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Kanin Kiataramgul : PATH FOLLOWING AND OBSTACLE AVOIDANCE FOR
AUTONOMOUS VEHICLE BASED ON GNSS LOCALIZATION. Advisor: Asst. Prof.
NUKSIT NOOMWONGS, Ph.D.

Nowadays, many systems, formerly operated by human beings, are now developed to
minimize user control effort. One outstanding system that receives close attention is the autonomous
driving system. However, several autonomous driving systems that are currently developed utilize
expensive sensing devices, e.g., camera and laser scanner. Moreover, these devices cannot be solely
employed but a high-performance processing unit is also required. These pricey components result
in an expensive system that does not worth to be used in some practical applications. Therefore, this
research intends to utilize other low-cost sensing devices so that the final price of the developed
system can be reduced. Hence, the Global Navigation Satellite System (GNSS) with a Real-Time
Kinematic (RTK) correction was applied to this research as a prior sensor. However, a laser scanner
was still employed as a complementary sensor to detect obstacles which cannot be detected by the
GNSS alone. This developed system was designed to effectively operate at a travel speed lower than
15 kilometers per hour in a GNSS-friendly environment. In this research, the micro electric vehicle
was modified by installing the steering control system and the speed control system, which consists
of the acceleration control system and the braking control system. These supplementary systems are
controlled by the high-level control system. Next, the high-level control system software was
developed. This software controls a vehicle to follow a predefined route by using the GNSS in a
localization process and using a laser scanner in the obstacle avoidance algorithm which was
developed in this research, i.e., the Scored Predicted Trajectory. Then, the parameters, which affect
the high and low-level control system characteristic, was tuned until a satisfactory response was
achieved. Next, the developed autonomous navigation system evaluation experiment was conducted
in a controlled environment area by separately evaluated the path following system and the obstacle
avoidance system. After the path following system experiment was launched using a travel speed of
10 and 15 kilometers per hour, it has been found that the developed system effectively performs
even some portions of the test track are either covered by large trees or surrounded by buildings, i.e.,
the environment by which the performance of the GNSS is degraded. The result of this experiment
shows the average deviation distance from the waypoint of about 10 centimeters. In the obstacle
avoidance system experiment, the result shows that the developed system responds to the obstacle by
evading it and safely converging to the predefined path according to the designed algorithm.

Field of Study: Mechanical Engineering Student's Signature ..........cccecoveveicinenen,
Academic Year: 2019 Advisor's Signature ..........coccceeveieenenn.
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CHAPTER I
INTRODUCTION

1. Background and Significant of the Research Problem

Autonomous driving nowadays receiving great attention from the public and
their authority throughout the world. Several numbers of organizations, not only the
originally automotive field companies, are now focusing on the development of the
autonomous vehicle. Among these corporations, there appear a common objective
between them in developing of an autonomous driving system which is to reach the
solutions to any complications emerge from currently traffic situation, e.g., improving
traffic congestion problem, enhancing road safety by diminishing human mistake, etc.
However, before moving to further topics, a common convention on terminology
should be established. In the following section, a definition of levels of driving

automation is presented.

1.1. Levels of Driving Automation According to SAE
According to the Society of Automotive Engineers (SAE) standard[1], levels
of driving automation can be divided into 6 levels, ranging from Oth to 5th level,
which a higher level represents a higher degree of driving automation, i.e. Oth and 5th
level autonomous indicates no automation and full automation, respectively. The

followings describe a narrative definition of each level.

1.1.1. Oth Level, No Automation

In this level, the human driver performs full control all over the driving period.
Some of the warning systems may be introduced to this level, however, the driver’s
decision completely dominates the dynamics driving task. Example of mentioned
warning systems which are now available is Lane Change Assistance (LCA), Lane
Departure Warning (LDW), Forward Collision Warning (FCW), Park Distance
Control (PDC), etc.



1.1.2. 1st Level, Driver Assistance

An assistance system is introduced to this level. This assistance system could
be either by automated steering or acceleration control which performs on human
driver request, however, other dynamic driving tasks are fully controlled by the
driver. Available technologies of these assistance systems including Adaptive Cruise
Control (ACC), Park Assist (PA), Lane Keeping Assist (LKA), etc.

1.1.3. 2nd Level, Partial Automation

More assistance systems are applied to this level. Identical to the 1st Level, the
system is still activated only when the human driver making a request. Nevertheless,
other remaining dynamic driving tasks are fully controlled by the driver. The
following named assistance systems are included in this level: Park Assistance,

Traffic Jam Assist, etc.

1.1.4. 3rd Level, Conditional Automation

All dynamics driving tasks perform automatedly by automated assistant
systems. However, in some situations, an automated assistant system could request a
human driver to take control of a dynamic driving task. Some features included in this
level are Traffic Jam Chauffeur, Motorway Chauffeur (MWC), etc.

1.1.5. 4th Level, High Automation

The distinction between this 4th Level and the 3rd Level of driving automation
is that in this level, whenever in some defined situations and a human driver is
requested by an automated system to intervene. If the driver does not respond to this
request appropriately, the automated system should have the ability to perform a
proper dynamic driving task. Highway Pilot and Piloted Parking are some of the

example functions in this level.

1.1.6. 5th Level, Full Automation
A fully automated system in this level performs all dynamic driving tasks for

the overdriving period. There will be no request for a human driver to intervene in a



dynamic driving task in any situation. However, the human driver still possesses an
ability to manage the roadways and environmental conditions.

Table 1 shows a summary of the level of driving automation according to the
SAE. Note here for named technologies, features, and assistant systems mention
above are not all commercially introduced[1].

Table 1 Summary of level of driving automation according to SAE[1]
Summary of Levels of Driving Automation for On-Road Vehicles

This table summarizes SAE International's levels of driving ion for on-road cl Report J3016 provides full defi for these levels and for the italicized
terms used therein. The levels are descriptive rather than normative and technical rather than legal. Elements indicate rather than for each level.
“System" refers to the driver system, i of driver assi yst or driving system, as appropriate.
The table also shows how SAE's levels definitively spond to those developed by the G Federal Highway Research Institute (BAS) and approximately correspond to those
described by the US National Highway Traffic Safety Administration (NHTSA) in its “Preliminary of Policy C Vehicles™ of May 30, 2013.
Execution of Fallback System
steering and [Monitoring of| performance | capabllity
3 acceleration/| driving | of dynamic | (driving | . | .
= Name Narrative definition deceleration | environment | driving task | modes) 3 3| =3
Human driver monitors the driving environment
No the full-time performance by the human driver of all aspects of the dynamic driving task, 5 i 3>
o Automation even when enhanced by waming or intervention systems Humen driver | Human driver | Human driver L 5%
the driving mode-specific by a driver assi system of either o -
Driver steering or i ion using i ion about the driving environment | Human driver < " gk 2
L Assistance | and with the expectation that the human driver perform all remaining aspects of the and system Humen diver| Humen diiver 9 g !
dynamic driving task modes
the driving mode-specific execution by one or more driver assistance systems of both Some B
Partial steering and using i about the driving environment . aa 3%
2 | putomation| and with the expectation that the human driver perform all remaining aspects of the System | Human driver | Human driver |  driving 5 £
dynamic driving task modes e
Automated driving system (“system") monitors the driving environment
the driving mode-specific performance by an automated driving system of all aspects of Some »%
3 | Conditional the dynamic driving task with the expectation that the humen driver will respond System System | Human driver| driving 5%
Automation appropriately to a request fo intervene modes *3
the driving mode-specific performance by an automated driving system of all aspects of Some R
4 High the dynamic driving task, even if a human driver does not respond appropriately to a System System System driving SE
Automation request to intervene modes | %
3
Full the full-time performance by an automated driving system of all aspects of the dynamic All drivin
5 driving task under all roadway and environmental conditions that can be managed by a System System System 9
Automation hesnan driver modes

1.2. Level of Driving Automation According to BASt

According to the report from Transportation Research Board (TBR), the
German Federal Highway Research Institute (BASt)[2]. The level of driving
automation can be classified as 5 levels including 1) Driver Only 2) Driver Assistance
3) Partial Automation 4) High Automation and 5) Full Automation. For the first 3
levels, their definitions are identical to the first 3 levels described by the Society of
Automotive Engineers (SAE). For the last 2 levels, their definition can also be
described by the 3rd and 4th Levels of the SAE classification, respectively. Table 2
describes a narrative summary of the level of driving automation according to the
BASt.



Table 2 Summary of level of driving automation according to BASt[3]

Definitions Descriptions
Driver Only Human driver executes manual driving task
Driver Assistance The driver permanently controls either longitudinal or lateral

control. The other task can be automated to a certain extent by
the assistance system.

Partial automation The system takes over longitudinal and lateral control, the driver
shall permanently monitor the system and shall be prepared to
take over control at any time.

High Automation The system takes over longitudinal and lateral control; the driver
must no longer permanently monitor the system. In case of a
take-over request, the driver must take-over control with a
certain time buffer

Full Automation The system takes over longitudinal and lateral control completely
and permanently. In case of a take-over request that is not
carried out, the system will return to the minimal risk condition
by itself.

From here on, any levels of automation mentioned will refer to the levels
classified by the Society of Automotive Engineers.
Throughout this text, the main attention is given to the 2nd to 5th levels of driving
automation. Since driver assistance systems are fundamentals for autonomous or self-
driving vehicles, the following section gives a brief explanation for theses selected

systems.

1.3. Driver Assistance Systems
Driver assistance systems are fundamentals for vehicles categorized in the 2nd to 5th
driving automation level. Longitudinal and lateral directions control are mainly
systems applied to an autonomous driving system. In this section, cruise control

collision avoidance and lane-keeping assist systems are taken to be introduced[4].

1.3.1. Cruise Control
The cruise control system is applied to a vehicle to maintain the speed of a vehicle or
space between the host and a preceding vehicle. The cruise control system can be
classified as 2 different types, standard and adaptive cruise control systems. In the
standard cruise control system, only speed is to be maintained by means of controlling
vehicle acceleration or deceleration. For adaptive cruise control (ACC), both spacing,

refer to space between vehicles, and speed are controlled. By comparing space to a



certain threshold, depending on the vehicle’s speed, an adaptive cruise control system
can then determine whether space or speed control is safe and appropriate to the

current driving situation.

1.3.2. Collision Avoidance
Like the adaptive cruise control system, however, the collision avoidance system
contains some different details that differ from the adaptive cruise control system.
Collision avoidance system operates by deciding whether a current driving speed is
safe or not, then, if dynamics driving take is indispensable to avoid a collision,
deceleration, or even emergency braking is performed. Collision warning may also be
included in this system.

Furthermore, there appear several researches suggest that collision avoidance
cannot be performed by only braking or deceleration[5, 6]. But in some situations,
depending mainly on the time to collision (TTC), a duration which a host vehicle will

collide with a preceding one if a current velocity is maintained, evasive steering man

1.3.3. Lane Keeping Assist
Lane-keeping assist (LKA) system provides an automated lateral position control for
a vehicle to keep the vehicle’s lateral position in a proper region between lane
marking and prevent a vehicle from an unintended lane changing. This system is
extended from the lane departure warning (LDW) system by including actuators to
control and perform the dynamic driving task. The crucial part of the system is to
detect and estimate the lateral position of a vehicle. Several organizations have
proposed different techniques in measuring a lateral position, e.g., magnetic field
guided, vision base measurement, a global positioning system (GPS).

This research will utilize these driver assistance systems as fundamentals, and
by further system implementation, to develop an autonomous, or a self-driving car,

based on the global navigation satellite system (GNSS).

2. Objectives of Research
2.1. To develop the hardware segment of the low-level control system including

the speed control system, braking control system, and steering control system.



2.2. To develop a software of the high-level control system based on the global
navigation satellite system localization.
2.3. To develop the obstacle avoidance algorithm for the collision avoidance

system

3. Scope of the Research

3.1. To develop hardware as implementations that can be used in an autonomous
driving system.

3.2. A developed autonomous navigation system mainly relies on the GNSS
positioning system, which effectively operates in an open sky area.

3.3. The expected operation speed in this research is set to be under 15 kilometers
per hour.

3.4. A developed autonomous vehicle can safely interact with a detected threat in

a predefined scenario.

4. Expected Benefits

Since other autonomous vehicle systems that were recently developed mostly
utilize an expensive sensing device, e.g., 3D lasers scanner, and require a high-
performance processing unit. Hence, this research aims to develop an alternative
autonomous navigation system that employs a lower cost sensing device compare to
other developed systems that are currently available. However, the developed system
is not intended to be used in the same application level as the available systems. The
developed system will be designed to be used in a low-speed application, i.e. below

15 kilometers per hour, and operates in a constrained environment.



CHAPTER Il
LITERATURE REVIEW

1. Localization Techniques

To set a navigation course, an autonomous vehicle needs to know its position,
either global or local position. Besides position in space, orientation, or pose, is also
required for autonomous driving navigation. Localization is, therefore, one of the
most crucial parts of mobile robotics which can also be applied to a low speed
autonomous, the main consideration of this research topic. The following presents

reviews of some literature on the localization method in a different technique.

1.1. Landmark-based Localization
Landmark-based localization can be classified as 2 main types, i.e. natural and

artificial landmark-based localization.

1.1.1. Natural Landmark-based Localization

Natural landmark-localization is the localization method by which a position is
determined using features extracted from the actual unmodified environment. Various
types of sensing information can be used as input for feature extraction, e.g., radial
distance from a laser rangefinder. According to R. Madhavana and H. F. Durrant-
Whyte in “Natural landmark-based autonomous vehicle navigation”[7], Their
research focuses on developing an algorithm to effectively extract natural dominant
point landmarks obtained by using a laser range finder. In their research, features
from the unmodified environment are extracted by applying a specific technique
called the Curvature Scale Space (CSS) algorithm. In brief, extracted curvatures are
derived from segmented range images from a laser rangefinder. These segmented
range images are convoluted by Gaussian kernel with different levels of scale,
depending on kernel’s width to produce preferable curvature values. Dominant
curvatures, extrema curvatures, are then identified by applying to a certain condition.

In the localization section, these dominant curvatures are used as natural

landmarks along with the odometry method, i.e. relative positioning by dead-



reckoning estimation, by applying the Extended Kalman Filter (EKF) to determined
vehicle position. After comparing with reference ground truth position, i.e. Real-Time
Kinematic (RTK) Global Positioning System (GPS), they state that error results in

lower than 25 centimeters for the position and 2 degrees for orientation.
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Figure 1 Extracted natural landmark (dominant curvature) and laser rangefinder

image[7]

From the last article mentioned, several landmarks, more than one, are
required to identify a position in the matching process. However, instead of detecting
several landmarks, one can perform a modified approach by detecting only single
landmarks but twice by different positions. According to Bais et al. in “Single
landmark based self-localization of mobile robots”[8], a robot’s position is
determined by range measurement of a single landmark in 2 different arbitrary
positions. The displacement between these 2 positions is assumed to be known
exactly, by adopting a dead-reckoning measurement, and be used along with 2 range
measurements of this landmark from 2 different positions, determined by stereo vision
approach, in geometrical approach, namely triangulation, to estimate the position

relative to this landmark. Furthermore, vision-based measurement, i.e. color



transition, line detection, is used in this research to extract landmarks, e.g., color

transition, corner, line intersection, and junction.

1.1.2. Artificial Landmark-based Localization

Several artifacts are utilized as artificial landmarks for landmark-based
localization, most of them are vision-based landmarks, and however, different
approaches are presented in some article. In vision-based landmark research, various
types of machine-readable codes are mentioned. According to Kartashov et al. in
“Fast artificial landmark detection for indoor mobile robots”[9], QR code is employed
as an artificial landmark. Their work concentrates on the implementation of an
additional color plate to a plane QR code. The additional part consists of 4 different
color regions, and by selecting an appropriate color, the contour of the QR code panel
is detected and QR code information is identified. Figure 2 illustrates their designed

artificial landmark and Figure 3 depicts the result.

Figure 2 Designed landmark[9]

B

(a) Detected label (b) Extracted QR code

Figure 3 a) Detected label b) extracted QR code

Another vision-based landmark technique proposed by Salahuddin et al., “An

efficient artificial landmark-based system for indoor and outdoor identification and
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localization”[10] can be used for the outdoor environment. A landmark label mainly
depends merely on the encoded color pattern, however, more than one pattern in each
landmark label is suggested. According to this article, this approach can also be used
in determining the distance between vehicle, or sometimes called headway distance,
by attaching this label, containing more than a single pattern, to preceding vehicle.
Figure 4 depicts the examples of the proposed landmark label for license plate and
road sign.

a BAMICHIGAN ™ 5
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n - GREAT LAKES' I ..

Figure 4 Sample artifact landmarks

Apart from the vision-based artificial landmark, a technique that is frequently
mentioned in several literatures is the Radio Frequency ldentification (RFID)-based
localization. One research on this type of landmark, “A RFID Landmark Navigation
Auxiliary System”[11], illustrate the potential of RFID to be used instead of vision-
based or other natural artificial landmark localization. According to this article, 7
RFID tags are organized in the hexagon array form, and by this configuration with
knowledge of antenna detection radius, tag array dimension, body speed and time
duration of tag detection, the position including orientation of vehicle can be
identified.

According to the “Machine learning approach to self-localization of mobile
robots using RFID tag”[12] by Senta et al., a different approach from the previously
mentioned article for RFID landmark localization is proposed. Instead of determining
position and orientation by solving the kinematic or geometric problem, this research
applying the machine learning approach, namely the support vector machine (SVM),
to avoid some difficulties, e.g., define every tag’s position, complex kinematic

problem.
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1.2. Localization Base on Global Navigation Satellite System

Global Navigation Satellite System (GNSS), nowadays, receives great
attention from any system developers who involve in determining a global position. In
the early of global positioning by using earth-orbiting satellite, the Doppler shift
technique was used in determining global position, the American Navy Navigation
Satellite System (NNSS), or TRANSIT, is an example for this technology. However,
TRANSIT shows the main disadvantage, i.e. lack of accuracy and its complexity[13],
Global Positioning System (GPS), the American GNSS, are thereby developed to
replace the TRANSIT.
Although GPS, and other equivalent systems, other GNSS, such as GLONALL,
Galileo, etc., are widely acceptable, complexity and limitation still occur in
determining the position. According to Zhu et al. in “GNSS Position Integrity in
Urban Environments: A Review of Literature”[14], GNSS application in the urban
environment may emerge from signal reception. In an urban environment, lots of
obstacles, e.g., trees, buildings, etc., may cause a signal to be distorted or attenuated
or sometimes these obstacles even totally block the entire signal to the receiver, even
though the GNSS was designed to provide at least 4 satellite signals anytime for
receiver anywhere on earth. Figure 5 depicts 2 different phenomena that cause
complexity for GNSS in the urban environment, i.e. multipath interference and Non-
Line of Sight (NLOS) phenomena.

Signal Direct signal from Signal Direct signal
reflected by a low-elevation reflected by a is blocked
building satallita building /

Signal reflected
off the groun;

User

(a) (b)

Figure 5 a) Multipath interference b) NLOS reception[14]

Apart from the terrestrial object, the ionosphere and atmosphere environment
can cause the signal to undergo perturbation. From these phenomena, positioning
accuracy of about 2 to 4 meters may be determined. One method, that currently is

given great attention, used to reduce this deviation is the Real-Time Kinematic (RTK)
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approach. Several low-cost commercial GNSS devices currently equipped with this
technology. According to Jackson et al., in “A performance assessment of low-cost
RTK GNSS receivers”[15], 5 low-cost (lower than 500 USD), i.e. Piksi Multi,
NVO08C-RTK, Reach, NEO-M8P and S2525F8-RTK, and 1 relatively expensive
(more than 1,000 USD), i.e. Eclipse P307, receivers are taken to be investigated in
performance. Five types of standard performance metrics are used as criteria for
performance comparison, i.e. accuracy, continuity, availability, and time to first fix

metric type. Metrics and their summary descriptions are given in Table 3.

Table 3 Summary of the performance metrics[15]

Metric Type Metric Description Units
Value of the difference between RTK fixed-integer horizontal
position solution and the truth position.

The likelihood of losing an RTK fixed-integer position solu-
tion. Presented as loss of RTK locks per RTK minute.

The amount of time it took a receiver to reacquire an RTK
lock after it was lost.

The total amount of time as a percentage of testing time that
a receiver reported an RTK fixed-integer solution.

The total amount of time as a percentage of testing time
RTK Availability that a receiver reported an RTK fixed-integer or floating-point % of lime
solution.

The amount of time that it took a receiver to report its initial
RTK fixed-integer solution.

Accuracy RTK Fixed-Integer Accuracy meters

Loss of Locks per Minute number of losses per minute

Continuity

Reacquisition Time seconds

Fixed-Integer Availability % of time

Availability

Time to First Fix | Time to First RTK Fix seconds

This research reveals that all the 6 receivers reached a centimeter-level
accuracy up to the 95th percentile of the measurement. Another interesting result is
that the performance evaluated also depends on the antenna type, i.e. rover or patch

antenna.

1.3. Summary of Localization Technique

The different techniques in localizations undergo different drawbacks. In
landmark-based localization, for natural landmark case, the introduced article[7]
suggests that a high dynamic environment should not be used as a resource for natural
landmark extraction. Since our research objectives concentrate on autonomous driving
which test experiment intends to perform in a considerably dynamic environment.
Then natural landmarks may not be totally suitable for this research. However, some
techniques, such as maxima curvature extraction by laser rangefinder, could be
applied to our system.
Another research in natural landmark-based localization presented[8] tries to utilize

only a single detected landmark to determine the robot position. However, the
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assumption they used, i.e. the exact relative position is known by a dead-reckoning
estimation, is mentioned by several literatures[11, 16] that will gradually encounter
the commutative error along the navigation path. Figure 6 and Figure 7 depict that

commutative error growth along the distance traveled.
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Figure 7 Experimental results from odometry and localization[16]

For vision based-landmark localization, most complexities come from
environmental factors, such as ambient light. However, difficulties may emerge from
the detection algorithm itself that required sophistication and robustness to effectively
detect and extract information from any pattern label[9, 10].

GNSS can also provide a very precise location, however, further technique,
e.g., Differential Global Positioning Systems (DGPS), Real-Time Kinematic (RTK),
need to be applied to achieve a high accuracy positioning. Although high precision

localization can be achieved by GNSS, as performance evaluation shown in the article
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above[15], GNSS still cannot be used as a single localization approach due to lack of

continuity.

