cKDTree 134 system_controller.set(7, 1) 

9 
 

135 # system_controller.set(0, 1) 

10 
 

136 cruise_controller.set(1, 1) 

11 # GEOGRAPHICAL PARAMETERS 137 time.sleep(0.1) 

12 longitude_gain = 108657.32434       

# meter/degree_longitude 

138 steering_controller.set(1, 1) 

13 latitude_gain = 111456.76004        

# meter/degree_latitude 

139 time.sleep(0.1) 

14 
 

140 if command_speed is not None: 

15 # SENSORS PARAMETERS 141 cruise_controller.set(0, 

int(command_speed * 100.0)) 

16 locator_distance = 0.0      # 

meter 

142 
 

17 lidar_distance = 1.74       # 

meter 

143 initial_time = time.time() 

18 collision_radius = 0.6      # 

meter 

144 timestamp = time.time() 

19 lms511_radius = 0.001       # 

meter 

145 while True: 

20 poslvx_ip = '192.168.1.229' 146 longitude = poslvx.GPRMClongitude 

21 poslvx_port = 5017 147 latitude = poslvx.GPRMClatitude 

22 lms511_ip = '192.168.1.101' 148 navigation_heading = 

poslvx.GPHDTheading 

23 lms511_port = 2111 149 current_steering_position = 

steering_controller.poll(10) 

24 
 

150 current_speed = 

cruise_controller.poll(11) 

25 # VEHICLE PHYSICAL CALIBRATION 

PARAMETERS 

151 if current_steering_position < 

1500 or current_steering_position 

> 16000: 

26 steering_gain = 

0.0000498013323955794                           

# 1/meter_steering_position 

152 current_steering_position = 

previous_steering_position 

27 steering_offset = 

0.431766151719804                             

# 1/meter 

153 if current_speed < -6000 or 

current_speed > 6000: 

28 
 

154 current_speed = previous_speed 

29 # DECISION WEIGHT 155 
 

30 distance_score_weight = 1.5             

# dimensionless 

156 if current_speed == 0: 

31 heading_score_weight = 0.01             

# dimensionless 

157 current_speed = 0.01 

32 steering_smoothness_weight = 0.0        

# dimensionless 

158 
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33 obstacle_score_weight = -0.1            

# dimensionless 

159 locator_position = 

waypoints.to_meter(numpy.array([lo

ngitude, latitude])) 

34 collision_score_weight = -0.25          

# dimensionless 

160 car_heading = 

waypoints.to_mathematic_angle(navi

gation_heading) 

35 
 

161 car_position = locator_position + 

(locator_distance * 

numpy.array([numpy.cos(car_heading

), numpy.sin(car_heading)])) 

36 # ALGORITHM PARAMETERS 162 lidar_position = locator_position 

+ (lidar_distance * 

numpy.array([numpy.cos(car_heading

), numpy.sin(car_heading)])) 

37 control_loop_interval = 0.20            

# second 

163 
 

38 algorithm_collision_radius = 0.8        

# meter 

164 lidarscan = 

lms511.get_scan(car_heading, 

lidar_position) 

39 algorithm_predicted_distance = 

12.0     # meter 

165 lidarscan_color = 

numpy.repeat(lidarscan_display_col

or, lidarscan.shape[0], axis=0) 

40 trimmed_waypoints_length = 100          

# point 

166 
 

41 trimmed_forward_ratio = 70              

# percent 

167 _, car_position_index = 

waypoints.meter_manager.query(car_

position) 

42 command_speed = 7                       

# km/hr , None 

168 if abs(car_position_index - 

previous_trim_index) > 

trimmed_waypoints_length and 50 < 

car_position_index < 

(waypoints.meter_waypoints.shape[0

] - 50): 

43 waypoints_filename = 

'waypoints\\SKP(MAINROUTE).wp'       

# .wp filepath 

169 trim_index = previous_trim_index 

44 steering_profile_filename = 

'steering_profile\\(3S0).sp'            

# .sp filepath 

170 else: 

45 
 

171 trim_index = car_position_index 

46 # DISPLAY SETTING 172 previous_trim_index = trim_index 

47 display_width = 960             # 

pixel 

173 
 

48 display_height = 720            # 

pixel 

174 trim_params = (trim_index, 

trimmed_waypoints_length, 

trimmed_forward_ratio) 

49 display_plotspace = 0.8         # 

ratio 

175 prior_command_steering, 

prior_command_index, 

required_speed, blocked_status, 

predicted_path, predicted_heading, 

predicted_path_color, 

trimmed_waypoints, 

raw_steering_profile, 

adjust_profile_resolution, 

time_resolution = 

algorithm.update(car_position, 

car_heading, current_speed/360.0, 

current_steering_position, 

obstacle=lidarscan, 

trim_params=trim_params) 