2. Path Follower Autonomous

Path follower robot can be examined as basic for a more sophisticated
autonomous driving system. At first glance, several path follower robots utilized
numbers of the proximity sensor in determining their position. With a simple
hysteresis controller, many of them perform an application acceptable result[17, 18].
Apart from a simple hysteresis controller, several more sophisticated controllers are
proposed, e.g., legendary Proportional Integral Derivative (PID) controller. According
to A. Al Arabi et al. in “Autonomous Rover Navigation Using GPS Based Path
Planning™[19], the autonomous rover utilized the PID controller by selecting the path
deviation distance derived from the GNSS positioning system as a controlled
parameter, the result shows that the autonomous rover properly follows the predefined
path. Furthermore, from M. Engin et al. in “Path Planning of Line Follower
Robot”’[20], the PID controller shows better results than the simple hysteresis
controller in both maximum velocity used and tendency to astray from a predefined
path.

However, a complicated autonomous driving application required more
control techniques to achieve a satisfactory performance, furthermore, several real
situation incidents need to be taken into consideration, e.g., the appearance of an
unpredicted obstacle. Consequently, the high-level algorithm for autonomous path

planning is utilized.

2.1. The Dynamic Window Approach (DWA)

Besides prescribing a fixed predefined path for an autonomous car to follow,
the instantaneous path generating algorithm is popularly adopted by numbers of
research, one outstanding algorithm is the Dynamic Window Approach (DWA).
According to D. Fox, W. Burgard, and S. Thrun, in “The Dynamic Window Approach
to Collision Avoidance”[21], DWA is a local path planner which optimized robot
velocities base on its performance, i.e. maximum linear and angular acceleration or

deceleration, such that results in the optimal admissible path. For this algorithm, an
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admissible local path is calculated by maximizing the cost-like function, called the
objective function, considering target heading, clearance to the obstacle, and robot

velocity from dynamic window search space.
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Figure 8 Dynamic window from the Dynamic Window Approach (DWA)[21]
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CHAPTER II1
RELATED THEORY

1. Global Navigation Satellite System (GNSS)[22]

The Global Navigation Satellite System (GNSS) is a localization system using
signal broadcasted Medium Earth Orbiting (MEO) satellites whose altitude are about
20,000 km above the earth's surface. Nowadays, GNSS systems that available for
civilian applications are the Global Positioning System (GPS — Unites States),
GLObal NAvigation Satellite System (GLONASS — Russia), Galileo (European
Union), and BeiDou (China). Among all these GNSS systems, GPS is the most
outstanding system that was first developed before other systems, originally for
military purposes. Therefore, a general principle of the GPS will be introduced in this

section as an example that represents an overview of the GNSS.

1.1. The Global Positioning System (GPS)

By April 2020, the GPS already has 31 satellites in operation and 9 in reserve.
Originally, 24 satellites are expected to be a number of the least satellites operated by
the GPS. The principle underlying the GPS ability to localize a certain terrestrial
object is simply measuring the distances between at least 4 satellites and a receiver
attached to such object. Basic components of the GPS consist of 3 parts, i.e. a control
station, satellites, and a receiver. The first component, i.e. control stations, located
around the world, keeps tracking and monitoring all satellites. Each satellite’s
ephemeris, a satellite’s predicted position and velocity, is updated by these control
stations providing a precise localization to the system. Inside each satellite contain a
high precision atomic clock, this atomic clock is used to generate 2 GPS carrier waves
with different frequencies, i.e. 1575.42 and 1227.60 megahertz, known as L1 and L2,
respectively. Each wave is modulated with a stream of bit called a Pseudo Random
Noise (PRN) determined by a precise mathematic algorithm. These waves later are
broadcasted to the earth and received by a terrestrial receiver. Two methods are
available in distance measurement, i.e. a code ranging and a carrier-phase ranging. In

a code ranging, The receiver determines a distance toward the satellite by measuring a
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time lag between a received signal and a synchronous receiver-satellite generated
signal, as shown by Figure 9. The equation relates a time lag and the distance between
a receiver and the satellite is given by Equation (1).

p=cr (1)
Where p denotes the distance between a receiver and the satellite, known as the
pseudorange. C represents the signal traveling speed and 7 is a measured time lag as

shown by Figure 9.
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Figure 9 Time lag determined from GPS signal
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The GPS signal carrier wave’s phase is measure in a carrier-phase ranging
method providing a higher precision than what obtained by a code ranging method.
However, the carrier-phase ranging only determines the fractional phase part of the
total pseudorange, i.e. ¢4 in Figure 10, leading to the unknown number of complete
wavelengths N, known as an integer ambiguity. To determine this integer ambiguity,
the code ranging along with more receiver is utilized by a certain technique called a
double differencing. Equation (2) shows the relationship of parameters in a carrier-

phase ranging method.
p=(N+¢)2 2)
Where p, N, ¢, and 4 denote a pseudorange, integer ambiguity, measured phase,

and the carrier signal’s wavelength.
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GNSS receiver

Figure 10 Phase-carrier ranging

1.2. Source of GNSS Measurement’s Error

The error in measuring a pseudorange of the GNSS may emerge in different
levels of the system. In the satellite level, an inaccurate ephemeris of the satellite may
be broadcasted to the geodesic receiver. Therefore, the receiver will output the false
position. This sort of error may be caused by insufficient monitoring by the ground
station. Also, gravitational attraction by other planets, moon, or sun, and the solar
radiation pressure can deviate the actual satellite position away from the prediction,
i.e. an ephemeris. While traveling from the satellite to a receiver, the GNSS signal’s
speed is distorted along the way through the earth’s atmosphere. According to
Equation (1), since the signal traveling speed changes, then the pseudorange
determined by using a speed of light will be invalid. This error in an atmosphere level
occurs in both the ionosphere and troposphere layer. In these layers, charged and
neutral particles contribute to a change in the traveling velocity of a signal. Moreover,
the indirect path of the signal may occur by reflecting any terrestrial objects before
reaching the receiver’s antenna, this kind of error is called a multipath error.

In code ranging, the measured time lag plays a major role in determining a
pseudorange. Therefore, the precise pseudorange must be determined by a precise
time measurement. One major problem existed in the receiver level is a clock error.
However, a clock error also happens in a satellite level but compared to the receiver

level, an error in a receiver clock results in more severe to the measured pseudorange.

1.3. Pseudorange Equations
An unknown position point in 3-dimensional space can be determined by

using three distances between that unknown position point and the other three
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reference points whose position is exactly known. However, as previously mentioned,
the measured pseudorange can be deviated from the actual distance toward a satellite
by the clock error. Therefore, the relation between a pseudorange and the actual
distance toward a satellite can be stated by Equation (3).

p=p+e 3)
Where P is the pseudorange, # is the actual distance toward a satellite, and € is the
distance error due to a clock error. Since the position of the satellite is assumed to be
known exactly from the satellite’s ephemeris. Then, Equation (3) can be rewritten to
Equation (4).

p:\/(x—xr)2+(y—yr)2+(z—zr)2+c5 (4)
Where X, ¥ and Z denote the position of a satellite in a cartesian coordinate system.

Xf, y,1 and r represent the position of a receiver in a cartesian coordinate system. €

is the carrier wave traveling speed and ¢ is the clock error time. Since the clock
variation among satellites is negligible compare to the time difference between a
satellite and a receiver. Then the clock error time is considered to be equal for every
pseudorange measured by one certain receiver. Also, by assuming that the carrier
wave traveling speed is known, the pseudorange equations constructed as shown by
Equation (5).

(Xl_xr)2+(y1_yr)2+(zl_zr)2 +Co

)2+ s zr)2 +Co

(5)

Yo=Y ( -
y3—yr)2+(23—zr)2 +co
y4_yr)2+(24_zr)2 +Co

Where Xi, yi, and Zidenote the position of the | satellite in a cartesian coordinate

system, and Pi s the pseudorange of the 1 satellite. Since 4 unknowns with 4
equations appear in Equation (5), then the position of the receiver can be solved using
the measure pseudorange from 4 satellites. Moreover, the result has included the
clock error effect. Figure 11 illustrates the parameters used in the pseudorange

equation.
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It can be shown that if the receiver is operated in a static positioning mode, i.e.
the receiver is held in place measuring a static position, one can utilize only 2
satellites in pseudorange measurement at a time, however, the measurement process
has to be repeated at least 3 times. Whereas in kinematic positioning, i.e. the receiver
is moving while receiving the GNSS signal, at least 4 satellites are required for each

measurement.
Satellite 2 Satellite 3
(32, 15, 23) (3, 3, 23)
Satellite 1 Satellite 4
(9.01,2) % ,' \ (x4, ¥4 24)
W\‘ k\f’z f’:{,'l - %
Ply‘\_‘k I’4

| GNSS receiver
(dr, V. 2¢)

Figure 11 Parameters used in the pseudorange equation.

1.4. Differential Global Positioning System (DGPS)

The accuracy of the GNSS positioning can be improved by introducing the
second receiver. This second receiver is employed as a base station, i.e. base receiver,
of which the exact position is assumed to be known. The Differential Global
Positioning System (DGPS) determines the error in pseudorange according to
Equation (6), assuming the position of both the satellite and a base receiver is known
exactly. The correction obtained from this equation is called a Pseudorange
Correction (PRC).

Api:\/(Xi_Xb)2+(yi_yb)2+(zi_zb)2_pil (6)

Where Ap represents the Pseudorange Correction (PRC) for the | satellite. Xi, yi,

and % denote the position of the | satellite in a cartesian coordinate system. Xb, yb,
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and % denote an exactly known position of the base receiver and Piu s the
pseudorange of the | satellite measured by the base receiver.

However, if the distance between the base receiver and the rover receiver, i.e.
another receiver that the position is needed to be found, is not too long, the PRC can
be applied to the corresponding pseudorange measured by the rover receiver since the
atmosphere for 2 areas in close proximity is considered to be the same, hence, leading
to identical pseudorange corrections. Therefore, the corrected pseudorange of the
rover receiver is given by Equation (7).

r’iz = Pi, +AD, (7)
Where Piz denotes the corrected pseudorange of the | satellite measured by a rover

receiver. iz s the original pseudorange of the | satellite measured by a rover
receiver. Figure 12 depicts the DGPS configuration and explains the parameters used

in the above equations.

Satellite 2 Satellite 3
(%2, ¥2, 22) (X3, ¥4, 73)

Satellite 1 T ' Satellite 4

(0, v, 1) e A ... P P (x4, ¥4, 2a)
f P oy 5

Pa -~

)

Py I \“ - / i 1t g P2

f;l’;

GNSS receiver 1 (base)

55 Vi 28) GNSS receiver 2 (rover) 4

(xr, i, 20)

Figure 12 The Differential Global Positioning System (DGPS) configuration

The pseudorange used in determining the PRC can be determined by the code
ranging or the carrier-phase ranging method. By utilizing the code-pseudorange, one
can obtain the accuracy down to the decimeter level in real-time application.

However, to enhance more accuracy, one famous algorithm named Real-Time
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Kinematic (RTK) applies the carrier-phase pseudorange to the DGPS fundamentals,

resulting in an accuracy of about 2 to 5 centimeters.

1.5. Relative Positioning

Instead of correcting the pseudorange measured by receivers that are in close
proximity, the relative positioning method determines the relative position using the
raw pseudorange from both the base receiver and the rover receiver. Then, similar to
the DGPS, the assumed known exact position of the base receiver is added to the
relative position, giving a final position. However, this method is intended to be used
in post-process application in which the carrier-phase pseudorange is performed.

Equation (8) describes the mathematic form of the relative positioning method.
X, = (X, =Xy ) +Xq (8)

Where Xt is the corrected rover position by the relative positioning method. X and
*» denote the position of the rover and base receiver, respectively, determined by

Equation (5) using the original pseudorange. %o js the assumed known exact position

of the base receiver.

2. Proportional-Integral-Derivative Controller

A classical feedback controller block diagram is shown in Figure 13. The
dynamic error is controlled and minimized by this feedback configuration. Depending
on the plant transfer function, system disturbance, and the reference signal, different
types of controllers can be applied results in the different dynamic responses of the

controlled parameters. Normally, the sensor transfer function is neglect and assumed

to be unity, thus the plant output y then equals the sensor output Y.

¥
Y

Plant

Confroller

Senzor o
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Figure 13 Classical feedback controller block diagram
The well-known feedback controller used for the low-level controller system
in this research is the Proportional-Integral-Derivative controller, as known as the PID

controller. The general control equation form of such controller is shown by Equation

9).

u(t)=er(t)+Kije(r)dr+Kd%e(t) ©)

Where K, K;, and K, are the proportional, integral, and derivative coefficient,

respectively, all coefficients are non-negative value. € denotes the dynamic error
defined as a difference between the reference signal and the sensor output, stated
mathematically by Equation (10). U represents the controller output.
e=r-y'=r-y (10)
The PID controller can be separated and utilized as a combination of the
individual controller. Typical combinations that always used are a proportional-
integral (PI) controller and a proportional-derivative (PD) controller, depending on
the characteristic of the controlled system. However, each controller has its own

remarkable response to different types of dynamic errors.

2.1. Proportional Controller

The proportional controller, described by Equation (11), gives the output
proportional to the dynamic error without imposing any dynamic to the output. This
controller is a basic for every combination to be included. The proportional controller
impacts the early portion of the response from the feedback controller by shortening a
response’s rise time whenever the proportional coefficient is increased and vice versa.
However, increasing the coefficient also leads to an increase in response overshoot
and oscillation as shown in Figure 14. Also, using only the proportional controller

will not guarantee the zero steady-state error.

u(t)=Ke(t) (12)
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Figure 14 (a) Low proportional coefficient response (b) High proportional coefficient

response

2.2. Integral Controller

As state earlier, using the proportional controller only may result in a non-zero
steady-state error. This constant steady-state error may emerge from the system plant
which doesn’t possess any integrator of the number of integrators is not enough to
cope with a certain reference signal. Also, the mechanical defect can cause the steady-
state error. The integral controller, shown by Equation (12), can manage to eliminate
this type of error. According to Equation (12), the integral controller can output the
non-zero control signal even when the error is zero, which in case of the proportional
controller will give a zero output. However, increasing the integral coefficient too
high can cause a response to be unstable.

u(t)=Kije(T)dr (12)

)

2.3. Derivative Controller
The derivative controller, shown by Equation (13), resists the rapid change in
a dynamic error. Considering the proportional controller with a high proportional
coefficient, the response of such a controller will encounter a large overshoot and
sometimes turn to constantly oscillate. The derivative controller can deal with this
response behavior by decrease the other controller's output whenever the error

changes too quickly.
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d
u(t)= Kdae(t) (13)

The result response from this derivative controller can be classified into 3
types, i.e. underdamped, critically damped, and overdamped response, illustrated by
Figure 15. The low derivative coefficient may lead to the underdamped response
which still possesses an oscillating behavior. In an overdamped case, caused by a high
derivative coefficient, time takes until reaching the steady state will be long, however,
without oscillating behavior. The correct derivative coefficient gives a non-oscillating
response by using the least time to reach a steady state.

Amplitud
Amplitude

Amplitude

Time

@ " o ©
Figure 15 (a) Underdamped response (b) Critically damped response (c) Overdamped

response

2.4. Implementation
Instead of using an analog device, the digital implementation of the PID
controller is deployed in this research. The continuous PID controller Equation (9) is
digitalized to Equation (14) using the rectangular approximation. However, the
digitalized version of the PID controller may develop an overshoot behavior in the
dynamic response. Thus, the sample period of the digitized PID controller used in this
research will keep at a relatively low, about 5 milliseconds, such that the digitized

version can imitate the continuous PID controller.

U(KT,) = K e(KT, )+ K, e(nT, )+ K, e(KT,)—e(KT, T.)! 14)

n=0

Where k € I denotes the sampling number.
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CHAPTER IV
DEVELOPMENT OF AUTONOMOUS DRIVING SYSTEM

1. Low-level Control System

The first step in creating the autonomous driving system is to develop a low-
level system. In this research, an electric vehicle available in the market, i.e. the
TOYOTA COMS, is modified by introducing the steering control and speed control
system to the original car. The detail in vehicle modification is described below.

Speed control system

Steering control system

Figure 16 The TOYOTA COMS with modified low-level systems

1.1. Power Supply System Modification

Additional modified systems are supplied by a set of batteries that are
separated from the car's original batteries. These batteries power the steering control
system, speed control system, and sensors used in autonomous navigation, i.e. a
GNSS receiver and a laser scanner. As shown by Figure 17, a set of 4 12V-45Ah
LiFePO4 batteries is divided into 2 separate supply circuits. Two batteries in the left
are connected in series producing a supply voltage of 24 volts for high current
drawing devices, including a brake motor and a steering motor. Two batteries on the

right are also connected in series producing a 24 volts supply for electronic devices
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that consume less current, e.g. a GNSS receiver, laser scanner, control circuits, etc.

when the 220V power is supplied to the charge controller, all batteries are

disconnected from devices they supplied and parallelly charged by the charge

controller.
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Figure 17 Power supply system’s configuration

1.2. Electronic System Modification

Motor rotational direction, turn signal lights, a hazard light, a wiper system,

etc. are controlled using an electronic signal. Thus, to convert a vehicle into an

autonomously controlled car, a modification on the electronics system needed to be

made.

1.2.1. Modified Switch Circuits

Figure 18 illustrates the component diagram of the modified electronics

system. Formerly, the control signal from switches is connected to the Electronic

Control Unit (ECU) directly. However, the modified system utilizes selector circuits

that switch the control signal between the microcontroller and mechanical switch

outputs so that the car can be controlled manually and automatically. These 3 selector

circuits are employed for 3 switch circuits, i.e., a shifter switch, signal lights switch,
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and wiper switch circuit. The 16-Relay module receives the control signal from

selector circuits and outputs the final control signal to the ECU.

Electronics system
microcontroller

Shifter switch —,

—_—

Wiper switch Selector circuits

L

|

Signal lights switch |——

h 4

[ 16-Felay module

h 4

Vehicle Electronic
Control Unit (ECU)

Figure 18 Electronics system components diagram

The modified circuit of a shifter, signal lights, and wiper control switch is
shown by Figure 19, Figure 20, and Figure 21, respectively. These modified circuits
switch the ECU input signal using signal selectors, i.e. 2-to-1 digital multiplexers.
Note that all multiplexers’ selector input is connected together and controlled by the
electronics system microcontroller. Also, all mechanical relays appear in these figures

belong to the 16-relay module.
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Figure 19 Modified shifter switch circuit
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Figure 20 Modified signal lights switch circuit
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Wiper switch connector (switch side) Wiper switch connector (car side)

Sﬁi

Electronics system
“——— microcontroller

Figure 21 Modified wiper switch circuit

The modified system is installed by replacing the direct connection between
car and switches with modified circuits in between. The obvious advantage of this
configuration is that the car can be converted back to the original circuit system easily
by removing the modified circuit connector and connect the switch connector back to

the corresponding car side connector.

1.2.2. Microcontroller software

Figure 22 describes the workflow of the electronics system controller
software. Firstly, a microcontroller starts an initialization routine. This includes
binding the relay module to output ports and initializing the corresponding initial state
to these ports. Then, a loop routine is entered starting by looking for the incoming
command message from the high-level controller. If the command message is
received and verified to be valid, then the controller will execute the instruction
according to the received command message. Finally, the new loop routine begins

repeatedly.
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Figure 22 Electronics system controller software’s flowchart

1.3. Steering Control System
In modifying the steering control of the car to be used for the autonomous
navigation system, three main subsystems must be installed, i.e. mechanical actuator
system, electronics system, and the low-level steering control system. These

subsystems are explained below.

1.3.1. Mechanical Actuator System

The car used in this research originally came without a steering assistant
system, e.g. power steering system. Thus, the steering wheel of a car cannot be
controlled using the Controller Area Network (CAN) protocol communication. To

control a steering wheel, hence steering angle, an electric motor is installed as shown
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in Figure 23. The motor transmits power through a speed reduction gearbox of a
1:9.78 gear ratio, and then by a chain-sprockets system with a sprocket ratio of 1:1 to
a steering rack.

Figure 23 Steering control actuator system

To control the position of a steering wheel, the sensor for measuring the
steering wheel position is required. Here, the sensor is chosen to be a 10-round audio
potentiometer with a total resistance of 10 kiloohms. Since the steering wheel of the
car can be turned for about 4 rounds, lock to lock, then a gear set that increases a
turning round of the potentiometer should be applied so that a full measurement range
of 10 rounds can be properly utilized. For this reason, a gear set of 4:9 gear ratio is
installed. A 1 round excess is introduced in case the steering wheel undergoes an
overturn resulted from unexpected situations. The steering wheel position sensor is

attached to a steering column as shown by Figure 24.

Figure 24 Steering wheel position sensor
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1.3.2. Electronics System

A DC motor is driven by the H-bridge DC motor driver which is controlled by
a microcontroller unit of the low-level steering controlled system. Power supplied to
the motor has a voltage of 24 volts but limited by a pulse width modulation of 50
percent for safety reasons. The steering wheel position sensor, i.e. a potentiometer, is
connected to an Analog to Digital Converter (ADC) which provides a digitalized
steering wheel position to the microcontroller unit. An emergency stop switch and a
circuit breaker are installed for the user to manually disconnects the motor and the
supply battery, respectively. The electronic components diagram is shown by Figure
25.
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= High-level control
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/"  Analog DC voltage
1 Communication signal 1
—_ . n .
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: trazmiszion set SENs0T

Figure 25 Steering control system’s electronic components diagram

Also, note that the voltage level of links between each component is
represented by a corresponding line type, i.e. a dashed line represents a 24-volt power
line and a solid line represents a low voltage signal, typically a 3.3 volts COMS logic

level communication line.
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1.3.3. Low-level Steering Control System
A 1-dimensional Proportional Integral Derivative (PID) controller model is
utilized in a low-level steering control system. By receiving a required steering wheel
position, i.e. a reference signal, from the high-level control system, the controller then
determines the output signal which, for this system, is defined as a duty cycle of the
pulse width modulated 24 volts power supply, according to PID control law using a
set of predefined tuned gain coefficient. Note that a unity gain transfer function
assumption is applied to the steering wheel position sensor. A control bock diagram of
the steering control system block diagram is shown by Figure 26.
Reference steering wheel Pulse width modulzted

- : Emo )
position’ steering angle et PID supplied power's duty cycle

Steering actuator
» .
controller svstem and vehicle

[
>

Steering wheel position
stesring angle

Figure 26 Steering control system block diagram

1.3.4. Microcontroller Software
In order that the low-level steering control system can be controlled or
communicates with the high-level control system, a certain interface software need to
be applied. This software manipulates the incoming command from a high-level
controller and executes a certain routine corresponding to a received command.
The software begins with initializing parameters by reading from the
microcontroller’s  Electrically Erasable Programmable Read-only Memory
(EEPROM). The initialized parameters are listed below.
% An initial reference steering wheel position for the automatic control mode
% PID controller gain coefficients, including proportional, integral, and
derivative coefficient

% Limited positions of a steering wheel, both minimum and maximum limit
position

%+ A controlled loop time interval
After finish initialization, the current steering wheel position is measured.