50 display_division = 40           # 

division 

176 trimmed_waypoints_color = 

numpy.repeat(trimmed_waypoints_dis

play_color, 

trimmed_waypoints.shape[0], 

axis=0) 

51 lidarscan_display_color = 

numpy.array([[255, 0, 255]])          

# BGR colorspace 

177 selected_path = 

predicted_path[prior_command_index 

* time_resolution: 

(prior_command_index + 1) * 

time_resolution, :] 

52 trimmed_waypoints_display_color = 178 selected_path_color = 
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numpy.array([[255, 0, 0]])    # 

BGR colorspace 

numpy.repeat(selected_path_display

_color, selected_path.shape[0], 

axis=0) 

53 selected_path_display_color = 

numpy.array([[255, 0, 255]])      

# BGR colorspace 

179 
 

54 
 

180 if compensation_status: 

55 # LOG SETTING 181 gain_compensator_direction = 

(expected_steering_position - 

current_steering_position) * 

command_steering_direction 

56 log_directory = 'logdata' 182 gain_compensator_direction = 

gain_compensator_direction/abs(gai

n_compensator_direction) if not 

gain_compensator_direction == 0 

else 0 

57 
 

183 gain_compensation = 

gain_compensator.update(gain_compe

nsator_direction) 

58 # COMPENSATION ALGORITHM 

INITIALIZATION 

184 command_steering = 

gain_compensation * 

(prior_command_steering - 

current_steering_position) + 

current_steering_position 

59 gain_compensation = 0.7                 

# dimensionless 

185 else: 

60 initial_gain_compensation = 1.0         

# dimensionless 

186 command_steering = tuning_gain * 

(prior_command_steering - 

current_steering_position) + 

current_steering_position + 

tuning_offset 

61 gain_compensation_increment = 

0.005     # dimensionless 

187 
 

62 gain_compensation_exponent = 1.10       

# dimensionless 

188 if command_steering > 15500: 

63 minimum_gain = 0.3                      

# dimensionless 

189 command_steering = 15500 

64 maximum_gain = 1.0                      

# dimensionless 

190 elif command_steering < 2500: 

65 compensation_status = True 191 command_steering = 2500 

66 
 

192 
 

67 # COMPENSATION TUNING PARAMETERS 193 steering_controller.set(0, 

int(command_steering)) 

68 tuning_gain = 1.0 194 if cruise_control_status: 

69 tuning_offset = 0.0 195 command_speed = required_speed * 

360.0 

70 
 

196 cruise_controller.set(0, 

int(command_speed)) 

71 # NAVIGATION MODE SETTING 197 
 

72 cruise_control_status = False 198 print('[INFO] 

%d\t%d\t%d\t%s\t%.3f\t' % 

(command_steering, 

prior_command_steering, 

command_speed, blocked_status, 

gain_compensation), end='') 

73 
 

199 print(expected_steering_position, 

current_steering_position) 

74 # VEHICLE COMMUNICATION 200 
 

75 available_ports = 

serial.tools.list_ports.comports() 

201 visualizer.points = 

numpy.row_stack((predicted_path, 

lidarscan, trimmed_waypoints, 

selected_path)) 

76 ports_serial_number = 

[i.serial_number for i in 

available_ports] 

202 visualizer.points_color = 

numpy.row_stack((predicted_path_co

lor, lidarscan_color, 

trimmed_waypoints_color, 

selected_path_color)) 

77 ports_name = [i.device for i in 

available_ports] 

203 key_received = 

visualizer.update(text_info=('(%.6



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 141 

f, %.6f)' % (longitude, latitude), 

car_position)) 

78 ports_table = 

dict(zip(ports_serial_number, 

ports_name)) 

204 if key_received == 114: 

79 system_controller = 

smrclib.SystemController(ports_tab

le['0775'], 57600) 

205 visualizer.reset_view() 

80 cruise_controller = 

smrclib.CruiseController(ports_tab

le['0768'], 57600) 

206 elif key_received == 27: 

81 steering_controller = 

smrclib.SteeringController(ports_t

able['0918'], 57600) 

207 break 

82 
 

208 
 

83 # SENSOR INITIALIZATION 209 previous_steering_position = 

current_steering_position 

84 poslvx = smrclib.PosLVX(poslvx_ip, 

poslvx_port) 

210 previous_speed = current_speed 

85 lms511 = smrclib.LMS511(lms511_ip, 

lms511_port, lms511_radius) 

211 expected_steering_position = 

raw_steering_profile[prior_command

_index, 

expected_steering_time_index] 