Subsequently, the microcontroller will check for the incoming command message
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from a high-level controller. If the command message is available and verified, the
microcontroller then executes a routine requested by a high-level controller. Then, if
the automatic control mode is engaging, the microcontroller will calculate the output
duty cycle using the PID control model and output a result to the motor driver. Note
that the PID controller used in this system is discretized to be utilized in this system.
However, if the controller is not in the automatic control mode, a motor will be
released from a motor driver allows the driver to manually control a steering wheel.
Next, the microcontroller will broadcast the system parameters if they are required by
the high-level system. Eventually, the loop time interval control has proceeded before
the new computational loop begins. Figure 27 illustrates a workflow of the low-level

steering control system software.
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This control software is embedded in the microcontroller belongs to this
system. A communication protocol between this steering controller system and the
high-level controller is a serial communication through a Universal Serial Bus (USB)

connection.

1.3.5. Steering Units Relationship

Early in this section, the steering wheel position is described by several units.
In the beginning, a steering wheel position is mentioned in a geometry degree. Then,
the steering position is measured using a potentiometer through a gear set which gives
a unit of voltage. Subsequently, this voltage is converted by the 16 bit-analog to
digital converter with a service range of +6.144 volts which return a measured voltage
in signed-integer bits ranged from -32768 to 32767 bits.

The steering position unit relationship between an actual steering angle and a
potentiometer measured voltage is determined by Equation (15) since a gear set of a
4:9 gear ratio is presented to convert a full range of 4 steering wheel revolutions to 9
turns of a 3.3-volt supplied potentiometer.

E =0.041255 +1.65 (15)
Where E and s denote a measured voltage in volts and the actual steering angle in
degrees.

A second relationship is between a measured voltage and the ADC output.
Since the ADC range of operation is +6.144 volts which correspond to the output
range from -32768 to 32767 bits. Also, a potentiometer is supplied by a 3.3-volt

source. Thus, the relationship between these 2 units can be given by Equation (16).
[ =5333.33E (16)

Where /£ denotes the ADC output in bits.
By combining Equation (15) and Equation (16) we may obtain the relationship
between the actual steering angle and the ADC output as shown by Equation (17).

Figure 28 illustrates the relationship among these units.
[ =22006+8800 (17)
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Figure 28 Relationships among different steering position units

1.3.6. PID Controller Output Description
Previously in the microcontroller section, the output of the PID control model
is in a duty bit. Here, a duty cycle bit is defined as a duty cycle-like value that
corresponds to a 100 percent duty cycle when such value equals 4095 bits. Equation
(18) describes the definition of this value.
duty cycle bit y

% duty cycle = e

100 (18)

1.3.7. Parameters Tuning

Since the mathematical model of the steering system is not available. Then,
the gain coefficient tuning cannot be done by using a mathematical design method.
Consequently, the empirical tuning method is employed instead of determining a
complex model of the whole system. Later, a satisfactory response is achieved by
manually tuning gain coefficients. Equation (19) describes the values of the

mentioned coefficients.

K, =280
K, =150 (19)
K, =10

Where K, K;, and K; are the proportional, integral, and derivative coefficient,

respectively. Figure 29 depicts an example of a steering control system’s step
response with the initial position at 11477 bits and a reference position at 12000 bits.
Note that tuning is done at a controlled loop time interval of 5 milliseconds and these
controller coefficients are intended to be used in a designed microcontroller software

only.
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Figure 29 Step response of a steering control system

1.3.8. Response Model

In developing a high-level autonomous navigation algorithm, an important
part is to determine a predicted trajectory of the vehicle. In the later section, the
steering response model will be required to generate several predicted trajectories.
Later, the steering response model will be referred to as a steering profile. A steering
profile is a sequence of a steering position at any time instance.

Same as modeling a mathematic model of the steering system, determining an
accurate response mathematic model takes many resources to accomplish. Thus,
instead of investigating the response for a mathematic model, the direct recording of
the steering profile is employed.

In high-level navigation software that will be introduced in the later chapter,
the algorithm will determine the suitable steering position periodically. Hence, the
steering command signal, i.e. reference steering position, may be considered as a step
function of a certain value. Consequently, the steering profile is recorded by executing
a step reference steering position of different values to several initial positions. In this
research, an equal interval of 500 bits range from 2500 bits to 15500 bits is set to be
both the initial position and reference signal. The record time is set to be 10 seconds
for each record. Finally, 729 steering profiles of different initial and reference steering

position is obtained. This set of steering profiles will be used later in the navigation
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section instead of using an exact mathematic model. Another advantage of using
recorded steering profile is that the computational effort will be greatly reduced,
however, induce loads on the memory. Figure 29 is also one of the steering profiles
in a recorded set.

1.4. Speed Control System
The primary objective of the speed control system is to regulate the vehicle
speed in response to the desire speed command received from the high-level
controller. Same as the steering control system, a modification for the speed control
system is divided into 3 parts, i.e. mechanical actuator system, electronics system, and
the low-level speed control system. Furthermore, controlling speed in an automotive

application involving 2 actuators system, including acceleration and braking system.

1.4.1. Mechanical Actuator System

Since the existed braking system of the car used in this research is a hydraulic
type without a booster. Then, a desire brake pressure cannot be achieved using the
electrical intervention. Consequently, the additional brake actuator is designed and
installed in the original system. This additional brake actuator was designed such that

the brake pressure can be applied by both user and low-level controller.

Figure 30 Designed brake actuator
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A designed brake module is illustrated in Figure 30. This actuator consists of
2 hydraulic master cylinders for 2 available brake circuits, i.e. front and rear circuit.
This actuator introduces the brake pressure to a circuit by pushing a piston at one end
of the cylinder using an electric motor through a 4:3 sprocket ratio chain transmission
and a 3-millimeter pitch lead screw which transforms a rotational motion to linear

motion.

From master cylinder

I\
§ —— To brake cylinder
% ——= To brake cylinder
[N

Figure 31 Section views of a designed master cylinder

From motor

Figure 31 shows section views of a designed master cylinder at 2 working
positions. Inside this master cylinder, 2 pistons are working together. A piston on the
left is connected to a lead screw set and a right piston is floating inside the cylinder.
Not showing in the figure is 2 springs loaded inside the cylinder to maintain both
pistons to be in a position shown by Figure 31 (a), whenever the driving motor is
inactive. Figure 31 (a) illustrate the idle position state of the master cylinder. At this
position, the user applied pressure from the original brake master cylinder enters the
top port of the designed master cylinder and freely leave at the right port to a wheel
cylinder. In the activated state, shown by Figure 31 (b), force is applied to a piston on
the left by a motor. The left piston will also push the floating piston, isolating the
brake line from the original master cylinder and generating pressure in a brake circuit,
thus activates the wheel cylinder. The designed brake actuator is installed to the
original braking system by replacing a portion for the original brake line as shown by

Figure 32.
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Figure 32 Installation of the designed brake actuator

1.4.2. Electronics System

The previous section presents the modification of a braking system which
allows the deceleration of a car to be controlled by a high-level controller. For
acceleration, the original motor controller is controlled by the microcontroller.
Originally, the motor controller of the car receives the acceleration command from the
accelerator pedal. Thus, to take control of a motor controller, a sensed voltage signal
from the accelerator pedal is replaced by a voltage signal generated by the low-level

controller.

Accelerator pedal position sensor (APP) Electronic control unit (ECU)

| ‘ [1T2]3]4]5]6]7[8]ofto[t1[i2[13[1415]1 8]

K e jy [17181920/2]1[222512425]26]2 728293013 1]32]

T =i

DAC - vEAL J
Microcontroller DAC2 Z
| S—
L veaz

Figure 33 Modified accelerator pedal position sensor circuit wiring diagram

The Accelerator Pedal Position Sensor (APP) of the car generates 2 voltage
signals and measured by the Electronic Control Unit (ECU). One of such voltage
signals is offset to the other by 750 millivolts. The ECU converts these voltage signals

into a driving motor torque command and then sent to the motor using a vehicle CAN.
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The modified circuit of the accelerator pedal position sensor is shown in Figure 33. In
this figure, VCP1 and VCP2 are 5-volt sensor supply lines from the ECU. EP1 and
EP2 are the reference ground lines of VCP1 and VCP2, respectively. The voltage
signal lines mentioned above are VPAl and VPAZ2. In a modified circuit, the
microcontroller of the speed control system controls a vehicle acceleration through
the generated voltage signals, shown by DAC1 and DAC2 lines in Figure 33. These
signals generated from the dual 12-bit Digital to Analog Converter (DAC) by the
microcontroller and replace the signals from the APP using 2 Single-Pole-Double-
Throw (SPDT) type mechanical relays. Furthermore, the actual odometry speed of the
car is obtained from the vehicle CAN bus.

Similar to the steering control system, an electric motor of the brake actuator
is driven by the H-bridge DC motor driver supplied by a 24-volt battery, however,
limited by 75 percent of the maximum power to prevent the brake module from
damage caused by a motor running at maximum power. This motor driver is directly
controlled by the microcontroller. Figure 34 illustrates the overview component

diagram of the steering control electronics system.

Wehicle Controller Area 1 o| Speed control system | 1 High-level control
Wetwork (CAN) microcontroller svstem

L L
I )

. » H-bridge DC motor Digtal to Analog
| driver Converter (DAC)
i T
i - /
h
. ] Modified Accelerator
Circuit Emerzgency RS
- o st Pedal Position (APF)
braker stop switch T
sensor circuit
- _ Constant DC voltage
H JL Pulse Width Modulated DC voltage
24V Baterry Brake actuator /" Analog DC voltage
1 Communication signal

Figure 34 Speed control system’s electronic components diagram
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Note that the dashed line denotes the 24-volt power line and all low voltage level
signal lines are represented by solid lines.

1.4.3. Low-level Speed Control System

A simple PID is implemented in the speed control system as in the steering
control system. However, 2 actuators are presented in this section, i.e. the brake
actuator and the modified APP circuit. Thus, a modification is applied to the PID
controller output part such that both 2 actuators can be implemented in the PID
controller. The modified output PID controller is shown by Figure 35.

Accelerator Pedal Pozition
(APP) sensor voltage

Reference speed Emor il

C 3 PID |
T controller > F

A

Modified Accelerator
Pedal Pozition (AFF) ——,
sensor circult

h

G > Brake actuator
Pulse width modulated
supplied power's duty cycle
\ Odometry speed Vehicl
Pk ]

Figure 35 Speed control system block diagram

As shown in Figure 35, a sensed actual speed is subtracted from the reference

speed received from the high-level control system result in a speed error. Then, the
PID controller with a set of coefficients is fed by this speed error, given an output ¢

that later plugged into a discontinuous gain transfer function F and G . The transfer
function F and G give the APP sensor voltage and the brake actuator motor driver’s
pulse duty cycle, respectively, and defined by the following Equation (20) and
Equation (21).

F=H(¢) (20)

G=(1-H (¢+5)){a(1+%)) (21)
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Where H(x) represents the Heaviside step function. Since the vehicle regenerative

braking is activated when is accelerator pedal is in a released position which leads to a
deceleration. And similar to a human driving characteristic in which a brake force is
not applied for every time the speed needed to be reduced. Then, an actuator dormant

interval & is introduced to the brake actuator gain transfer function, i.e. G. Also,
because of a different actuator, a linear proportion to the PID controller output ¢
assumption is applied by introducing the brake actuator constant gain « to G. The
output of the discontinuous gain G and F versus the PID controller output ¢ is

shown by Figure 36.

1IN ULt

[HRIOUS §

PID controller output

Figure 36 Output of the discontinuous gain transfer function

1.4.4. Microcontroller Software
A workflow of the low-level speed control system software is illustrated by
Figure 37. Start by algorithm initialization, the microcontroller retrieves the initial

parameters listed below from its EEPROM.

e

AS

The initial reference speed used in automatic control mode

‘0

The proportional, integral and derivative coefficients of the PID controller

D)

K/
°e

An actuator dormant interval and a brake actuator constant gain

°e

A controlled loop time interval



45

Then, the car speed is read from a vehicle CAN providing an odometry speed
in kilometer per hour with a resolution of 0.004 kilometers per hour. Since this
odometry speed measured by using a resolver contains signal noise. Then, a simple
moving average digital filter of 10 previous samples is applied to the received speed.
Next, the microcontroller will check whether there is a valid command received from
a high-level controller. If so, the corresponding action to the received command will
be executed. Subsequently, if the emergency braking mode is engaged, the
microcontroller will check for the speed and activates the brake actuator in case the
car is moving. In case the automatic control mode is engaged, the controller will
determine the output using the digital PID controller. The output will be classified
into 3 intervals, including a deceleration, acceleration, and dormant interval. The
microcontroller will release an accelerator pedal and activate the brake actuator
according to the output classified into a deceleration interval. On the other hand, the
brake actuator will be released and the accelerator pedal will be activated if the output
is classified into an acceleration interval. If the output is in a dormant interval, then
both the brake actuator and the accelerator pedal are released. However, if the
controller is neither in the emergency nor the automatic control mode, a brake
actuator and an accelerator pedal will be released. Finally, the microcontroller will
return the required parameters to the high-level controller and idly wait for the
controlled loop time interval to be reached, and then begin the next computational

loop.
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Figure 37 low-level speed control software’s flowchart
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Figure 37 low-level speed control software’s flowchart (continued)

1.4.5. Parameters Tuning
The proportional, integral, and derivative coefficient of the PID controller, a
brake actuator constant, and the actuator dormant interval is manually tuned in this
tuning process since the exact mathematical model is not available at the moment.
This tuning process’s controlled loop time interval is set at 5 milliseconds. By tuning
until the satisfactory result is achieved, the tuned parameters are obtained as shown by
Equation (22).
K, =420
K, =700
K, =30 (22)
a=2
0=1.2x10°
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Where K, K;, K;, a, and s denote the proportional, integral, and derivative

coefficient of the PID controller, a brake actuator constant, and the actuator dormant
interval, respectively. Figure 38 illustrates the step response from the initial speed of
3.6 kilometers per hour to the reference speed of 30.0 kilometers per hour. Note that
these tuned coefficients and constants must be used only in the designed low-level

software so that the response illustrated by Figure 38 will be obtained.

20 /

odometry speed (km/hr)

10 -

0 02 0.4 0.6 0.8 1 1.2 1.4 1.6 1.& 2
time (s)

Figure 38 Step response of a speed control system

2. High-level Control System

All components that contribute to the development of the autonomous
navigation software are introduced in this section. Start by considering the vehicle
model, the relationship between a controlled input and the vehicle trajectory is
obtained and later used in a developed path planning algorithm, i.e., a scored
predicted trajectory. Eventually, this algorithm is implemented in the developed

autonomous navigation high-level software.

2.1. Vehicle Model
To obtain a predicted trajectory of the vehicle to be used in the path evaluation

process, a certain vehicle model needs to be obtained. There are several vehicle



49

models available to be used in determining the vehicle trajectory. However, they
come with different levels of complexity and, of course, providing different accuracy.

Since the objective of this research is to navigate the autonomous vehicle at
low speed, also 2-dimensional GNSS is equipped in a localization system.
Consequently, a 2-dimensional single-track kinematic model is considered to be the
most suitable model here for sake of simplicity and a relatively low computational

power.

2.1.1. Single-Track Kinematic Model

Figure 39 Single-track vehicle model

By considering Figure 39, we may obtain the kinematic relation of a single-
track vehicle model as shown in Equation (23).

V, =V, +®XxTré (23)
Where V, = $€, denotes the rear wheel velocity with a magnitude of s in €, direction,
V; is the front wheel velocity and ® =k is the vehicle angular velocity with a
magnitude of @ in k =¢ xé direction.
By applying a vector product between both sides of Equation (23) with €, we may

obtain Equation (24).
|vf|sin5:a)r (24)

And by applying a scalar product between both sides of Equation (23) with €,, we

also get the tangential component relation as shown in Equation (25).
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|V |coss =3 (25)

Eventually, Equation (26) can be derived by combining Equation (24) and Equation
(25).

o tand
- 2
S r (26)

From Equation (26) we can see that both sides of the equation represent a curvature of

a certain vehicle trajectory. Hence, for simplicity's sake, we may use x = 9 to denote
$

a trajectory curvature. Consequently, Equation (26) can be rearranged and results in
Equation (27).

tan o
= —
r

(27)

2.1.2. Approximated Linear Relationship

A range of a steering angle in a typical commercial car is around 70 degrees,
which can be divided into around 35 degrees inner steering angle and around 35
degrees outer steering angle. The car used in this research has a steering angle range
of 74 degrees, say 38 degrees inner and 34 degrees outer steering angle, and a
wheelbase of 1.53 meters. By applying a steering angle range and a wheelbase to
Equation (27), we may obtain the plot of the curvature at a different steering angle

which is depicted by Figure 40.

trajectory curvatire (m”! )]

A0 230 20 -10 0 ] 20 30 40
steering angle (°)

Figure 40 Trajectory curvature from the single-track kinematic model at any steering

angles
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From Figure 40, it can be observed that the relationship between a trajectory
curvature and a steering angle is linearly proportional to each other. Consequently, by
introducing Equation (27) to an infinite series expansion at 5 =0 we may obtain the

result as Equation (28).

3 5 7
K‘=é+§—+£+175 +... (28)
r 3r 15r 315r

By considering only the first term of the right-hand side of Equation (28), an

approximated linear relationship between trajectory curvature and steering angle is
then obtained as Equation (29).

K=

o
= (29)

2.1.3. Effective Inverse Wheelbase Calibration

To use the Equation (29) in autonomous navigation one crucial parameter
needs to be substituted, namely a vehicle wheelbase r. Even though the vehicle
wheelbase can be measured directly from the car or get from a car technical manual,
that figure still cannot be used since there will be some other effects from other
components of the car that will deviate the actual trajectory curvature from the result
of Equation (29).

For this reason, an effective wheelbase that will be used in predicting the car
trajectory must be obtained. To determine the value of this effective wheelbase, one
can directly measure actual curvatures at various steering angles from a certain
empirical experiment. However, directly measuring actual curvatures would be
difficult without a precise localization system. Hence, instead of measuring the
curvature directly, the angular velocity and the vehicle speed will be measured.

After the actual angular velocity, occasionally yaw rate, and the vehicle speed
at various steering angles are collected, the regression analysis is then introduced.
Since the steering position obtained from the car steering position sensor comes in
scale and offset to the actual steering angle, then a more suitable Equation (30) for
regression analysis is introduced to include all scale and offset parameters in one
single equation.

K=po+e (30)
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As mention earlier, x =— where @ is a collected yaw rate and § is vehicle speed.
$

p denotes the inverse effective wheelbase and ¢ demotes the steering position

center.
The inverse effective wheelbase and steering position center can be determined by the

following Equation (31).

MZ(ATA)lATK (3)

Where A:[S ﬂ and k=%, which & and & are mx1 vector of m collected

steering positions and corresponding trajectory curvatures, respectively.
By substitute collected trajectory curvatures and steering positions into Equation (31),

we may obtain the following parameters.
p =4.980133239x10°° (32)

& =-0.4317661517 (33)
Units of an inverse effective wheelbase and a steering position center are (meters -
steering position sensor output unit)* and (meters)?, respectively. Figure 41 depicts a

least-square regression analysis result.

O Actual trajectory curvalure
Least square regression
.

trajectory curvanire | m'])

04 L . . . .
0.2 0.4 0.6 08 1 1.2 14 L6 L&

steering position x10*

Figure 41 Actual trajectory curvature and approximated linear relationship
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2.2. Scored Predicted Trajectory
Scored Predicted Trajectory is the algorithm developed in this research to be
used in the autonomous navigation section. This algorithm determines the most
suitable steering angle such that the car will follow a given waypoint according to the
score weight that will dominate the path following behavior of a vehicle which is
arbitrarily predefined by the user. However, the algorithm doesn’t determine a

vehicle-controlled speed as vehicle speed is one of the algorithm input parameters.

2.2.1. Trajectory Prediction
The single-track kinematic model has been introduced in the previous section.
In this section, that model is applied again to determine the trajectory of a vehicle,

namely predicted trajectories, for used score evaluation process.

Figure 42 single-track kinematic model

Instead of locating a vehicle position reference at the center of geometry or the
center of mass of a vehicle, here the center of a rear axle P is utilized. By considering
Figure 42, also with the assumption that the steering system is a perfect Ackermann
steering geometry so that the velocity of the car reference point P will always align
with a car heading direction. Hence, we may construct the equation of the predicted

trajectory of a point P as follow.

p(t)= [, (2)dr (34)
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Where p(t) is a car position reference vector of a point P and V, is a velocity of a

point P attached to a vehicle body.
Rearranging Equation (34) gives Equation (35) that splits all parameters in Equation

(34) into 2 components, namely along inertia reference axis I and j
o (t)] cosé(7)
=|v, (7)| . dr 35
{py(t)} ! (7) siné(7) (35)

Where p(t)=|p,(t) p, (t)T, p,(t) and p, (t) are magnitudes of a car reference

vector p(t) at any time instance t.

t
Since H(t):jw(r)dr where «(t) is the angular speed or yaw rate of a vehicle
0

body, also of the velocity V, and a vehicle heading direction. Then Equation (35) can

be rearranged as follow.
dr (36)

e s o1

4 sinjw(g)dé

Furthermore, it has been shown earlier that for a single-track kinematic model with a
perfect Ackermann steering geometry, the trajectory curvature can be approximately
considered as linearly proportional to a steering angle with a certain gain,
independently from the vehicle speed.
w(t

(1) = =002 @
Rearranging Equation (37) gives Equation (38).

o(t)=3(t)(ps(t)+¢) (38)
Since |vr (t)| =v, (t)=$(t). Then, combining Equation (36) and Equation (38) results

in the following Equation (39).
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t COSjS(i)(p5(§)+5)d§—
L’j Etﬂ =[st5) dr (39)
' T |sin[$(&)(ps(&)+e)de

Equation (39) above will provide several predicted trajectories for different
steering angles to be evaluated by the score weight mentioned early in this section.
This evaluation process will be introduced in a section below.

2.2.2. Trajectory Evaluation and Scoring

After several trajectories corresponding to several arbitrary predefined steering
angles are obtained by solving the trajectory Equation (39). These trajectories will be
brought into a scoring evaluation process which is mainly considered in three
different topics, namely, a linear deviation, an angular deviation, and a collision
distance. Then, each of the trajectories will be assigned by three scores from the three
topics evaluation mention earlier and will be combined later according to weights that

arbitrary given by the user.

2.2.2.1.  Linear Deviation Evaluation
Linear deviation evaluation of the trajectory determines the distance between a
certain trajectory and a given waypoint in cartesian space. This evaluation can be
done by performing the integration of the shortest cartesian distance between along

the trajectory need to be evaluated.

—
P(0)

Figure 43 Linear deviation evaluation of a certain trajectory
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Figure 43 depicts a linear deviation of a certain trajectory p(z), as shown by a
continuous line, from a waypoint p(¢), as shown by a dashed line. Point B is the
point closest to point A that lies on a waypoint p(¢). Let us rewrite the waypoint as

shown by Equation (40).

p(0)=r.(¢) p,(¢)] (40)

And so do the trajectory.

T

p(0)=[n,(2) £,(7)] (1)
Let us assume that point A locates on a trajectory p where =7 and point B
locates on a waypoint p where ¢ =¢.
A=p(D)=[~(5) £, ()] (42)
B=p(#)=[p.(#) p,(#)] (43)
Since B is the point closest to point A, then a formal condition for ¢ is stated by the
following Equation (44).

#()=argmin([p(z)-p(p)]) (44)

It can be shown that ¢ happens when Equation (45) is satisfied.

d

(P (F)= P (@) 5 P.(9)

de

=(p, (9)-p, (f));—(o p, (@) (45)

=0 =0
To perform an integration over the trajectory length, an infinitesimal length along the

trajectory needs to be defined. This infinitesimal length is shown by Equation (46).

d * (d ?
d p:\/(a px(r)j +[E py(r)j dr (46)
Here, the evaluation integral can be performed and results in the following Equation
(47).

I 2 e[ ([ d * (d §
%] J((pxm— 0. () (s, () p,(9)) )((m(r)} {L0.0) jdf o

Note here that o, denotes a linear deviation score of a trajectory p that is evaluated

over a given waypoint p.
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2.2.2.2.  Angular Deviation Evaluation
Angular deviation evaluation determines the difference of gradient between a
trajectory and a given waypoint. This process is done in the same manner as the linear
deviation evaluation. However, in this process, the parameter used in the comparison

is the gradient instead of a cartesian distance.

Considering again on Figure 43, n(7) denotes the tangential vector to a

trajectory at # and h(@) represents the tangential vector to the waypoint at ¢. The

relationship between a trajectory, waypoint, and their tangential vectors are stated in

the following Equation (48) and Equation (49).

1(e)=(7) (48)
n(p)=5-p(0) )

Since the angular deviation in this process is defined as a difference in a gradient or
heading between a trajectory and a waypoint. Hence, the following Equation (50)

defines the formulation of an angular deviationy .

7 )=alCCosS “( ((b)
) [ G U (50

[n(z

Combining Equation (46) and Equation (50) gives the following Equation (51).

o freal SRR (o) o(ino e

Where o, represents the angular deviation score of a trajectory p that is evaluated

over a waypoint p.

2.2.2.3.  Collision Distance Evaluation
Similar to the linear deviation evaluation, this collision distance evaluation
utilizes a cartesian distance in a scoring process. However, instead of using a

waypoint, this section uses the obstacle point scan to evaluate the score.
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Figure 44 Collision distance evaluation of a certain trajectory

Figure 44 depicts an obstacle point represented by A(¢) and a vehicle

trajectory p(z). Also N is the obstacle point whose closest point on a trajectory is

M . Since this evaluation process is done the same way as linear deviation
evaluation, except using an obstacle scan instead of using a waypoint. Then, the
formulation of this score can be modified from the linear deviation score Equation
(47). Consequently, the collision distance score can be determined by the following
Equation (52).

f AL ey ([ d * (d ?
o, =£\/((px(r)—ﬂx(¢)) +(p, (£)-14,(5)) )((;px(r)j +[;py(r)) sz’ 62)

Where o, is the collision distance score of a trajectory p that is evaluated over a

T .
given waypoint p, k((o)z[/lx(go) /ly((p)} , and @ is determined by the following
Equation (53).

o(7)= arggﬂn(Hp(r)—X(w)H) (53)

2.2.2.4.  Overall Score Combination
As mentioned earlier in this section, to determine the total score of an
individual trajectory, three scores, namely, linear deviation score, angular deviation
score, and collision distance score, will be linearly combined using their
corresponding arbitrary user predefined weights. Equation (54) states a mathematical

formulation of the overall score combination.
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y=[w w, w]o, (54)

Where w, e R*, w, e R, and w, € R™ are the linear deviation, angular deviation,

and collision distance weight, respectively. These weights can be interpreted as
priorities of their corresponding score in the autonomous navigation routine, i.e., a

high absolute value of w indicates a high priority of a corresponding score.

2.2.3. A Madification for Algorithm Implementation

Since the Score Predicted Trajectory derived from continuous functions of a
trajectory, waypoint, and obstacle scan. However, in the actual situation, those
mentioned come in discrete and discontinue functions. Then, all scoring formulas
need to be modified to deal with a discrete and discontinue function. Also, some parts
or parameters will be neglected for the sake of computation complexity that may
affect the computational time which is a critical topic in real-time implementation of

the autonomous navigation algorithm.

2.2.3.1.  Vehicle Trajectory Approximation

A trajectory Equation (39) indicates that the speed s varies over the time used
in a trajectory integration process. Since the time used in one computational loop, i.e.
a computational time interval, will and short. Also, the objective of this research is to
deal with a low-speed navigation system. Then a constant speed over a finite time
interval that will be used in a finite trajectory integration should be a reasonable
approximation assumption. The approximated trajectory equation then states as
Equation (55).

coss‘_tf(p5(§)+g)d§
X dr (55)

sin Sj.(p5(§)+.9)d§

To utilize the trajectory Equation (55) in software programming, a discretized

form of Equation (55) is more preferable. By replacing all true integration terms by a
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trapezoidal numerical integration, Equation (55) then results in the following
Equation (56).
P 8 cosd,,, +Cos 0,
pi_{ }_52(5"” é:)Llnﬁ +sin g, (56)

pyi i=t j+1

Where 6, is defined by Equation (57).

S

—Z G (p(8(50)+8(8))+2¢) 57)

I\)

Also, &, is a discretized time of At interval defined by the following Equation (58).

& =(i-1)At (58)
In which a total time interval T of the trajectory is determined by Equation (59).
T=(N-1)At (59)

2.2.3.2.  Discrete Linear Deviation Evaluation
In a previous derivation of a continuous linear deviation scoring formula, the
definite integral over the trajectory length is performed. However, a linear deviation
scoring intends to set a parameter that indicates a measure of the total cartesian
distance between a trajectory and a given waypoint along such trajectory.
Consequently, instead of including the infinitesimal distance, i.e., Equation (46), this

distance will be neglected in the discrete version for linear scoring Equation (60).
N ~
= Z”pi -y (60)
i=1

Where P, is the closest point to a point p; lying on a waypoint p and can be
determined by the following Equation (61).
Pi =P; (61)

where j= argmin(Hpi —p(pH).
4

2.2.3.3.  Discrete Angular Deviation Evaluation
In software implementation of the algorithm, the waypoint used will not be in

continuous function form since the waypoint will be recorded directly from a
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localization system. Therefore, performing a true differentiate of a waypoint to get the
tangential vector as in equation cannot be done. Also, applying a finite differentiate
will result in a diffuse tangential vector. Consequently, in this research both heading
angle and position will be recorded directly and will be used as a reference tangential
vector direction and a waypoint, respectively.

Similar to the previous section, the infinitesimal distance determined by Equation (46)
is neglected here. Thus, Equation (62) below defines an angular deviation scoring for
a discrete system.

o, = 221”’% - (62)

Where 7; represents the heading angle of trajectory at p; and ﬁi is a recorded heading

of the point closest to a point p; lying on a waypoint p which can be determined by

the following Equation (63).

h =h, (63)

]

where | =argmin(Hpi —pwH) and h is a set of recorded heading corresponding to a
4

recorded waypoint.

2.2.3.4.  Discrete Collision Distance Evaluation
The obstacle scan data returned from a laser scanner device is a set of a
discrete point cloud of obstacles in range relative to the device position. To use this
set of obstacle points, again discretization of the evaluate equation need to be
performed first. Similar to a discrete linear deviation scoring Equation (60), the
cartesian distance between trajectory and a set of obstacle points is utilized. By
modifying Equation (60) for the usage in this context, we then obtained an equation

for discrete collision distance scoring as follows.
N
o.=2[p. 4| (64)
i=1

Where A, is the closest point to a point p; which is a member of a set of obstacle

points A and can be determined by Equation (65).
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A= (65)

As identical to previous sections.

i =argmin p, -p, ) (66)

2.2.3.5.  Critical Obstacle Distance Evaluation

In all previous sections, the trajectory used in all scoring equation is derived
from a particle model. However, in a practical situation, the vehicle cannot be
considered as a particle and represented by merely a single point. Depending on the
geometry of a vehicle used in a practical implementation, there must be a certain
boundary for the distance between a trajectory and an obstacle point such that this
boundary will act as a buffer area and preventing collision between vehicle and
obstacle.

Similar to linear deviation and collision distance scoring, this critical obstacle
distance evaluation also uses the cartesian distance in determining the score. This
section utilized the same distance which was used in discrete collision distance
evaluation, however, some modification to Equation (60) is applied and result in the

following equation.

ot o 5 ) < 4 o
0, otherwise

Where o, is the critical obstacle distance score and ¢, is the critical obstacle

distance which is specified according to a vehicle geometry.

Figure 45 Critical obstacle distance and the buffer area
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Figure 45 depicts the relationship between trajectory p, critical obstacle
distance ¢,, and a buffer area, represented by a dot space enclosed by dashed lines.

The buffer area of 2¢,, wide resulted from Equation (67). If there was any obstacle

scan point located in this buffer area, the critical obstacle distance score belongs to the

trajectory p will be given by co. This infinity score causes its corresponding trajectory

to the lowest preferable track for a vehicle to follow, compare to other possible
trajectories.

2.2.3.6.  Overall Discrete Score Combination

All discrete scores, i.e. a discrete linear deviation, discrete angular deviation,
discrete collision distance, and critical obstacle distance score, can be combined the
same way as performing by Equation (54). However, since the additional critical
obstacle distance score is not included by Equation (54). Then, a new linear
combination equation of all discrete scores is presented by Equation (68).
o
Ga

O

y=[w ow, w1 (68)

Om

Where w,eR", w, e R", and w, e R™ are the discrete linear deviation, discrete

angular deviation, and discrete collision distance weight, respectively. » is a final

score of a certain trajectory that indicates the suitability of its corresponding

trajectory.

2.2.4. Software Implementation

Scored Predicted Trajectory software determines several trajectories
corresponding to the steering position command signals. These trajectories will later
be evaluated by means of scoring processes introduced above. Figure 46 describes the

algorithm details.
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Inputs: Vehicle current position p, vehicle current heading angle ¢, vehicle
current steering angle « , vehicle current speed s, steering profile model v,
denotes the inverse effective wheelbase p, steering position center ¢,
corresponding discrete time space t, route waypoint A, route heading angle v
, Obstacle scan p, score critical obstacle distance I, and weight w

Outputs: Trajectory scores corresponding to the input steering profile model
v, and most suitable steering command signal ¢

Definitions:
1. 1 = aset of predicted trajectory heading of y
2. 8, = aset of initial steering angles of y

3. &, = aset of final steering angles of
4. p = aset of predicted trajectory

5. 6= ascore array of all predicted trajectory

Function:

p «argmin(|5, - 6]).5, €8,

q < argmin (|5, -6]).5, €8, ~{,

2.
3. % <O
4. % g
5, |5, -6 w, +]3, -] v
5. H‘Sp _5qH

6. for every final steering angle index i in 6, do

Mo < 0

<k
MNix ngo(fmﬂ T )(p(ﬁtijmﬂ +6tljvm)+ 28)+9’

kel k<N

Figure 46 Scored Predicted Trajectory algorithm
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9. PP

o Pi e%mio(rmﬂ —rm){(;?s::i 1;(:::}4—“ kel*nk<N

11 O< 0

12 Ta€ 0

13, 0 0

14, On € 0

15.  for every pointsindex j in p; do

L oemin(p, )

17. o o +[p; =2,

18. o o t[n; —v,

L ccaanin(p,-ul)

20. o, <o+, —n]
]2 Ml

21 o, otherwise

22.  endfor

23, G<lo o o o]

24, Vi OW

25. endfor

2 ((—argimin(yi)

27. 9 01c

28.return ¥, ¢

Figure 46 Scored Predicted Trajectory algorithm (continued)
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2.3. High-level Autonomous Navigation Software
The speed-independent and speed-dependent autonomous navigation software
are developed in this section. First, speed-independent software is introduced. This
software benefits the tuning process since the traveling speed can be controlled
manually. Later, speed-dependent software is presented. This software is employed as

a complete path following autonomous navigation software.

2.3.1. Speed-independent Navigation System Algorithm

After the Scored Predicted Trajectory is developed, a speed-independent
navigation system algorithm is now ready to be established. Figure 47 describes the
workflow of the designed speed-independent autonomous navigation software.

Start

¥

System initialization

"
il

h J

ez
Controlled loop
time reached

Feceive terminate
command

Get current speed from vehicle odometer

h J

Get current position from GNSS receiver

¥

Secan obstacle from laser scanner

h J

Determine the most suitable steering command

¥

Apply steering gain compensation

h J

Execute steering
command

h J

Dizplay the
algorithm's result

Figure 47 Speed-independent autonomous navigation software flowchart
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The developed autonomous navigation software starts by initializing several
parameters used in the algorithm. These parameters are listed below.
%+ GNSS receiver configuration
%+ Laser scanner configuration
% Geographical coordinate to local coordinate conversion factors
¢ Steering profile model
%+ Score predicted trajectory algorithm parameters

o Score weights, including a linear deviation, angular deviation, and collision
distance weight
o Algorithm controlled loop time interval
o Forward predicted trajectory distance
% Exponential gain compensation algorithm parameters
o Initial gain increment
o Gain increment base
o Saturation boundary

A software enters the repeated controlled loop after initialized. This loop
begins with retrieving a vehicle speed by request from a vehicle cruise control system.
Then, the vehicle's geographical position is known by measuring from a GNSS
receiver. Following by scanning the obstacle using a laser scanner, then all
information needed is ready for a navigation algorithm.

All sensed inputs obtained by the previous step is then applied to the scored
predicted trajectory algorithm. The result of this algorithm is the most suitable
command steering which may be directly used as a command signal sent to a car’s
steering control system. However, since the steering calibration is done under a static
condition. Since the character and response of the steering control system will be
different from the calibration result when used in a dynamic environment. Then, the
gain compensation is required to overcome this dynamic effect. Here, the Exponential
Gain Compensation algorithm is introduced to solve this problem. A detail of the
algorithm will be presented later in this section.

After the gain compensation is applied to the results from the navigation
algorithm, the result of gain compensation then proceeds to the steering control

system. The software display then illustrates all predicted trajectories and their
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corresponding scores to the user. Eventually, the software is idly waiting for the
controlled loop time interval to be reached and prepare to be terminated by the user.

2.3.2. Exponential Gain Compensation
Exponential Gain Compensation, as implied by the name, is the algorithm
used to determine the compensation gain for the steering command signal resulted
from the main navigation algorithm. The compensation gain is defined by the
following Equation (69).
y'=a(y-5)+s (69)
Where ¥’ is the compensated steering command signal, ¢ is the steering command
signal compensation gain, v is the steering command signal result from a navigation

algorithm, and & is the current steering position of a vehicle.

The compensation gain is exponentially changed for every single controlled
loop. The value of this gain is limited to a certain boundary by a user’s predefined
setting. The algorithm for Exponential Gain Compensation is described by Figure 48
below.

After the gain compensation is obtained from the algorithm presented in
Figure 48, it is then substituted into equation to determine the final steering command
signal, i.e. the compensated steering command signal. Finally, this command signal is
then sent to the low-level steering controller. Besides, the gain transition and gain
increment that also returned from the algorithm will later be used for the next

calculation loop.

Input: Previous compensation gain «’, previous gain increment @', previous

gain transition z’, increment base , current steering angle &, expected
steering angle w, lower saturation boundary &, and upper saturation

boundary &,

Output: Compensation gain «, gain increment ¢ , and gain transition 7

Figure 48 Exponential Gain Compensation algorithm
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Definitions:

A previous gain transition ¢’ is defined as a transition direction of a previous
loop’s compensation gain, i.e. increase, decrease, or remain the same. 7’ is
positive when «'<« in a previous calculation loop, and negative when
a' > o inaprevious calculation loop, otherwise 7' =0.

Expected steering angle w is the steering angle forecasted by a previous
control loop from a known control loop time interval

Function:

1. 7¢wy-0

2. if zz/>0 then

3. A« ug'
4

else if 7z’ <0 then

o

R
Y7

else
A<« 0

a<—a +th

endif

© © N o

10. if a > ¢, then
11. a <&,
12. @<« ¢

13. else if a < ¢, then

14. a < &
15. @<« ¢
16. else

17. QA

18.return o, @, T

Figure 48 Exponential Gain Compensation algorithm (continued)
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2.3.3. Speed-dependent Autonomous Navigation Algorithm

The previous topic deals with a speed-independent autonomous navigation
system only. However, to include the speed control to the algorithm, some
modifications may be applied to a speed-independent system. Also, the user override
mode is included in this algorithm.

In controlling vehicle speed, the speed map is introduced. As in recording a
waypoint, the speed map can be done in the same manner, i.e. by directly record a
vehicle odometry speed corresponding to a certain recorded waypoint. A controlled
speed is then determined by the following Equation (70) and directly sent to a vehicle

cruise control system.
S =V, (70)

Where j=argmin(Hpi—p¢H) which p is a vehicle current position and p is a
4

waypoint. S, is a controlled speed, and V is a speed map corresponding to a waypoint

p.

For the user override mode, the condition to engage this mode is determined
by the scored predicted trajectory algorithm output, i.e. the user override mode
engaged whenever the trajectory scores returned from the algorithm is all infinity.
Equation (71) states the user override mode condition and Figure 49 presents the

speed-dependent autonomous navigation software’s workflow.
y=lo o .. o]y (71)
Where +y is a trajectory score array of N trajectories returned from the scored

predicted trajectory algorithm.
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3. Geographic Conversion Factor Calibration

The GNSS receiver generally return the measured position in a geographical
angular coordinate, however, the designed software needs a real-time position in
linear cartesian coordinate. Therefore, the conversion formula must be constituted so
that the position returned from the GNSS receiver can be utilized in the developed
software. Even though, a distance between two points on a spherical surface can be
determined by the haversine formula by given 2 spherical coordinate positions.
However, to use that formula one needs to know a certain radius of the sphere. In
determining the distance between two points on the earth’s surface, given a longitude
and latitude of those points, the haversine formula can be applied along with a known
earth radius. Since the earth’s radius located at the testing ground is not known
exactly, then the conversion factor used in this research is determined by empirical
experimentation. The procedure begins with recording a longitude and latitude
position from the GNSS receiver and then brought to analyze mathematically to get a
correlation between a geographical coordinate and a linear distance on the earth’s
surface.

In collecting data, a geographical coordinate of a certain circular path is
recorded via the GNSS receiver. As shown by dots in Figure 50, a true circular path of
radius 1.16 meters recorded from the testing ground appears to be an elliptic path
when represented by geographical coordinate. Consequently, the ellipse Equation (72)

is selected as a model for a least-square regression of the centralized circular path.
al’ + g’ =1 (72)
Where 2 is longitude in degree, ¢ is latitude in degree, « and f are regression

analysis coefficients which are determined by Equation (73).
o T -1
{ﬁ}:(A A) A'b (73)

Where Az[? q?} and b=1, Which?and(/?are mx1 vectors of m collected

circular path’s longitude and latitude, respectively.
By substitute circular path’s longitude and latitude into Equation (73), the regression

coefficients can be obtained as shown by Equation (74).
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a =8782319993.5

P =9228460728.4 (74)

The earth’s surface actual path should follow a 1.16 meters radius circle.
Consequently, a circle equation with a 1.16 meters radius will be used as an exact
path for a meter coordinate system, as shown by Equation (75), wherexandy are

position of points in a circular path.
x> +y? =1.16° (75)
Assuming that the longitude to meter and latitude to meter conversion factor is

constant everywhere for a testing ground, which is considered to be an infinitesimal

area compare to the earth’s surface, the longitude and latitude to meter conversion
factor can be defined by Equation (76) and Equation (77), where f, and f, are longitude
to meter and latitude to meter conversion factor, respectively.
x=fA (76)
y=f,¢ (77)
By substitute Equation (76) and Equation (77) into Equation (75) and comparing the

resulted equation with Equation (72), we can state the correlation between conversion

factors and regression coefficients as Equation (78) and Equation (79).

f =1.16v/or =108657.32434 (78)
f, =1.16\/f =111456.76004 (79)

Note that f, and f, are in meters per longitudinal degrees and meters per latitudinal

degrees, respectively.
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CHAPTER V
SYSTEM EVALUATION EXPERIMENT

1. Experiment Setup

The experiment takes place after the prototype navigation software is
completely developed. Figure 51 depicts the Graphical User Interface (GUI) of this
software showing inside are the waypoint, current GNSS position, detected obstacle
scan, and the predicted trajectories. Predicted trajectories are displayed in different
colors corresponding to their scores determined by the scored predicted trajectory
algorithm. The enlarged predicted trajectories display is shown in Figure 52.