86 poslvx.start() 212 command_steering_direction = 

command_steering - 

current_steering_position 

87 lms511.start() 213 
 

88 
 

214 while time.time() - timestamp < 

control_loop_interval: 

89 # NAVIGATION ALGORITHM 

INITIALIZATION 

215 pass 

90 trimmed_forward_ratio = 

trimmed_forward_ratio / 100.0 

216 timestamp = time.time() 

91 steering_center = 

steering_offset/steering_gain 

217 
 

92 score_weight = 

numpy.array([distance_score_weight

, heading_score_weight, 

steering_smoothness_weight, 

obstacle_score_weight, 

collision_score_weight]) 

218 with open(log_filename, 'a') as f: 

93 
 

219 f.write('%.10f\t' % (timestamp-

initial_time)) 

94 waypoints = 

smrclib.WaypointsMap(waypoints_fil

ename, longitude_gain, 

latitude_gain) 

220 f.write('%.10f\t' % longitude) 

95 steering_profile = 

smrclib.SteeringProfile(steering_p

rofile_filename, steering_gain, 

steering_offset) 

221 f.write('%.10f\t' % latitude) 

96 visualizer = 

smrclib.Visualizer2D('Navigator', 

display_width, display_height, 

display_plotspace, 

display_division, 

waypoints.meter_waypoints) 

222 f.write('%.10f\t' % 

navigation_heading) 

97 algorithm = 

smrclib.ScoredKinematicPath2D(wayp

oints, steering_profile, 

score_weight, 

algorithm_collision_radius, 

algorithm_predicted_distance, 

neglect_collision=True) 

223 f.write('%d\t' % 

current_steering_position) 

98 gain_compensator = 

smrclib.ExponentialGainAdjustment(

initial_gain_compensation, 

gain_compensation_increment, 

gain_compensation_exponent, 

minimum_gain, maximum_gain) 

224 f.write('%d\t' % (current_speed / 

100.0)) 

99 expected_steering_time_index = 225 f.write('%d\t' % command_steering) 
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numpy.abs(steering_profile.time_ax

is - 

control_loop_interval).argmin() 

100 
 

226 f.write('%d\t' % command_speed) 

101 longitude = poslvx.GPRMClongitude 227 f.write('%.10f\t' % 

longitude_gain) 

102 latitude = poslvx.GPRMClatitude 228 f.write('%.10f\t' % latitude_gain) 

103 navigation_heading = 

poslvx.GPHDTheading 

229 f.write('%.3f\t' % 

distance_score_weight) 

104 locator_position = 

waypoints.to_meter(numpy.array([lo

ngitude, latitude])) 

230 f.write('%.3f\t' % 

heading_score_weight) 

105 car_heading = 

waypoints.to_mathematic_angle(navi

gation_heading) 

231 f.write('%.3f\t' % 

obstacle_score_weight) 

106 car_position = locator_position + 

(locator_distance * 

numpy.array([numpy.cos(car_heading

), numpy.sin(car_heading)])) 

232 f.write('%.3f\n' % 

collision_score_weight) 

107 _, previous_trim_index = 

waypoints.meter_manager.query(car_

position) 

233 
 

108 
 

234 cv2.destroyAllWindows() 

109 previous_steering_position = 

steering_controller.poll(10) 

235 cruise_controller.set(1, 2) 

110 previous_speed = 

cruise_controller.poll(11) 

236 time.sleep(0.1) 

111 
 

237 system_controller.set(1, 0) 

112 while not (1500 < 

previous_steering_position < 

16500): 

238 time.sleep(0.1) 

113 previous_steering_position = 

steering_controller.poll(10) 

239 steering_controller.set(1, 0) 

114 time.sleep(0.1) 240 time.sleep(0.1) 

115 while not (-6000 < previous_speed 

< 6000): 

241 system_controller.set(2, 0) 

116 previous_speed = 

cruise_controller.poll(11) 

242 time.sleep(0.1) 

117 time.sleep(0.1) 243 system_controller.set(0, 0) 

118 
 

244 time.sleep(0.1) 

119 expected_steering_position = 

previous_steering_position 

245 system_controller.set(7, 0) 

120 command_steering_direction = 0 246 time.sleep(0.1) 

121 
 

247 system_controller.set(9, 0) 

122 brake_pedal_status = False 248 time.sleep(0.1) 

123 cruise_controller_emergency_status 

= False 

249 
 

124 
 

250 while cruise_controller.poll(11) > 

0: 

125 # LOG INITIALIZATION 251 time.sleep(0.1) 

126 try: 252 cruise_controller.set(1, 0) 
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