Predicted trajectories

A

0.531406, 13737586)

e

11.25 m/div

Figure 51 Prototype navigation software’s graphical user interface

Predicted trajectories O

Vehicle current position

Figure 52 Enlarged predicted trajectories display
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Before performing the experiment using a real vehicle, the algorithm is tested
using the developed simulator software. This simulator is designed base on the
assumption that the car will exactly follow the selected predicted trajectory. The result
of testing the algorithm with a simulator code is the approximated controlled loop
time interval, which is found playing an important role in autonomous path following
characteristics, and the algorithm score weights.

The test vehicle is equipped with a 2D laser scanner and the GNSS receiver.
As shown in Figure 53, 2 receiver antennas are installed along the longitudinal
direction of the car. The primary antenna is installed at the same horizontal position as
the rear axle, providing the position according to the assumption used in developing
the scored predicted trajectory algorithm. The secondary antenna is installed 1 meter

apart from the primary antenna toward the front of the car.

GNSS receiver
sccondary antenna

GNSS recciver
primary antenna

2D laser scanner
(LIDAR)

Figure 53 Test vehicle with the 2D laser scanner and the GNSS receiver installed

The route by which the test autonomous vehicle supposed to follow, i.e. the
waypoint, is generated by manually drive and record the GNSS position along the
desired path. In this experiment, the test route is set to be a close loop track located in
Chulalongkorn University campus as shown in Figure 54. Furthermore, the heading
angle along the desired route corresponding to the waypoint is also recorded. Note
that the test experiment was performed by nighttime to avoid the undesired situation

from daytime traffics inside the campus. The parameters resulted from tuning during
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the experiment compared to the result from simulator tuning are shown in Table 4.
Note that the dimensions of parameters in Table 4 are the same as introduced in

previous sections.

The faculty of fine

U waay,

recorded waypoint

M
Vajiravudt

Maha Chulalo
Buildin

Department of =
Environmental Sc... \ . P

ALTTREN ]

Figure 54 Test track located in Chulalongkorn University

The experiment is divided into 2 sections, the first section is the evaluation test
of the autonomous path following navigation system only, and the second deals with
the obstacle avoidance system only. The first section on the path following evaluation
is conducted first to determine the suitable tuned score weights which are prerequisite

parameters for the obstacle avoidance evaluation section.

2. Autonomous Path Following Navigation Evaluation

Since the test track is a close loop route, then the starting point can be
arbitrarily chosen. From the starting point, the test vehicle will be autonomously
navigated along the recorded waypoint without any intervention from the
experimenter, however, still sit in a car ready to take over whenever encounter an
emergency situation. The experiment is performed at 2 speeds, i.e. 10 and 15

kilometers per hour. The parameters used by the algorithm in the software are also

shown in Table 4.



Table 4 Parameters in the designed autonomous software
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Value
Parameter class Parameter name : :
Experiment | Simulator
longitude conversion factor 108657.3243 | -
) latitude conversion factor 111456.7600 | -
Device parameters : i
inverse effective wheelbase 4.98E-05 -
steering position center -0.43 -
Exponential gain initial gain increment 0.005 -
compensation _
] increment base 1.1 -
algorithm parameters
linear deviation score weight | 1.5 1.5
Scored predicted angular deviation score weight | 0.1 0.5
trajectory algorithm collision distance score weight | -0.1 -0.1
parameters controlled loop time interval 0.2 0.2
predicted trajectory length 10 10

The actual paths recorded from the test car which autonomously navigated at
the speed of 10 and 15 kilometers per hour with the corresponding waypoint are
shown by Figure 55 and Figure 56, respectively. The autonomous navigation heading
angle compares to the waypoint heading angle of the 10 and 15 kilometers per hour
are shown in Figure 57 and Figure 58. A linear deviation is defined as a distance to
the closest point on the waypoint from the test vehicle's actual position. The
histogram of the linear deviation of the 10 and 15 kilometers per hour track are
illustrated by Figure 59 and Figure 60. Also, an angular deviation is defined as a
difference between the test car actual heading and navigation heading of the point on
the waypoints closest to the car actual position. The mathematical representation of
linear and angular deviations are described by Equation (80) and Equation (81),

respectively.

& =min i)

iew

(80)

g, =h-y

a

(81)
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Where ¢, and ¢, denote the linear and angular deviation, respectively. Wis the

waypoint and p is the test vehicle's actual position. h is the actual heading and
w =1, where j=argmin(|p—w]).

Considering Figure 55 to Figure 58, the developed autonomous system can
perfectly navigate the car tracking almost exactly every point on the test waypoints.
However, the actual heading is lightly fluctuating around the waypoint’s heading
angle. This small fluctuation implies that the real scenario, while the autonomous
system is engaged, is somehow jerky and may be uncomfortable for the passenger in
the test vehicle. According to Figure 59 and Figure 60, arithmetic means of recorded
linear deviation of 10 and 15 kilometers per hour track are 0.13 and 0.20 meters.
These linear deviations are considered to be relatively small compare to the operation
scale, i.e. the typical lane width which is about 3.6 meters. By using this figure, then
the linear deviation is merely 3.61 and 5.56 percent of a typical lane width for 10 and
15 kilometers per hour track, respectively. Also, according to Figure 61 and Figure
62, 95 percent of the angular deviation sample falls between -2.65 and 1.85 degrees in
10 kilometers per hour track and between -4.02 and 4.04 degrees in 15 kilometers per
hour track, which are acceptable to be used in the objective application.

Moreover, the navigation speed also affects the tracking characteristics. In 15
kilometers per hour track, the standard deviation of the linear deviation is 0.12 meters,
which is 1.68 times of one from the 10 kilometers per hour track which is 0.07 meters.
Also, a linear deviation increase at higher traveling speed, from 1.13 degrees in 10
kilometers per hour track to 2.02 degrees in 15 kilometers per hour track. The original
cause of this is the gradual increase of the vehicle dynamics effect. At high speed, the
vehicle model developed in the previous section based on a vehicle kinematic model
which is utilized in the scored predicted trajectory is not accurate and will completely

fail over a certain speed.
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3. Obstacle Avoidance Evaluation

In this section, the path-following autonomous system is engaged by using the
tuned parameters resulting from the previous experiment. Initially, the obstacle is
placed in the middle of the waypoint, hinder the test vehicle from tracing such
waypoint. Then, the test vehicle is launched, and autonomously follows the waypoint
towards the obstacle.

Figure 63 shows the recorded position of the obstacle using a GNSS receiver.
The recorded data scatter around a certain area as shown in the figure. However, such
an area is relatively small compared to the application scale, i.e. about 4 centimeters
in a horizontal direction and 2 centimeters in a vertical direction. The centroid of
recorded data is employed to represents the position of the obstacle. Moreover, the
obstacle shape is considered to be a circle with a diameter of 0.4 meters.

The experiment is conducted twice, both using the vehicle speed of 15
kilometers per hour. The trace record of 2 experiments is shown in Figure 64 and
Figure 65. It can be seen from these figures that in the beginning, the test car was
tracing the waypoint moving from the right side of the figure toward the left. Then,
the test car detected the obstacle and avoided the impending collision by refusing to
follow the waypoint and steered itself toward its left. Thereafter, when the obstacle
disappears or does not obstruct the car from tracing the waypoint, the test car then
autonomously converged to the waypoint again as shown in by the left portion of
these figures.

Figure 66 and Figure 67 depict the linear deviation from the waypoints of both
experiments. These figures affirm that the collision avoidance algorithm does work
properly. Considering both figures, the test vehicle initially tracing the waypoint by
keeping the linear deviation to the waypoint to be about 0.15 and 0.2 meters in the
first and second experiment, respectively. Subsequently, at about 10 meters away
from the starting point, the linear deviation starts increasing imply that the developed
autonomous navigation algorithm realizes the impending collision and starts ignoring
to follow the waypoint. Eventually, the test car merges with the waypoint again
around 35 meters away from the beginning.

Figure 68 and Figure 69 show a displacement to the obstacle of the first and

second experiment, respectively. The shortest displacement to the obstacle of the first
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and second experiment are 1.19 and 1.22 meters. Figure 70 and Figure 71, obtained
by combining Figure 66 and Figure 67 with the corresponding Figure 68 and Figure
69, shows the plot of linear deviation against displacement to the obstacle of the first
and second experiment, respectively. According to these figures, the obstacle
avoidance algorithm actives when the obstacle is about 10 meters away from the test
vehicle, and the linear deviation increases the same time the displacement to obstacle

decrease.
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Figure 63 Recorded obstacle position
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4. Discussion

In low-speed application, the path following algorithm with the obstacle
avoidance function, i.e. the scored predicted trajectory, gives a satisfactory result.
However, unwanted jerky driving still presents when the higher speed is attempted,
lead to an uncomfortable ride for the passenger. This problem can be solved by
introducing the more sophisticated vehicle model, including all involved dynamics
systems, to the algorithm so that the more accurate predicted trajectory can be
determined. Still, only the exponential gain compensation deals with a steering system
model deviation due to changes in the operating speed. Then, the applicable range of
this system is limited by the deviation in a vehicle model since no model correction is
applied in this part of the system. Also, in determining the possible trajectories, the
speed is assumed constant at one certain speed, i.e. current measured speed. If
different speeds are included in the algorithm, then more plausible trajectories can be
determined, inducing more possibility to encounter the more suitable trajectory.

The angular deviation score weight plays an important role in controlling the
traveling direction. By setting this weight to be zero, the traveling direction defined
by the waypoint heading angle is disregarded, the car then can trace the waypoint in
either same or oppose the prescribed direction. However, setting the angular deviation
score weight too high cab results in a constant offset distance to the waypoint or even
leaving the waypoint since the predicted trajectory with a high angular deviation score
will overcome the trajectory with a high linear deviation score which leads the car
back to the waypoint. A suitable angular deviation score weight will ensure the
waypoint tracing smoothness, thus increase ride quality.

According to Figure 70 and Figure 71, the obstacle avoidance function seems
to overshadow the waypoint tracing algorithm at about 10 meters away to the
obstacle. This 10-meter distance relates to the predicted trajectory length that is set to
be 10 meters in the experiment. This distance can be reduced such that a reasonable
forward-collision distance can be achieved. Moreover, the least displacements to the
obstacle of the first and second experiment, which are 1.19 and 1.22 meters,
respectively, imply that the algorithm operate properly since the critical obstacle
distance, described in the previous section, is set to be 1.0 meters and the obstacle

used in this experiment has a width of 0.2 meters.
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This autonomous navigation algorithm can be improved by revising some
parts of the algorithm. For example, in the obstacle avoidance part, it has been pointed
out that the algorithm suddenly changes its priority whenever the predicted trajectory
length is reached. Here, if the continuous function is applied to the critical obstacle
distance scoring procedure to obtain the suitable forward-collision distance.
Furthermore, the linear deviation variant function can be introduced to the angular
deviation scoring process to eliminate the constant offset from a waypoint and prevent

the car from leaving the waypoint.



92

CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

1. Conclusions

The three main objectives have been done in this research. The first objective
is to develop a low-level control system, including the steering control system and the
speed control system. Second, the high-level controller software for the autonomous
path-following navigation system using the Global Navigation Satellite System
(GNSS) was developed. The third objective that has been accomplished is the
development of the obstacle avoidance software.

First of all, the ultra-small electric vehicle, i.e. the Toyota COMS, has been
modified for a speed control system and a steering control system. In the speed
control modification, the existed braking system was modified by introducing a
designed brake actuator module to the original brake line in series. This modified
brake system allows both driver and autonomous system to apply pressure to a vehicle
brake line. Also, the accelerator pedal has been modified allowing the autonomous
system to control the vehicle acceleration whenever required. The steering control
system was also installed in this low-level modification. At the moment, the modified
vehicle was ready to be autonomously navigated using the high-level navigation
software. Then, the high-level autonomous navigation using GNSS was developed
base on the kinematic model of the vehicle. The developed algorithm for path
following navigation has been named the Scored Predicted Trajectory and
implemented in the high-level software. The algorithm deals with both waypoint
tracing and obstacle avoidance tasks at the same time, thus satisfies both the second
and the third objective stated above. Furthermore, to cope with a model change
impacted by vehicle speed, the Exponential Gain Compensation algorithm is
developed and implemented to the high-level software. Eventually, the evaluation
experiment was performed. The test site was located in Chulalongkorn University
campus. The test track was set to be one the close-loop road inside the campus. The
experiment on path-following performance evaluation was conducted by launching

the test car, by which the developed software was deployed, to the test track. The
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result shows satisfactory performance with an average linear deviation from the
waypoint of 0.07 meters when the speed is 10 kilometers per hour and 0.12 meters
when the speed is 15 kilometers per hour. The desirable angular deviation of about 3
degrees in 10 kilometers per hour test and about 4 degrees in 15 kilometers per hour
test resulted from this experiment as well. The experiment on obstacle avoidance was
performed later. In the experiment, the obstacle was placed in the middle of the
waypoint. Then, the test car was launched and autonomously navigated toward the
obstacle. The result shows that the test vehicle deals with the obstacle that blocks the
waypoint by performing a steering evasive maneuver, as expected, keeping a
minimum distance of 1.2 meters away from the obstacle which is the exact value
configured in the navigation software.

From all mentioned above, the concept of using GNSS, with the Real-Time
Kinematic (RTK) technique, as a sole localization system for the autonomous vehicle
was proved that can work perfectly, even some portions of the route are covered by
trees or surrounded by buildings. However, the obstacle sensing device, which is a 2D

laser scanner in this research, still vital to the collision avoidance system.

2. Recommendations

The vehicle model used in the algorithm is the key to high-speed application
performance. Thus, deploying a more sophisticated vehicle model will extend the
application range to a higher speed than 15 kilometers per hour. Also, some parts of
the developed high-level software can be accelerated by applying the parallel
computing technique. For instance, the exponential gain compensation which can be
accelerated by the parallel computing technique will give a fast response to a change
in vehicle speed when a high sample rate is utilized.

Besides, this research employs an expensive 2D laser scanner. However, since
the developed system is intended to be used in a low-speed application, then an
expensive laser scanner can be replaced by a lower class one, therefore, increasing the
potential to be commercialized for use in the controlled environment, e.g. a low-

density residential area, factory, university campus, etc.
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APPENDIX A
NAVIGATION SENSORS

POS LVX dual GNSS-inertial solution for high-accuracy positioning and

orientation on autonomous ground vehicles[23]

Figure 72 POS LVX dual GNSS-inertial[23]

Technical Specifications

o

0

4

D)

*,

Advanced Applanix IN-Fusion™ GNSS-Inertial integration technology

» Solid-state MEMS inertial sensors with Applanix SmartCal™ compensation

technology

RS

S

>

D)

S

©)

o

o

o

o

*,

o

o

Advanced Trimble GNSS survey technology

Position antenna based on 336 Channels Maxwell 7 chip:

GPS: L1 C/A, L2E, L2C, L5

BeiDou B1, B2, B31

GLONASS: L1 C/A, L2 C/A, L3 CDMA2
Galileo3: E1, E5A, E5B, ESAItBOC, E62
IRNSS L5

QZSS: L1 C/A, L1 SAIF, L1C, L2C, L5, LEX
SBAS: L1 C/A, L5

MSS L-Band: OmniSTAR, Trimble RTX

% Vector Antenna based on second 336 Channel Maxwell 7 chip:

GPS: L1 C/A, L2E, L2C, L5
BeiDou B1, B2, B31



98

o GLONASS: L1 C/A, L2 C/A, L3 CDMA2

o Galileo3: E1, E5A, E5B, ESAItBOC, E62

o IRNSS L5

o QZSS:L1C/A L1SAIF, L1C, L2C, L5, LEX

% High precision multiple correlator for GNSS pseudorange measurements

% Advanced RF Spectrum Monitoring and Analysis

% Unfiltered, unsmoothed pseudorange measurements data for low noise, low
multipath error, low time domain correlation and high dynamic response

% Very low noise GNSS carrier phase measurements with <1 mm precision in a
1 Hz bandwidth ¢ Proven Trimble low elevation tracking technology

%+ 100 Hz real-time position and orientation output

% IMU data rate 200 Hz

% Navigation output format: ASCII (NMEA-0183), Binary (Trimble GSOF)

%+ Supported Reference input: - CMR, CMR+, sSCMRx, RTCM 2.1, 2.2, 2.3, 3.0,
3.1, 3.2 « Support for POSPac MMS post-processing software (sold
separately)

%+ No export permit required

%+ Supports Fault Detection & Exclusion (FDE), Receiver Autonomous Integrity
Monitoring (RAIM)

Performance Specification

Table 5 Performance without GNSS outages

Performance SPS | DGPS | RTK
15H|01H |[0.02H
30V |05V |005V
Roll & pitch (deg) | 0.04 |0.03 | 0.03
True heading (deg) | 0.12 | 0.09 0.09

Position (m)
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Table 6 Performance with 1 km or 1 minute GNSS outages
Performance SPS | DGPS | RTK
20H|20H |1.0H
50V |30V |20V
Roll & pitch (deg) [0.09 | 0.09 |0.09
True heading (deg) [ 0.35 | 0.35 | 0.30

Position (m)

LMS511 Laser measurement sensor[24]

Figure 73 LMS511 Laser measurement sensor[24]

Table 7 LMS511 laser measurement sensor technical specifications

Specification Detail

Field of application | Outdoor

Version Mid-Range

Variant Lite

Resolution power | Standard Resolution

Light source Infrared (905 nm)
Laser class 1 (IEC 60825-1:2014) EN 60825-1:2014
Field of view 190 °

Scanning frequency | 25 Hz /35 Hz /50 Hz / 75 Hz
Angular resolution | 0.25°,0.5°, 1°
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Table 7 LMS511 laser measurement sensor technical specifications (continued)

Specification Detail
Heating Yes
Operating range 80 m
Max. range with 10 % reflectivity | 40 m
Spot size 11.9 mrad
Amount of evaluated echoes 2

Table 8 LMS511 laser measurement sensor performance specification

Performance Detail
Fog correction Yes
Response time > 13 ms
Detectable object shape: Almost any

£25mm(1m..10m)

Systematic error £35mm (10 m... 20 m)
£50 mm (20 m ... 30 m)
14 mm (20 m ... 30 m)

Statistical error £6mm(1m..10m)
£8mm (10 m... 20 m)

Integrated application Field evaluation
Number of field sets 4 fields

Simultaneous processing cases | 4
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APPENDIX B
PROCESSING UNIT

Lenovo Legion Y530-151CHJ[25]

Figure 74 Lenovo Legion Y530-151CH[25]

Table 9 Lenovo Legion Y530-151CH technical specification

Specification Detail

Manufacturer Lenovo

Model Legion Y530-15ICH

Central Processing Unit (CPU) Intel(R) Core(TM) i5-8300H 2.30GHz
Random-Access Memory (RAM) | 20.0 GB

Operating System Windows 10 Home 64bit
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APPENDIX C
CAR SPECIFICATION

Toyota COMS ZAD-TAKS30-DS[26]

Figure 75 Toyota COMS ZAD-TAK30-DS[27]

Table 10 Toyota COMS ZAD-TAK30-DS general specification

Specification Detail
Manufacturer Toyota
Model ZAD-TAK30-DS
Curb weight (kg) 420
Gross vehicle weight (kg) 475
Fuel type Electricity
Driving range (km) 50
Minimum turning radius (m) | 3.2
Maximum payload (kg) 30
Maximum passengers 1
Total length (mm) 2395
Total width (mm) 1095

Total height (mm) 1495




Table 10 Toyota COMS ZAD-TAKS30-DS general specification (continued)

Specification

Detail

Wheelbase (mm)

1530

Track width (mm)

930 (front), 920 (rear)

Tire

145/70R12 69Q (S)

Traction battery

6 Lead-acid batteries 12V 52Ah

Auxiliary battery

1 Lead-acid battery 12V 17Ah

Charging times (hr)

6

AC charging voltage (V) | 100

AC charging current (A) | 9.5

Table 11 Toyota COMS ZAD-TAK30-DS motor specification

Specification

Detail

Type

Permanent magnet synchronous motor

Typical voltage (V)

72

Typical power (kW)

0.59

Controller

Transistor inverter

Maximum power (kW)

5.0 /1200 ~ 1400 rpm

Maximum torque (Nm)

below 40/ 1200 rpm

Table 12 Toyota COMS ZAD-TAK30-DS steering mechanism specification

Specification Detail

Steering wheel diameter (mm) | 350

Gear system

Rack and pinion

Steering angle

38° (inner)
36° (outer)

Lock mechanism

Steering wheel lock

103
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Table 13 Toyota COMS ZAD-TAK30-DS braking mechanism specification

Specification Detail

hydraulic drum (front)

type
7P hydraulic drum (rear)

Master cylinder inner diameter (mm) | 17.4

17.4 (front)
17.4 (rear)
Brake fluid grade DOT3

Wheel cylinder inner diameter (mm)
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DEVELOPED MASTER CYLINDER
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Figure 76 Master cylinder assembly view
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APPENDIX E
LOW-LEVEL CONTROLLER CIRCUIT
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Figure 80 Low-level controller printed circuit board bottom layer



APPENDIX F
SOURCE CODE

Table 14 Electronic system controller source code (Arduino IDE)

Line
1

10
11

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

Code
const byte REL PIN[14] = {4, 33,
32, 14, 25, 26, 27, 15, 13, 5, 18,
19, 21, 22%;
const byte SEL PIN = 23;

const byte DESCRIPTION MSG[9] =
{71, 82, 83, 87, 67, 84, 82, 2,
44};

const byte INVALID MSG[9] = {71,
82, 73, 78, 86, 76, 68, 2, 22};
byte SYSTEM STATUS[10] = {0, 0, O,
6, o, 0, 0, 0, 0, O};

void setup() {

pinMode (SEL_PIN, OUTPUT) ;

for (int i = 0; i < 14;
i++)pinMode (REL_PIN[i], OUTPUT);

digitalWrite (SEL_PIN, HIGH);

for (int i = 0; i < 14;
it++)digitalWrite (REL_PIN[i], HIGH);

Serial.begin (57600) ;
Serial.setTimeout (5);

}

void loop() {

byte input buffer[5];
byte output buffer[6];
byte status_buffer[14];
short input checksum;
short output checksum;
short status checksum;

short receive checksum;

Serial.readStringUntil ('G'");
if (Serial.available()) {
Serial.readBytes (input buffer, 8);

input_checksum = 71 +

input buffer([0] + input buffer[1l] +
input buffer([2] + input buffer[3] +
input buffer([4] + input buffer[5];
receive checksum = (input buffer([6]
<< 8) | input buffer[7];

Line

104

106
107

Code

else if (input buffer([2] == 2)

digitalWrite (REL PIN[3],
digitalWrite (REL PIN[4],

digitalWrite (REL PIN[5], LOW);

}
else if (input_buffer[2] == 3)

digitalWrite (REL_PIN[3], LOW);

digitalWrite (REL_PIN[4], LOW);
digitalWrite (REL_PIN[5],
}

}

LOW) ;

else if (input_buffer[1l] == 3)

if (input_buffer[2] == 0) {

digitalWrite (REL_PIN[6], HIGH);

}
else if (input_buffer([2] == 1)
digitalWrite (REL_PIN[6], LOW);
}
}
else if (input buffer[1l] == 4)
if (input buffer[2] == 0) {
digitalWrite (REL PIN[7],
digitalWrite (REL PIN[8],
}
else if (input buffer([2] == 1)
digitalWrite (REL_PIN[7], LOW);
digitalWrite (REL PIN[8],
}
else if

(input_buffer[2] == 2)

digitalWrite (REL _PIN[7], LOW);
digitalWrite (REL _PIN[8], LOW);

}

HIGH) ;

HIGH) ;

HIGH) ;

HIGH) ;

HIGH) ;
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35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50

51
52

53

54
55
56
57
58
59
60

61

62

63

64
65
66
67
68
69
70
71
72
73

74

if (input checksum ==
receive checksum) {
if (input buffer[0] == 73) {

if (input buffer[l] == 0) {

Serial.write (DESCRIPTION MSG, 9);

}

else {

Serial.write (INVALID MSG, 9);
}

}

if (input buffer[0] == 82) {
if (input buffer[l] == 10) {
status buffer[0] = 71;
status_buffer[1l] = 83;

status_checksum = 154;
for (int i = 0; 1 < 10; i++) {

status_buffer[i + 2] =
SYSTEM STATUS[i];
status_checksum +=
SYSTEM STATUS[i];

}

status_buffer[12] =

highByte (status_checksum) ;
status_buffer[13] =

lowByte (status_checksum) ;
Serial.write (status_buffer, 14);

}
else if (input buffer([1] < 10) {

output_buffer[0] = 71;
output_buffer[1l] = 82;
output _buffer[2] = input buffer([1];

output_buffer[3] =

SYSTEM STATUS [input buffer[1]];
output checksum = 153 +
output_buffer[2] +
output_buffer[3];

output buffer[4] =

highByte (output_ checksum) ;
output buffer[5] =

lowByte (output_ checksum) ;
Serial.write (output buffer, 6);

}

else {

Serial.write (INVALID MSG, 9);
}

}

else if (input buffer[0] == 65) {
if (input buffer[l] == 0) {
if (input buffer[2] == 0) {

digitalWrite (REL PIN[O0], HIGH);

}

138
139
140

142

143

145
146

148
149
150
e
152

else if (input buffer([l] == 5) {

if (input buffer[2] == 0) {
digitalWrite (REL PIN[9], HIGH);
}

else if (input buffer([2] == 1) {
digitalWrite (REL PIN[9], LOW);

}

}

else if (input buffer[l] == 6) {
if (input buffer([2] == 0) {
digitalWrite (REL PIN[10], HIGH);
}

else if (input buffer[2] == 1) {
digitalWrite (REL_PIN[10], LOW);
}

}

else if (input buffer[l] == 7) {

if (input_buffer[2] == 0) {
digitalWrite (REL_PIN[11], HIGH);
}

else if (input buffer[2] == 1) {
digitalWrite (REL_PIN[11], LOW);
}

}

else if (input buffer[l] == 8) {
if (input_buffer[2] == 0) {

digitalWrite (REL_PIN[12], HIGH);

digitalWrite (REL _PIN[13], HIGH);

}
else if (input buffer([2] == 1) {

digitalWrite (REL PIN[12], LOW);
digitalWrite (REL PIN[13], HIGH);
}

else if (input buffer([2] == 2) {
digitalWrite (REL PIN[12], HIGH);
digitalWrite (REL PIN[13], LOW);
}

else if (input buffer([2] == 3) {
digitalWrite (REL PIN[12], LOW);
digitalWrite (REL PIN[13], LOW);

}
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75 else if (input buffer([2] == 1) { 178 }

76 digitalWrite (REL PIN[O0], LOW); 179 else if (input buffer[l] == 9) {

77 } 180 for (int i = 0; 1 < 14;
i++)digitalWrite (REL PIN[i], HIGH);

78 } 181 for (int 1 = 0; i < 10;
i++)SYSTEM7$TATUS[i] = 0;

79 else if (input buffer([l] == 1) { 182 if (input buffer([2] == 0) {

80 if (input buffer[2] == 0) { 183 digitalWrite (SEL PIN, HIGH);

81 digitalWrite (REL PIN[1], HIGH); 184 }

82 digitalWrite (REL PIN[2], HIGH); 185 else if (input buffer([2] == 1) {

83 } 186 digitalWrite (SEL PIN, LOW);

84 else if (input buffer([2] == 1) { 187 }

85 digitalWrite (REL PIN[1], LOW); 188 }

86 digitalWrite (REL PIN[2], HIGH); 189 if (input buffer[1l] < 10) {

87 } 190 SYSTEM STATUS [input buffer([1]] =
input_buffer([2];

88 else if (input buffer[2] == 2) { 191 output _buffer[0] = 71;

89 digitalWrite (REL_PIN[1], HIGH); 192 for (int i = 0; 1 < 5; i++)
output_buffer[i + 1] =
input _buffer([i];

90 digitalWrite (REL_PIN[2], LOW); 193 Serial.write (output buffer, 6);
91 } 194 }
92 } 195 else {
93 else if (input buffer[l] == 2) { 196 Serial.write (INVALID MSG, 9);
94 if (input_buffer[2] == 0) { 197 }
95 digitalWrite (REL_PIN[3], HIGH); 198 }
96 digitalWrite (REL_PIN[4], HIGH); 199 else {
97 digitalWrite (REL_PIN[5], HIGH); 200 Serial.write (INVALID MSG, 9);
98 } 201 }
99 else if (input buffer[2] == 1) ({ 202 }
100 digitalWrite (REL_PIN[3], HIGH); 203 else {
101 digitalWrite (REL_PIN[4], LOW); 204 Serial.write (INVALID MSG, 9);
102 digitalWrite (REL_PIN[5], HIGH); 205 }
103 } 206 }
207 }

Table 15 Steering control system controller source code (Arduino IDE)

Line Code Line Code

1 #include "EEPROM.h" 134 #include "EEPROM.h"

2 #include <Wire.h> 135 #include <Wire.h>

3 #include <Adafruit ADS1015.h> 136 #include <Adafruit ADS1015.h>

4 137

5 Adafruit ADS1115 ENCODER (0x48); 138 Adafruit ADS1115 ENCODER (0x48);
6 139

7 const byte MTR _PWM = 26; 140 const byte MTR PWM = 26;

8 const byte MTR IN2 = 25; 141 const byte MTR IN2 = 25;
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34
35
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39
40
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const byte MTR IN1 = 33;

const byte MTR PWM CHN = 0;

const byte DESCRIPTION MSG[9] =
{71, 82, 83, 67, 67, 84, 82, 2,
24%;

const byte INVALID MSG[9] = {71,
82, 73, 78, 86, 76, 68, 2, 22};

//{KP, KI, KD, INITIAL STEERING,
MINIMUM STEERING OUTPUT,

MAXIMUM STEERING OUTPUT,
CONTROLLED LOOP_ INTERVAL}

const byte EEPROM ADDR[7] = {0, 4,
8, 12, 16, 20, 24};

//{REFERENCE STEERING, MODE, KP,
KI, KD, INITIAL STEERING,
MINIMUM STEERING OUTPUT,

MAXIMUM STEERING OUTPUT,
CONTROLLED LOOP INTERVAL,
DIAGNOSTIC STREAM MODE,
SENSE_STEERING, DEVIATION,
FORMER DEVIATION,

COMMULATIVE DEVIATION,

DIFFERENT DEVIATION, OUTPUT}
long PARAMETERS[16] = {0, 0, 0, 0,
o, 0, 0, 0, 0, 0, 0, 0O, O, O, O,
0};

byte DIAG_OUTPUT BUFFER([68];

// {DECREASE_STEERING,

INCREASE STEERING}

byte DIRECTION CONTROL_DECREASE =
1;

byte DIRECTION_ CONTROL_ INCREASE =
1;

byte SENSOR STREAM STATUS = 0;

byte DEBUGGER_STATUS = 0;

unsigned long LOOP_ TIMESTAMP;

void setup() {
ledcSetup (MTR_PWM CHN, 5000, 12);

ledcAttachPin (MTR_PWM,
MTR_PWM_CHN) ;
pinMode(MTR_INZ, OUTPUT) ;

pinMode (MTR_IN1, OUTPUT) ;

FreeSteering () ;

ENCODER.begin () ;

EEPROM.begin (32) ;

for (int i = 0; i < 7;
i++) PARAMETERS[1 + 2] =
EEPROM.readLong(EEPROMﬁADDR[i]);

142
143

145

146

147

148
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const byte MTR IN1 = 33;

const byte MTR PWM CHN = 0;

const byte DESCRIPTION MSG[9] =
{71, 82, 83, 67, 67, 84, 82, 2,
24%;

const byte INVALID MSG[9] = {71,
82, 73, 78, 86, 76, 68, 2, 22};

//{KP, KI, KD, INITIAL STEERING,
MINIMUM STEERING OUTPUT,

MAXIMUM STEERING OUTPUT,
CONTROLLED LOOP INTERVAL}

const byte EEPROM ADDR[7] = {0, 4,
8, 12, 16, 20, 24};

//{REFERENCE STEERING, MODE, KP,
KI, KD, INITIAL STEERING,
MINIMUM STEERING OUTPUT,
MAXIMUM STEERING OUTPUT,
CONTROLLED LOOP INTERVAL,
DIAGNOSTIC STREAM MODE,
SENSE_STEERING, DEVIATION,
FORMER DEVIATION,

COMMULATIVE DEVIATION,

DIFFERENT DEVIATION, OUTPUT}

long PARAMETERS[16] = {0, 0, 0, O,
o, o, 0, o, 0, 0o, 0, O, 0O, O, O,
0};

byte DIAG_OUTPUT_ BUFFER[68];

//{DECREASE_STEERING,
INCREASE_STEERING}

byte DIRECTION_CONTROL_DECREASE =
1;

byte DIRECTION_CONTROL_INCREASE
1;

byte SENSOR _STREAM STATUS = 0;

byte DEBUGGER_STATUS = 0;

unsigned long LOOP TIMESTAMP;

void setup() {
ledcSetup (MTR_PWM CHN, 5000, 12);

ledcAttachPin (MTR_PWM,
MTR_PWM_CHN) ;
pinMode(MTR_INZ, OUTPUT) ;

pinMode (MTR_IN1, OUTPUT);

FreeSteering () ;

ENCODER.begin () ;

EEPROM.begin (32) ;

for (int i = 0; 1 < 7;
i++) PARAMETERS [1 + 2] =
EEPROM.readLong(EEPROMiADDR[i]);
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68
69

70
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74

Serial.begin (57600) ;

Serial.setTimeout (5);

PARAMETERS[0] = PARAMETERS[5];

PARAMETERS[10] =

ENCODER.readADC SingleEnded(0);
PARAMETERS[12] = PARAMETERS[0] -
PARAMETERS[10] ;

LOOP TIMESTAMP = millis();

}

void loop () {

byte input buffer([8];
byte output buffer[9];
short input checksum;
short output checksum;
short receive checksum;

long receive buffer;

PARAMETERS[10] =
ENCODER.readADC_SingleEnded (0) ;
//SENSED_STEERING

Serial.readStringUntil ('G");
if (Serial.available()) {

Serial.readBytes (input buffer, 8);

if (input buffer[0] == 68 &&

input buffer[l] == 69 &&

input buffer[2] = 66 &&

input buffer([3] == 85 &&

input buffer[4] == 71 &&

input buffer([5] == 71 &&

input buffer([6] == 69 &&

input buffer([7] == 82) {
DEBUGGER_STATUS = !DEBUGGER_STATUS;

}

if (input buffer[0] == 83 &&
input buffer([l] == 69 &&
input buffer([2] == 78 &&
input buffer([3] == 68 &&
input buffer([4] == 83 &&
input buffer([5] == 84 &&
input buffer([6] == 82 &&

input buffer([7] == 77) {
SENSOR_STREAM STATUS =

I SENSOR_STREAM STATUS;

}

else {

input checksum = 71 +

input buffer([0] + input buffer[1l] +
input buffer([2] + input buffer[3] +
input buffer([4] + input buffer[5];
receive checksum = (input buffer([6]
<< 8) | input buffer[7];

175
176

178
179
180

181

182
183
184
185
186
187
188
189
190
191
192
193
194

195
196
197
198

200
201
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Serial.begin (57600) ;

Serial.setTimeout (5);

PARAMETERS[0] = PARAMETERS[5];

PARAMETERS[10] =

ENCODER.readADC SingleEnded(0);
PARAMETERS[12] = PARAMETERS[0] -
PARAMETERS[10];

LOOP TIMESTAMP = millis();

}

void loop () {

byte input buffer([8];
byte output buffer[9];
short input checksum;
short output checksum;
short receive checksum;

long receive buffer;

PARAMETERS[10] =
ENCODER.readADC_SingleEnded (0) ;
//SENSED_STEERING

Serial.readStringUntil ('G");
if (Serial.available()) {

Serial.readBytes (input_buffer, 8);

if (input_buffer[0] == 68 &&
input buffer[l] == 69 &&
input buffer[2] == 66 &&
input buffer[3] == 85 &&
input buffer[4] == 71 &&
input buffer[5] == 71 &&
input buffer[6] == 69 &&
input buffer[7] == 82) {
DEBUGGER_STATUS = !DEBUGGER_STATUS;
}

if (input _buffer[0] == 83 &&
input buffer[l] == 69 &&
input buffer[2] == 78 &&
input buffer[3] == 68 &&
input buffer[4] == 83 &&
input buffer[5] == 84 &&
input buffer[6] == 82 &&
input buffer([7] == 77) {

SENSOR_STREAM STATUS =
| SENSOR_STREAM STATUS;
}

else {

input checksum = 71 +

input buffer[0] + input buffer[l] +
input buffer([2] + input buffer[3] +
input buffer[4] + input buffer([5];

receive checksum = (input buffer[6]

<< 8) | input buffer[7];
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if (input checksum ==
receive checksum) {

if (input buffer[0] == 73) {
if (input buffer[l] == 0) {
if (SENSOR STREAM STATUS == 0) {

Serial.write (DESCRIPTION MSG, 9);
}

}

else {

if (SENSOR STREAM STATUS == 0) {
Serial.write (INVALID MSG, 9);

}

}

}

else if (input buffer[0] == 82) {
if (input buffer[1l] == 16) {
UpdateDiagOutputBuffer () ;

if (SENSOR_STREAM STATUS == 0) {

Serial.write (DIAG_OUTPUT_ BUFFER,
68) ;
}

}
else if (input buffer[1l] < 16) {

output_buffer[0] = 71;
output_buffer[1l] = 82;
output_buffer[2] = input buffer[1];

Il

output_buffer[3]
(PARAMETERS [input_buffer[1]] >> 24)
& 255;

output_buffer[4] =
(PARAMETERS [input buffer[1]] >> 16)
& 255;

output_buffer[5] =
(PARAMETERS [input _buffer[1]] >> 8)
& 255;

output buffer[6] =
PARAMETERS [input_buffer[1]]
output checksum = 153 +
output buffer[2] + output buffer[3]
+ output buffer[4] +

output buffer[5] +
output_buffer[6];
output buffer([7]
highByte (output checksum) ;
output buffer[8] =

lowByte (output checksum) ;

if (SENSOR_STREAM STATUS == 0) {

Serial.write (output buffer, 9);
}

}

else {

if (SENSOR_STREAM STATUS == 0) |

Serial.write (INVALID MSG, 9);

& 255;
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if (input checksum ==
receive checksum) {

if (input buffer[0] == 73) {
if (input buffer[l] == 0) {
if (SENSOR STREAM STATUS == 0) {

Serial.write (DESCRIPTION MSG, 9);
}

}

else {

if (SENSOR STREAM STATUS == 0) {
Serial.write (INVALID MSG, 9);

}

}

}

else if (input_buffer[0] == 82) {
if (input_buffer[l] == 16) {
UpdateDiagOutputBuffer () ;

if (SENSOR_STREAM STATUS == 0) {

Serial.write (DIAG OUTPUT BUFFER,
68) 7
}

}
else if (input_buffer[1] < 16) {

output_buffer[0] = 71;
output_buffer[1l] = 82;
output _buffer[2] = input buffer([1l];

output_buffer[3]
(PARAMETERS [input _buffer[1]] >> 24)
& 255;

output _buffer[4] =
(PARAMETERS [input buffer[1]] >> 16)
& 255;

output_buffer[5] =
(PARAMETERS [input _buffer([1]] >> 8)
& 255;

output _buffer[6] =
PARAMETERS [input_buffer[1]]
output checksum = 153 +
output_buffer[2] + output buffer[3]
+ output buffer[4] +
output_buffer[5] +
output_buffer[6];
output_buffer[7]
highByte (output_ checksum) ;
output buffer[8] =

lowByte (output checksum) ;

if (SENSOR_STREAM STATUS == 0) {

& 255;

Serial.write (output buffer, 9);
}

}

else {

if (SENSOR STREAM STATUS == 0) {

Serial.write (INVALID MSG, 9);
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113 } 246 }

114 } 247 }

115 } 248 }

116 else if (input buffer[0] == 65) { 249 else if (input buffer[0] == 65) {

117 PARAMETERS [input buffer[1]] = 250 PARAMETERS [input buffer[1l]] =
(input buffer([2] << 24) | (input buffer[2] << 24) |
(input buffer([3] << 16) | (input buffer[3] << 16) |
(input buffer([4] << 8) | (input buffer[4] << 8) |
input buffer[5]; input buffer[5];

118 if (input buffer[l] == 1) { 251 if (input buffer[l] == 1) {

119 PARAMETERS [0] = PARAMETERS([5]; 252 PARAMETERS[0] = PARAMETERS[5];

120 PARAMETERS [12] = PARAMETERS[0] - 253 PARAMETERS[12] = PARAMETERS[0] -
PARAMETERS [10] ; PARAMETERS[10];

121 PARAMETERS [13] = 0; 254 PARAMETERS[13] = 0;

122 } 255 }

123 else if (input buffer[l] > 1 && 256 else if (input_buffer[l] > 1 &&
input _buffer[1] < 9) { input _buffer[1] < 9) {

124 EEPROM.writeLong (EEPROM ADDR[input 257 EEPROM.writeLong (EEPROM ADDR[input
buffer([l] - 2], buffer([l] - 2],

PARAMETERS [input _buffer[1]]); PARAMETERS [input buffer[1]]);

125 EEPROM.commit () ; 258 EEPROM. commit () ;

126 } 299 }

127 if (input_buffer[1l] < 10) { 260 if (input_buffer[1l] < 10) {

128 output_buffer[0] = 71; 261 output_buffer[0] = 71;

129 for (int i = 0; 1 < 8; 262 for (int i = 0; i < 8;
i++)output buffer[i + 1] = i++)output buffer[i + 1] =
input_buffer[i]; input_buffer[i];

130 if (SENSOR_STREAM STATUS == 0) { 263 if (SENSOR STREAM STATUS == 0) {

131 Serial.write (output buffer, 9); 264 Serial.write (output_buffer, 9);

132 } 265 }

133 } 266 }

Table 16 Speed control system controller source code (Arduino IDE)

Line Code Line Code

1 #include "EEPROM.h" 176 }

2 #include <SPI.h> 177 }

3 #include "mcp_ can.h" 178 else {

4 179 if (SENSOR_STREAM STATUS == 0) {
5 const byte MTR LMS = 14; 180 Serial.write (INVALID MSG, 9);

6 const byte MTR _PWM = 33; 181 }

7 const byte MTR IN2 = 25; 182 }

8 const byte MTR IN1 = 26; 183 }

9 const byte DAC Cs = 21; 184 else {

10 const byte DAC_LDAC = 4; 185 if (SENSOR STREAM STATUS == 0) {
11 const byte CAN CS = 22; 186 Serial.write (INVALID MSG, 9);

12 187 }

13 MCP_CAN CAN (CAN CS) ; 188 }

14 189 }

15 unsigned short CAN message ID; 190 }
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byte CAN message length = 0;

byte CAN input buffer[8];

const byte DESCRIPTION MSG[9] =
{71, 82, 67, 67, 67, 84, 82, 2, 8};
const byte INVALID MSG[9] = {71,
82, 73, 78, 86, 76, 68, 2, 22};

//{KP, KI, KD,

IDLE DECELERATION OFFSET,
ACCELERATOR SIGNAL GAIN,

BRAKE ACTUATOR GAIN, INITIAL SPEED,
CONTROLLED LOOP_ INTERVAL}

const byte EEPROM ADDR[8] = {0, 4,
8, 12, 16, 20, 24, 28};

//{REFERENCE SPEED, MODE, KP, KI,
KD, IDLE DECELERATION OFFSET,
ACCELERATOR PEDAL SIGNAL GAIN,
BRAKE ACTUATOR GAIN, INITIAL SPEED,
CONTROLLED LOOP INTERVAL,
DIAGNOSTIC STREAM MODE,

SENSED SPEED, DEVIATION,

FORMER DEVIATION,

COMMULATIVE DEVIATION,

DIFFERENT DEVIATION, OUTPUT}

long PARAMETERS[17] = {0, 0, 0, 0,
o, 0, 0, 0, 0, 0, 0, 0O, O, 0O, O, O,
0};

byte DIAG_OUTPUT BUFFER([72];

short SENSED_SPEED_WINDOW[10] = {0,
6, 6, 6, 0, 0, 0, O, O, O};

byte DEBUGGER_STATUS = 0;

byte SENSOR STREAM STATUS = 0;

byte FIRST LOOP FLAG = 1;

unsigned long LOOP_ TIMESTAMP;

void setup() {
pinMode(MTR_LMS, INPUT_ PULLUP) ;

ledcSetup (0, 5000, 12);

ledcAttachPin (MTR_PWM, O0);

pinMode (MTR_IN2, OUTPUT) ;

pinMode (MTR_IN1, OUTPUT) ;
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if (PARAMETERS[1] == 2) {
if (PARAMETERS[11] > 50) {

AcceleratorPedalSignalWrite (0) ;
ForwardBrake (2048000) ;

}

else {

LockBrake () ;

}

}

else if (PARAMETERS[1] == 1) {

PARAMETERS[12] = PARAMETERS[O0] -

PARAMETERS[11]; //DEVIATION

PARAMETERS[14] = PARAMETERS[14] +
]

PARAMETERS [12
//COMMULATIVE DEVIATION
PARAMETERS[15] = PARAMETERS[12] -
PARAMETERS [13];

//DIFFERENT DEVIATION
PARAMETERS [13] = PARAMETERS[12];
//UPDATE

PARAMETERS[16] =

long ( (PARAMETERS [2] *
PARAMETERS[12]) + (PARAMETERS[3] *
PARAMETERS[14]) / 100.0 +
(PARAMETERS [4] * PARAMETERS[15]));
if (PARAMETERS[16] > 0) {

7

PARAMETERS [16] =

long (PARAMETERS[16] * PARAMETERS[6]
/ 100.0);

}

else if (PARAMETERS[16] < 0) {

PARAMETERS [16] =

long (PARAMETERS [16] * PARAMETERS([7]
/ 100.0);

}

if (PARAMETERS[16] > 4095000) {
PARAMETERS [16] = 4095000;

PARAMETERS [14] = PARAMETERS[14] -
PARAMETERS [12];
}

else if (PARAMETERS[16] < -4095000)
{
PARAMETERS[16] = -4095000;

PARAMETERS [14] = PARAMETERS([14] -
PARAMETERS[12];
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pinMode (DAC CS, OUTPUT) ;
pinMode (DAC LDAC, OUTPUT);

digitalWrite (DAC CS, HIGH);

digitalWrite (DAC LDAC, HIGH);

Serial.begin (57600) ;
Serial.setTimeout (5);

SPI.begin();

ReleaseBrake () ;

LockBrake () ;

AcceleratorPedalSignalWrite (0) ;

EEPROM.begin (64) ;

for (int i = 0; i < 8; i++)
PARAMETERS [1 + 2] =
EEPROM.readLong (EEPROM _ADDR[i]) ;

while (CAN OK !=
CAN.begin (CAN_1000KBPS)) delay (10);

LOOP_TIMESTAMP = millis();

}

void loop() {

byte input buffer([8];

byte output buffer[9];

short input checksum;

short output checksum;

short receive checksum;

long receive buffer;

float sensed speed window_sum;
short sensed speed;

byte CAN_speed detect = 0;

while (CAN_speed detect == 0) {

if (CAN_MSGAVAIL ==
CAN.checkReceive ()) {
CAN.readMsgBuf (&CAN_message_length,
CAN_ input buffer);

CAN message ID = CAN.getCanId();

if (CAN message ID == 2) {
sensed speed = (CAN input buffer([2]
<< 8) | CAN input buffer[3];

sensed speed window sum = 0.0;
for (int i = 9; i > 0; i--) {

SENSED SPEED WINDOW[i] =

220
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}
if (PARAMETERS[16] > 0) {

AcceleratorPedalSignalWrite (PARAMET
ERS[16]);
if (digitalRead(MTR LMS)) {

ReverseBrake (750000) ;
}

else {

LockBrake () ;

}

}

else if (PARAMETERS[16] >
PARAMETERS [5] && PARAMETERS[16] <=
0) |
AcceleratorPedalSignalWrite (0);

if (digitalRead (MTR_LMS)) {
ReverseBrake (750000) ;

}

else {

LockBrake () ;

}
}

else if (PARAMETERS[l6] <=
PARAMETERS[5]) |
AcceleratorPedalSignalWrite (0) ;

ForwardBrake (abs (PARAMETERS[16])) ;
}

}

else if (PARAMETERS[1] == 0) {
AcceleratorPedalSignalWrite (0) ;
if (digitalRead(MTR_LMS)) {
ReverseBrake (750000) ;

}

else {

LockBrake () ;

}

}

if (PARAMETERS[10] == 1) {
UpdateDiagOutputBuffer () ;

Serial.write (DIAG_OUTPUT BUFFER,
72);
}

if (DEBUGGER_STATUS == 1) {
Serial.print ("DB") ;
Serial.print ("\t");

for (int 1 = 0; i < 17; i++) {
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SENSED SPEED WINDOW[i - 1];

sensed speed window sum +=
SENSED SPEED WINDOW[i];
}

SENSED SPEED WINDOW[O] =
sensed speed;
sensed speed window sum +=
SENSED SPEED WINDOWI[O];
PARAMETERS[11] =

long (sensed speed window sum /
25.6);

CAN speed detect = 1;

}
}
}

if (FIRST LOOP FLAG == 1) {

PARAMETERS[13] = PARAMETERS[O] -
PARAMETERS[11];
FIRST_LOOP_FLAG = 0;

}

Serial.readStringUntil ('G");
if (Serial.available()) {

Serial.readBytes (input_buffer, 8);

if (input_buffer[0] == 68 &&
input buffer([1l] == 69 &&
input buffer([2] == 66 &&
input buffer([3] == 85 &&
input buffer([4] == 71 &&
input buffer([5] == 71 &&
input buffer([6] == 69 &&
input buffer([7] == 82) {
DEBUGGER_STATUS = !DEBUGGER_STATUS;
}

if (input buffer[0] == 83 &&
input buffer([1l] == 69 &&
input buffer([2] == 78 &&
input buffer([3] == 68 &&
input buffer([4] == 83 &&
input buffer([5] == 84 &&
input buffer([6] == 82 &&
input buffer([7] == 77) {

SENSOR_STREAM STATUS =
I SENSOR_STREAM STATUS;
}

else {

input checksum = 71 +

input buffer([0] + input buffer[1] +
input buffer([2] + input buffer[3] +
input buffer([4] + input buffer[5];
receive checksum = (input buffer([6]
<< 8) | input buffer[7];

if (input checksum ==

receive checksum) {

if (input buffer[0] == 73) {

if (input buffer[l] == 0) {

if (SENSOR_STREAM STATUS == 0) {
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Serial.print (PARAMETERS[1]) ;
Serial.print ('\t'");
}

Serial.println();

}

if (SENSOR STREAM STATUS == 1) {
Serial.print ("SS");

Serial.print ("\t");
Serial.println (PARAMETERS[11]);

}

while (millis() - LOOP_TIMESTAMP <
PARAMETERS[9]) {
delayMicroseconds (10) ;

}

LOOP_TIMESTAMP = millis();

}

void UpdateDiagOutputBuffer () {
short diag checksum;

byte write buffer;

DIAG_OUTPUT_BUFFER[O0] = 71;
DIAG_OUTPUT_BUFFER[1] = 68;

diag_checksum = 139;

for (int 1 = 0; i < 17; i++) {

for (int j = 0; 3 < 4; j++) {

write buffer = (PARAMETERS[i] >> (J
* 8)) & 255;

DIAG_OUTPUT BUFFER[ (4 * i) + J + 2]
= write buffer;

diag_checksum += write buffer;

}

}

DIAG _OUTPUT_ BUFFER[70]
highByte (diag_ checksum) ;
DIAG OUTPUT BUFFER[71]
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Serial.write (DESCRIPTION MSG, 9);
}
}

else {

if (SENSOR STREAM STATUS == 0) |
Serial.write (INVALID MSG, 9);

}

}

}

else if (input buffer([0] == 82) {
if (input buffer[1l] == 17) {
UpdateDiagOutputBuffer () ;

if (SENSOR STREAM STATUS == 0) ({

Serial.write (DIAG_OUTPUT_BUFFER,
72) ;
}

}
else if (input buffer[1] < 17) {

output_buffer[0] = 71;
output_buffer[1l] = 82;
output_buffer[2] = input buffer[1l];

output_buffer[3] =
(PARAMETERS [input buffer[1]] >> 24)
& 255;

output_buffer[4] =

(PARAMETERS [input_buffer[1]] >> 16)
& 255;

output_buffer[5] =
(PARAMETERS [input _buffer[1]] >> 8)
& 255;

output_buffer[6] =
PARAMETERS [input_buffer[1]]
output checksum = 153 +
output _buffer[2] + output buffer[3]
+ output buffer[4] +

output buffer[5] +
output_buffer[6];
output buffer([7]
highByte (output_ checksum) ;
output buffer[8] =

lowByte (output checksum) ;

if (SENSOR_STREAM STATUS == 0) {

& 255;

Serial.write (output buffer, 9);
}

}

else {

if (SENSOR_STREAM STATUS == 0) {
Serial.write(INVALIDiMSG, 9);

}
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319
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326
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lowByte (diag checksum) ;
}

void
AcceleratorPedalSignalWrite (long v)

{
long output buffer;

float val = (v * 0.0004776) +
655.2;

unsigned short low val =

short (val) ; //CHANNEL B
unsigned short high val = short(val
+ 655.2); //CHANNEL A
output_buffer = 0b0111000000000000
| low val;

digitalWrite (DAC CS, LOW);

SPI.transfer ((output buffer >> 8) &
255);
SPI.transfer (output buffer & 255);

digitalWrite (DAC_CS, HIGH) ;
digitalWrite (DAC_LDAC, LOW);

delayMicroseconds (10) ;

digitalWrite (DAC_LDAC, HIGH);

output _buffer = 0b1111000000000000
| high_val;
digitalWrite (DAC_CS, LOW);

SPI.transfer ((output_buffer >> 8) &
255) ;
SPI.transfer (output_buffer & 255);

digitalWrite (DAC_CS, HIGH) ;

digitalWrite (DAC_LDAC, LOW);

delayMicroseconds (10) ;

digitalWrite (DAC_LDAC, HIGH);

}

void ReleaseBrake () {

while (digitalRead(MTR_LMS)) {
ReverseBrake (750000) ;

delay (1) ;

}

LockBrake () ;

}

void ForwardBrake (long p) {
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152 } 327 unsigned short pwm = short(p /
1000.0);

153 } 328 ledcWrite (0, pwm);

154 else if (input buffer[0] == 65) { 329 digitalWrite (MTR IN1, LOW);

155 PARAMETERS [input buffer[1]] = 330 digitalWrite (MTR IN2, HIGH);

(input buffer([2] << 24) |
(input buffer([3] << 16) |
(input buffer([4] << 8) |
input buffer[5];

156 if (input buffer[l] == 1) { 331 }

157 PARAMETERS[0] = PARAMETERS[8]; 332

158 PARAMETERS[13] = PARAMETERS[O0] - 333 void ReverseBrake (long p) {
PARAMETERS[11];

159 PARAMETERS[14] = 0; 334 unsigned short pwm = short(p /

1000.0) ;

160 } 335 ledcWrite (0, pwm);

161 else if (input buffer[l] > 1 && 336 digitalWrite (MTR IN1, HIGH);
input _buffer([1] < 10) {

162 EEPROM.writeLong (EEPROM ADDR[input =~ 337 digitalWrite (MTR_IN2, LOW) ;

buffer[1l] - 21,
PARAMETERS [input_buffer[1]]);

163 EEPROM.commit () ; 338 }

164 } 339

165 if (input buffer[1l] < 11) { 340 void FreeBrake () {

166 output_buffer[0] = 71; 341 ledcWrite (0, 0);

167 for (int i = 0; 1 < 8; 342 digitalWrite (MTR_IN1, LOW) ;

i++)output buffer[i + 1] =
input _buffer[i];

168 if (SENSOR_STREAM STATUS == 0) { 343 digitalWrite (MTR_IN2, LOW);
169 Serial.write (output buffer, 9); 344 }

170 } 345

171 } 346 void LockBrake () {

172 else { 347 ledcWrite (0, 4095);

173 if (SENSOR_STREAM STATUS == 0) { 348 digitalWrite (MTR_IN1, LOW);
174 Serial.write (INVALID MSG, 9); 349 digitalWrite (MTR_IN2, LOW);
175 } 350 }

Table 17 High-level autonomous navigation dependency source code (Python)

Line Code

1 class SystemController:

2 import serial

3

4 assign = ((b'GA\x00\x00\x00\x00\x00\x00\x88",

b'GA\x00\x01\x00\x00\x00\x00\x89"), (b'GA\x01\x00\x00\x00\x00\x00\x89",
b'GA\x01\x01\x00\x00\x00\x00\x8a"', b'GA\x01\x02\x00\x00\x00\x00\x8b"),
(b'GA\x02\x00\x00\x00\x00\x00\x8a"', b'GA\x02\x01\x00\x00\x00\x00\x8b",
b'GA\x02\x02\x00\x00\x00\x00\x8c"', b'GA\x02\x03\x00\x00\x00\x00\x8d"),
(b'GA\x03\x00\x00\x00\x00\x00\x8b"', b'GA\x03\x01\x00\x00\x00\x00\x8c"),
(b'GA\x04\x00\x00\x00\x00\x00\x8c"', b'GA\x04\x01\x00\x00\x00\x00\x8d",
b'GA\x04\x02\x00\x00\x00\x00\x8e"'), (b'GA\x05\x00\x00\x00\x00\x00\x8d",
b'GA\x05\x01\x00\x00\x00\x00\x8e"), (b'GA\x06\x00\x00\x00\x00\x00\x8e",
b'GA\x06\x01\x00\x00\x00\x00\x8f"'), (b'GA\x07\x00\x00\x00\x00\x00\x8f",
b'GA\x07\x01\x00\x00\x00\x00\x90"'), (b'GA\x08\x00\x00\x00\x00\x00\x90",
b'GA\x08\x01\x00\x00\x00\x00\x91"', b'GA\x08\x02\x00\x00\x00\x00\x92",
b'GA\x08\x03\x00\x00\x00\x00\x93"), (b'GA\t\x00\x00\x00\x00\x00\x91",
b'GA\t\x01\x00\x00\x00\x00\x92"))
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request = (b'GR\x00\x00\x00\x00\x00\x00\x99",
b'GR\x01\x00\x00\x00\x00\x00\x9%a"', b'GR\x02\x00\x00\x00\x00\x00\x9b",
b'GR\x03\x00\x00\x00\x00\x00\x9c"', b'GR\x04\x00\x00\x00\x00\x00\x9d",
b'GR\x05\x00\x00\x00\x00\x00\x9%e"', b'GR\x06\x00\x00\x00\x00\x00\x9f",
b'GR\x07\x00\x00\x00\x00\x00\xa0"', b'GR\x08\x00\x00\x00\x00\x00\xal",
b'GR\t\x00\x00\x00\x00\x00\xa2', b'GR\n\x00\x00\x00\x00\x00\xa3",
b'GI\x00\x00\x00\x00\x00\x00\x90")

device = None

def init (self, comport, baudrate):

self.device = self.serial.Serial (comport, baudrate)

def set(self, subsystem, state):

self.device.write(self.assign[subsystem] [state])

def poll(self, subsystem):
self.device.reset input buffer()
self.device.write (subsystem)

if subsystem == 10:

recv = self.device.read(9)

if sum(recv[:-2]) == (recv|[-2] << 8)| recv[-1]:
val = recv([2:-2]
val = (val[0] << 8) | (val[l] << 8) | (val[2] << 8) | wvall[3]

return val

else:

return -1

else:

recv = self.device.read(14)

if sum(recv[:-2]) == (recv[-2] << 8) recv([-1]:

return list(recv([2:-2])
else:

return -1

class CruiseController:
import serial

import numpy

request = (b'GR\x00\x00\x00\x00\x00\x00\x99",
b'GR\x01\x00\x00\x00\x00\x00\x9%a"', b'GR\x02\x00\x00\x00\x00\x00\x%9b",
b'GR\x03\x00\x00\x00\x00\x00\x9c"', b'GR\x04\x00\x00\x00\x00\x00\x9d",
b'GR\x05\x00\x00\x00\x00\x00\x9e"', b'GR\x06\x00\x00\x00\x00\x00\x9f",
b'GR\x07\x00\x00\x00\x00\x00\xa0"', b'GR\x08\x00\x00\x00\x00\x00\xal",
b'GR\t\x00\x00\x00\x00\x00\xa2"', b'GR\n\x00\x00\x00\x00\x00\xa3"',
b'GR\x0b\x00\x00\x00\x00\x00\xad4"', b'GR\x0c\x00\x00\x00\x00\x00\xa5",
b'GR\r\x00\x00\x00\x00\x00\xa6"', b'GR\x0e\x00\x00\x00\x00\x00\xa7",
b'GR\x0f\x00\x00\x00\x00\x00\xa8"', b'GR\x10\x00\x00\x00\x00\x00\xa9",
b'GR\x11\x00\x00\x00\x00\x00\xaa"', b'GI\x00\x00\x00\x00\x00\x00\x90")
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device = None

def init (self, comport, baudrate):

self.device = self.serial.Serial (comport, baudrate)

def set(self, subsystem, state):
state = self.numpy.int32 (state)

output buffer = b'GA' + bytes([subsystem, (state >> 24) & 255, (state >> 16) &
255, (state >> 8) & 255, state & 255])
checksum = sum(output buffer)

output buffer = output buffer + bytes([(checksum >> 8) & 255, checksum & 255])

self.device.write (output_buffer)

def poll(self, subsystem):
self.device.reset input buffer()
self.device.write (self.request[subsystem])
if subsystem == 17:

recv = self.device.read(72)

if sum(recv[:-2]) == (recv[-2] << 8) | recv[-1]:

val = self.numpy.array(recv[2:-2]) .reshape( (17, 4))

val = val[:, 0] | (vall:, 1] << 8) | (val[:, 2] << 16) | (val[:, 3] << 24)
val = val - (val >> 15) * (1 << 16)

val = val.tolist ()

return val

else:

return -1

else:

recv = self.device.read(9)

if sum(recv[:-2]) == (recv([-2] << 8) | recv[-1]:
recv = recv[3:-2]

val = (recv[0] << 24) | (recv[l] << 16) | (recv[2] << 8) | recv[3]
val = val - (val >> 31) * (1 << 32)

return val

else:

return -1

class SteeringController:
import serial

import numpy

request = (b'GR\x00\x00\x00\x00\x00\x00\x99",
b'GR\x01\x00\x00\x00\x00\x00\x9a"', b'GR\x02\x00\x00\x00\x00\x00\x9b",
b'GR\x03\x00\x00\x00\x00\x00\x9¢c"', b'GR\x04\x00\x00\x00\x00\x00\x9d",
b'GR\x05\x00\x00\x00\x00\x00\x9%e"', b'GR\x06\x00\x00\x00\x00\x00\x9f",
b'GR\x07\x00\x00\x00\x00\x00\xa0"', b'GR\x08\x00\x00\x00\x00\x00\xal",
b'GR\t\x00\x00\x00\x00\x00\xa2', b'GR\n\x00\x00\x00\x00\x00\xa3",
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82
83
84
85
86
87
88
89

b'GR\x0b\x00\x00\x00\x00\x00\xad"', b'GR\x0c\x00\x00\x00\x00\x00\xa5"
b'GR\r\x00\x00\x00\x00\x00\xa6"', b'GR\x0e\x00\x00\x00\x00\x00\xa7",
b'GR\x0f\x00\x00\x00\x00\x00\xa8"', b'GR\x10\x00\x00\x00\x00\x00\xa9"
b'GI\x00\x00\x00\x00\x00\x00\x90")

device = None

def init (self, comport, baudrate):

self.device = self.serial.Serial (comport, baudrate)

def set(self, subsystem, state):

state = self.numpy.int32 (state)

output buffer = b'GA' + bytes([subsystem, (state >> 24) & 255, (state >> 16)

255, (state >> 8) & 255, state & 255])
checksum = sum(output buffer)

’

’
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output_buffer = output buffer + bytes([(checksum >> 8) & 255, checksum & 255])

self.device.write (output buffer)

def poll(self, subsystem):
self.device.reset input buffer()
self.device.write (self.request[subsystem])
if subsystem == 16:

recv = self.device.read (68)

if sum(recv[:-2]) == (recv[-2] << 8) | recv[-1]:

val = self.numpy.array(recv[2:-2]) .reshape( (16, 4))

val = val[:, 0] | (val[:, 1] << 8) | (val[:, 2] << 16) | (vall:, 3]
val = val - (val >> 31) * (1 << 32)

val = val.tolist ()

return val

else:

return -1

else:

recv = self.device.read(9)

if sum(recv[:-2]) == (recv[-2] << 8) | recv[-1]:
recv = recv[3:-2]

val = (recv[0] << 24) | (recv[l] << 16) | (recv[2] << 8) | recv[3]
val = val - (val >> 31) * (1 << 32)

return val

else:

return -1

class SteeringProfile:
import numpy

from scipy import integrate

<< 24)
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158

159

def init (self, filename, steering gain, steering offset):
self.filename = filename

self.steering gain = steering gain

self.steering offset = steering offset

with open(self.filename, 'r') as f:

data = [i[:-1] for i in f.readlines()]

data = self.numpy.array(data) .astype (float)

self.steering position axis lower bound = data[0]

self.steering position axis upper bound = data[l]

self.steering position axis resolution = int (datal[2])
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self.steering position axis interval = (self.steering position axis upper bound

- self.steering position axis lower bound) /
(self.steering position axis resolution - 1)

self.steering position axis =
self.numpy.linspace (self.steering position axis_ lower_ bound,
self.steering position_axis upper bound,
self.steering position axis resolution)
self.time axis_ lower bound = datal3]

self.time axis_ upper bound = datal[4]

self.time axis resolution = int(data[5])

self.time_axis_interval = (self.time axis upper bound -
self.time _axis lower bound) / (self.time_axis resolution - 1)
self.time axis = self.numpy.linspace(self.time axis lower bound,

self.time axis upper bound, self.time axis resolution)

self.raw_profile = data[6:].reshape((self.steering position_axis resolution,

self.steering position axis resolution, self.time axis resolution))
self.raw_time = self.numpy.repeat (self.time axis.reshape((1, -1)),
self.steering position_axis resolution ** 2,

axis=0) .reshape((self.steering position axis resolution,
self.steering position axis resolution, self.time axis resolution))

self.profile = self.integrate.cumtrapz((self.steering gain * self.raw_profile)

- self.steering offset, self.raw time, axis=2, initial=0)
self.time = self.raw time[:, 0, :]

def get profile(self, steering position, trim=None):

if steering position < self.steering position_axis[0]:

adjusted_steering profile = self.profile[0, :, :]
adjusted raw_steering profile = self.raw profile[0, :, :]
adjusted time = self.time

elif steering position > self.steering position axis[-1]:

adjusted_steering profile = self.profile[-1, :, :]

adjusted raw_steering profile = self.raw profile[-1, :, :]

adjusted time = self.time

else:

dst = self.numpy.abs(self.steering position axis - steering position)

ind = self.numpy.argsort (dst)

adjusted steering profile = ((dst[ind[0]] * self.profilelind[1], :, :])
(dst[ind[1]] * self.profile[ind[0], :, :1)) /

self.steering position_axis_interval

adjusted raw steering profile = ((dst[ind[0]] * self.raw profile[ind[1],
+ (dst[ind[1]] * self.raw profile[ind[0], :, :])) /

self.steering position axis interval
adjusted time = self.time

+

.

:1)
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if trim is not None:

trim index = self.numpy.abs(self.time axis - trim).argmin()

adjusted steering profile = adjusted steering profile[:, :trim index]
adjusted raw steering profile = adjusted raw steering profile[:, :trim index]
adjusted time = self.time[:, :trim index]

return adjusted steering profile, adjusted raw steering profile, adjusted time

class WaypointsMap:
import numpy

from scipy.spatial import cKDTree

def  init (self, filename, longitudinal gain, latitudinal gain):
self.filename = filename

self.conversion gain = self.numpy.array([longitudinal gain, latitudinal gain])
with open(self.filename, 'r') as f:

data = [i[:-1].split('\t") for i in f.readlines()]

data = self.numpy.array(data) .astype (float)

self.geographic_waypoints = datal:, :2]

self.heading = self.numpy.deg2rad (180 - ((datal:, 2] + 90) % 360))

self.speed = datal:, 3] / 3.6

self.geographic origin = (self.geographic waypoints.ptp (axis=0) / 2) +
self.geographic_waypoints.min (axis=0)

self.meter waypoints = (self.geographic waypoints - self.geographic origin) *

self.conversion gain

self.geographic_manager = self.cKDTree (self.geographic waypoints)

self.meter manager = self.cKDTree(self.meter waypoints)

def to meter (self, geographic coordinate):
ret = (geographic coordinate - self.geographic origin) * self.conversion gain

return ret

def to mathematic _angle(self, navigation_ angle) :

ret = self.numpy.deg2rad(180 - ((navigation_angle + 90) % 360))

return ret

def to geographic(self, meter coordinate):
ret = (meter coordinate / self.conversion gain) + self.geographic origin

return ret

def to navigation angle(self, mathematic angle):

o

ret = 360 - ((self.numpy.rad2deg(mathematic_angle) - 90) % 360)
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return ret

def get trimmed geographic waypoints(self, trim params):

forward trim = int(trim params[2] * trim params[1])
reverse trim = trim params[l] - forward trim
trim lower bound = trim params[0] - reverse trim

trim upper bound = trim params[0] + forward trim
if trim lower bound < 0:

ret = self.numpy.row stack((self.geographic waypoints[trim lower bound:,
self.geographic waypoints([: trim upper bound, :]))
elif trim upper bound > self.geographic waypoints.shape[0]:

ret = self.numpy.row stack((self.geographic waypoints[trim lower bound:,
self.geographic waypoints[: trim upper bound -

self.geographic waypoints.shape([0], :1))

else:

ret = self.geographic waypoints[trim lower bound: trim upper bound, :]

return ret

def get trimmed meter waypoints(self, trim params):

forward trim = int(trim params[2] * trim params[1])
reverse_trim = trim params[l] - forward trim
trim lower bound = trim params[0] - reverse trim

trim_upper_bound = trim params[0] + forward trim
if trim lower bound < 0:

ret = self.numpy.row_stack((self.meter waypoints[trim lower bound:, :],
self.meter waypoints[: trim upper bound, :]))
elif trim upper bound > self.meter waypoints.shape([0]:

ret = self.numpy.row stack((self.meter waypoints[trim lower bound:, :],
self.meter waypoints[: trim upper bound - self.meter waypoints.shape[0],
else:

ret = self.meter waypoints[trim lower bound: trim upper bound, :]

return ret

def get trimmed heading(self, trim params):

forward trim = int(trim params[2] * trim params[1])
reverse trim = trim params[l] - forward trim

trim lower bound = trim params[0] - reverse trim
trim upper bound = trim params[0] + forward trim

if trim lower bound < 0:
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11,

11,

:1))

ret = self.numpy.concatenate ((self.heading[trim lower bound:], self.headingl:

trim upper bound]))
elif trim upper bound > self.meter waypoints.shape[0]:

ret = self.numpy.concatenate ((self.heading[trim lower bound:], self.headingl:
trim upper bound - self.heading.shape([0]]))

else:

ret = self.heading[trim lower bound: trim upper bound]

return ret

def get trimmed speed(self, trim params):
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245 forward trim = int(trim params[2] * trim params[1])

246 reverse trim = trim params[l] - forward trim

247 trim_lower_ bound = trim params[0] - reverse_trim

248 trim upper bound = trim params[0] + forward trim

249 if trim lower bound < 0:

250 ret = self.numpy.concatenate((self.speed[trim lower bound:], self.speed[:
trim upper bound]))

251 elif trim upper bound > self.meter waypoints.shape[0]:

252 ret = self.numpy.concatenate((self.speed[trim lower bound:], self.speed[:
trim upper bound - self.speed.shape[0]]))

253 else:

254 ret = self.speed[trim lower bound: trim upper bound]

255 return ret

256

257 def get trimmed(self, trim params):

258 forward trim = int(trim params[2] * trim params[1])

259 reverse_trim = trim params[l] - forward trim

260 trim lower bound = trim params[0] - reverse trim

261 trim upper_bound = trim params[0] + forward trim

262 if trim lower bound < 0:

263 trimmed geographic_waypoints =
self.numpy.row_stack((self.geographic waypoints[trim lower bound:, :],
self.geographic waypoints[: trim upper bound, :]))

264 trimmed meter waypoints =
self.numpy.row_stack((self.meter waypoints[trim lower bound:, :],
self.meter waypoints[: trim upper bound, :]))

265 trimmed heading = self.numpy.concatenate ((self.heading[trim lower_ bound:],
self.heading[: trim upper_ bound]))

266 trimmed speed = self.numpy.concatenate((self.speed[trim lower bound:],
self.speed[: trim upper bound]))

267 elif trim upper bound > self.heading.shape[0]:

268 trimmed geographic waypoints =
self.numpy.row_stack((self.geographic waypoints[trim lower bound:, :],
self.geographic_waypoints[: trim upper bound -
self.geographic_waypoints.shape([0], :1))

269 trimmed meter waypoints =
self.numpy.row_stack((self.meter waypoints[trim lower bound:, :],
self.meter waypoints[: trim upper bound - self.meter waypoints.shape[0], :]))

270 trimmed heading = self.numpy.concatenate((self.heading[trim lower bound:],
self.heading[: trim upper bound - self.heading.shape[0]]))

271 trimmed speed = self.numpy.concatenate ((self.speed[trim lower bound:],
self.speed[: trim upper bound - self.speed.shape[0]]))

272 else:

273 trimmed geographic waypoints = self.geographic waypoints[trim lower bound:
trim upper bound, :]

274 trimmed meter waypoints = self.meter waypoints[trim lower bound:
trim upper bound, :]

275 trimmed heading = self.heading[trim lower bound: trim upper bound]

276 trimmed speed = self.speed[trim lower bound: trim upper bound]

277 return trimmed geographic waypoints, trimmed meter waypoints, trimmed heading,
trimmed speed

278

279

280 class Visualizer2D:

281 import cv2

282 import numpy
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def init (self, name, frame width, frame height, plotspace, division,
waypoints) :

self.name = name

self.canvas size = self.numpy.array([frame width, frame height])
self.canvas origin = self.canvas_size / 2
self.original canvas origin = self.canvas origin

self.blank canvas = self.numpy.zeros((frame height, frame width, 3),
self.numpy.uint8)

self.blank canvas[:, :] = (65, 63, 60)

self.division interval = frame width / division

vertical division = frame height // self.division interval

vertical division = self.numpy.linspace (0, frame height,

vertical division+l).astype (int)

horizontal division = self.numpy.linspace (0, frame width,

division+l) .astype (int)
for 1 in horizontal division([1:-17:

self.cv2.line(self.blank canvas, (i, 0), (i, frame height), (93, 91, 89), 1)

for i in vertical division:

self.cv2.line(self.blank canvas, (0, i), (frame width, i), (93, 91, 89), 1)

self.scale text position = (int(0.9 * frame width),
self.canvas = self.blank canvas.copy ()
self.plotspace = plotspace

self.waypoints = waypoints

int (0.98 * frame height))

self.waypoints_color = self.numpy.repeat (self.numpy.array([[255, 255, 255]]),

self.waypoints.shape[0], axis=0)

self.scale = self.plotspace * self.canvas size / self.waypoints.ptp (axis=0)

self.scale = self.scale.min ()

self.original scale = self.scale

self.points = self.numpy.array([[0, 0]1])

self.points color = self.numpy.array([[0, 255, 0]])

self.update ()

self.cv2.namedWindow (self.name)

self.cv2.setMouseCallback (self.name, self.mouse callback)

self.mouse drag start = None
self.start canvas_origin = self.canvas _origin

self.count = True

def update(self, text info=None):

points = self.numpy.row stack((self.waypoints, self.points))

color = self.numpy.row stack((self.waypoints color,

pixel = self.canvas origin + ((points * self.scale)

11))
self.canvas = self.blank canvas.copy()

self.points color))

* self.numpy.array([1l, -
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for i, j in zip(pixel.astype(int), color.astype(int).tolist()):
self.cv2.circle(self.canvas, tuple(i), 0, j, 0)

scale tex = '$%$.2f m/div' % (self.division_interval / self.scale)

self.cv2.putText (self.canvas, scale tex, self.scale text position,
Self.ch.FONTiHERSHEYisIMPLEX, 0.4, (255, 255, 0))
if text info is not None:

text position = self.canvas origin + ((text info[l] * self.scale) *
self.numpy.array([1l, -17))

self.cv2.putText (self.canvas, text info[0], (int(text position[0]),
int (text position[l])), self.cv2.FONT HERSHEY SIMPLEX, 0.4, (255, 255,
self.cv2.imshow (self.name, self.canvas)

return self.cv2.waitKey(5)

def reset view(self):
self.canvas_origin = self.original canvas_origin

self.scale = self.original scale

def mouse_callback(self, event, x, y, flags, params):
if flags == 7864320:

self.scale *= 1.1

self.update ()

elif flags == -7864320:

self.scale /= 1.1

self.update ()

if event ==

self.mouse_drag_start = self.numpy.array([x, y])
self.start _canvas_origin = self.canvas origin
if flags ==

self.count = not self.count

if self.count:

current = self.numpy.array([x, vI])

self.canvas_origin = self.start canvas origin + (current -
self.mouse drag start)
self.update ()

class ScoredKinematicPath2D:
import numpy
from scipy import integrate

from scipy.spatial import cKDTree

0))

def  init (self, waypoints, steering profile, weight, collision radius,

predicted distance, neglect collision=False):
self.waypoints = waypoints

self.steering profile = steering profile
self.weight = weight
self.collision radius = collision radius

self.predicted distance = predicted distance

131
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self.neglect collision = neglect collision

def update(self, position, heading, speed, steering position, obstacle=None,
trim params=None) :

adjusted steering profile, adjusted raw steering profile, adjusted time =
self.steering profile.get profile(steering position,

trim=self.predicted distance/speed)

adjusted steering profile resolution, adjusted time axis resolution =
adjusted steering profile.shape

course = (speed * adjusted steering profile) + heading

x = (speed * self.integrate.cumtrapz(self.numpy.cos(course), adjusted time,
axis=1, initial=0)) + position[O0]

y = (speed * self.integrate.cumtrapz(self.numpy.sin(course), adjusted time,
axis=1, initial=0)) + position[1l]

xy = self.numpy.column stack((x.reshape( (-1, )), y.reshape((-1,))))

if trim params is not None:

_, trimmed waypoints, trimmed heading, trimmed speed =
self.waypoints.get trimmed (trim params)
trimmed waypoints manager = self.cKDTree (trimmed waypoints)

distance apart, closest point index = trimmed waypoints manager.query (xy)
required heading = trimmed heading[closest point index]

required speed = trimmed speed[closest point index[0]]

else:

trimmed waypoints = None

distance apart, closest point index = self.waypoints.meter manager.query (xy)
required heading = self.waypoints.heading[closest point index]

required speed = self.waypoints.speed[closest point index[0]]

distance_apart = distance apart.reshape((adjusted steering profile resolution,
-1))

distance score = distance apart.sum(axis=1)

distance_score = distance_score / distance_score.max()

required _heading =
required heading.reshape ((adjusted steering profile resolution, -1))
heading_score = required heading - course

heading_score = self.numpy.abs (heading score) .sum(axis=1)

heading score = heading score / heading_score.max()

steering smoothness score =

self.numpy.abs (self.steering profile.steering position axis -
steering position)

steering smoothness score = steering smoothness score /
steering smoothness score.max()

emergency brake status = False

if obstacle is not None:
obstacle manger = self.cKDTree (obstacle)
obstacle distance, _ = obstacle manger.query (xy)

obstacle distance =
obstacle distance.reshape((adjusted steering profile resolution, -1))
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408 obstacle score = obstacle distance.sum(axis=1)

409 obstacle score = obstacle score / obstacle score.max()

410

411 collision score = obstacle distance.min (axis=1)

412 if not self.neglect collision:

413 collision score[collision score <= self.collision radius] = -self.numpy.inf

414 max collision score = collision score.max ()

415 if max collision score == -self.numpy.inf:

416 emergency brake status = True

417 else:

418 collision score = collision score / max collision score

419 else:

420 obstacle score = self.numpy.zeros(adjusted steering profile resolution)

421 collision score = self.numpy.zeros(adjusted steering profile resolution)

422

423 raw_score = self.numpy.column stack((distance_score, heading score,
steering smoothness score, obstacle score, collision_ score))

424 weighted score = self.weight * raw_score

425 weighted score = weighted score.sum(axis=1)

426

427 if emergency brake status:

428 xy color = self.numpy.repeat(self.numpy.array([[0, O, 255]]), xy.shape[0Q],
axis=0)

429 else:

430 rank = self.numpy.zeros ((adjusted steering profile resolution, ))

431 rank[weighted score.argsort()] =
self.numpy.arange (adjusted steering profile resolution)

432

433 xy_color blue = self.numpy.zeros(adjusted steering profile resolution,)

434 xy_color_red = rank / adjusted steering profile resolution * 255

435 xy color green = 255 - xy color_ red

436 xy color = self.numpy.column stack((xy color blue, xy color green,
xy color red))

437 xy color = self.numpy.repeat(xy color, adjusted time axis resolution, axis=0)

438

439 required steering index = weighted score.argmin ()

440 required steering position =
self.steering profile.steering position axis[required steering index]

441

442 return required steering position, required steering index, required speed,
emergency brake status, xy, course, xy color, trimmed waypoints,
adjusted raw steering profile, adjusted steering profile resolution,
adjusted time axis resolution

443

444

445 class PosLVX:

446 import socket

447 import threading
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449 TCPport = None

450 thread alive = False

451 loop thread = None

452 received message = None

453 data = None

454 index = None

455

456 GPHDTheading = None

457 GPGGAlatitude = None

458 GPGGAlongitude = None

459 GPGGAquality = None

460 GPGGAsatellitesinuse = None

461 GPRMClatitude = None

462 GPRMClongitude = None

463 GPRMCspeedoverground = None

464 GPRMCmode = None

465 GPVTGtruetrack = None

466 GPVTGtrackmagnetic = None

467 GPVTGspeed = None

468 GPVTGmode = None

469

470 def _ init (self, ip, port):

471 self.TCPport = self.socket.socket (self.socket.AF INET, self.socket.SOCK_STREAM)
472 self.TCPport.connect ((ip, port))

473 self.loop_thread = self.threading.Thread(target=self.loop)
474

475 def loop(self):

476 while self.thread alive:

477 self.received message = self.TCPport.recv(1024)
478 self.data = self.received message.decode () .split ('"\r\n") [:-1]
479 self.data = [i.split(',') for i in self.data]
480 self.index = [i1[0] for i1 in self.data]

481 try:

482 GNHDT = self.index.index ('SGNHDT"')

483 GNRMC = self.index.index ('SGNRMC"')

484 GNGGA = self.index.index ('$SGNGGA")

485 GNVTG = self.index.index ('SGNVTG"')

486

487 if self.data[GNHDT] [1] == '':

488 self.GPHDTheading = None

489 else:

490 self.GPHDTheading = float(self.data[GNHDT][1])
491 if self.data[GNGGA] [2] == '':

492 self.GPGGAlatitude = None
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else:

self.GPGGAlatitude = float(self.data[GNGGA][2][:2]) +
float (self.data[GNGGA] [2][2:]) /60
if self.data[GNGGA] [4] == '':

self.GPGGAlongitude = None
else:

self.GPGGAlongitude= float (self.data[GNGGA][4][:3]) +
float (self.data[GNGGA] [4][3:]) /60
if self.data[GNGGA][6] == '':

self.GPGGAquality = None

else:

self.GPGGAquality = float (self.data[GNGGA][6])

if self.data[GNGGA][7] == '':
self.GPGGAsatellitesinuse = None

else:

self.GPGGAsatellitesinuse = float(self.data[GNGGA][7])
if self.data[GNRMC] [3] == '':

self.GPRMClatitude = None

else:

self.GPRMClatitude = float (self.data[GNRMC] [3][:2]) +
float (self.data[GNRMC] [3][2:])/60
if self.data[GNRMC] [5] == '':

self.GPRMClongitude = None
else:

self.GPRMClongitude = float(self.data[GNRMC] [5][:3]) +
float (self.data[GNRMC] [5][3:])/60
if self.data[GNRMC] [7] == '':

self.GPRMCspeedoverground = None

else:

self.GPRMCspeedoverground = float(self.data[GNRMC][7])
self.GPRMCmode = self.data[GNRMC] [12][:1]

if self.data[GNVTG][1] == '':
self.GPVTGtruetrack = None

else:

self.GPVTGtruetrack = float(self.data[GNVTG][1l])
if self.data[GNVTG] [3] == '':
self.GPVIGtrackmagnetic = None

else:

self.GPVIGtrackmagnetic = float (self.data[GNVTG] [3])

if self.data[GNVTG] [7] == '':
self.GPVTGspeed = None

else:

self.GPVTGspeed = float (self.data[GNVTG][7])
self.GPVTGmode = self.data[GNVTG][9][:1]
except:

print ('POSLVX ERROR')
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536 def start(self):

537 self.thread alive = True

538 self.loop thread.start()

539

540 def kill (self):

541 self.thread alive = False

542 del self.loop thread

543

544

545 class LMS511:

546 import socket

547 import numpy

548

549 def  init (self, ip, port, radius=0.0):

550 self.ip = ip

551 self.port = port

552 self.radius = radius

553 self.buffer = 2048

554 self.angle = self.numpy.deg2rad(self.numpy.linspace (-5, 185, 381))

555 self.device = None

556

557 def start(self):

558 self.device = self.socket.socket (self.socket.AF INET, self.socket.SOCK STREAM)

559 self.device.connect ((self.ip, self.port))

560 self.device.settimeout (0.01)

561

562 def get scan(self, heading=None, origin=None):

563 self.device.send (b'\x02sRN LMDscandata\x03"')

564 raw_data = b''

565 while True:

566 try:

567 raw_data += self.device.recv(self.buffer)

568 if raw data[-1] == 3:

569 break

570 except self.socket.timeout:

571 pass

572 raw_data = raw_data.decode () .split (' ')

573 data length = int(raw _data[raw data.index('DIST1') + 5], 16)

574 distance = raw data[raw _data.index('DIST1') + 6:raw_data.index('DIST1') + 6 +
data_length]

575 distance = [int (i, 16) for i in distance]

576 distance = self.numpy.array(distance) * 0.002

5717 indx = (distance >= self.radius)

578 filtered distance = distance[indx]



filtered angle = self.angle[indx]

x = filtered distance * self.numpy.cos(filtered angle)
y = filtered distance * self.numpy.sin(filtered angle)
ret = self.numpy.row stack((x, y))

if heading is not None:

rotational angle = heading - (self.numpy.pi / 2)

c = self.numpy.cos (rotational angle)

s = self.numpy.sin(rotational angle)

rotational matrix = self.numpy.array([[c, -s], [s, c]])
ret = self.numpy.matmul (rotational matrix, ret)

ret = ret.transpose()

if origin is not None:

ret = ret + origin

return ret

class ExponentialGainAdjustment:

def  init (self, initial, increment, exponent, minimum,
self.gain = initial

self.increment = increment

self.exponent = exponent

self.previous_direction = 0

self.maximum = maximum

self.minimum = minimum

def update(self, direction):

if direction * self.previous direction > 0:
self.increment = self.increment * self.exponent
self.gain = self.gain + (direction * self.increment)
elif direction * self.previous direction < 0:
self.increment = self.increment / self.exponent
self.gain = self.gain + (direction * self.increment)
elif self.previous direction == 0:

self.gain = self.gain + (direction * self.increment)

if self.gain < self.minimum:

self.increment = self.increment / self.exponent
self.gain = self.minimum

elif self.gain > self.maximum:

self.increment = self.increment / self.exponent

self.gain = self.maximum

maximum) :
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self.previous_direction = direction

return self.gain
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Table 18 High-level autonomous navigation software source code (Python)

Line
1
2

3

10
11
12

13

14
15

16
17
18
19

20
21
22

23
24

25

26
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28
29
30

31

32

Code

import smrclib
import serial.tools.list ports

import time

import numpy

import datetime
import os
import cv2

from scipy.spatial import cKDTree

# GEOGRAPHICAL PARAMETERS

longitude _gain = 108657.32434
# meter/degree longitude
latitude gain = 111456.76004
# meter/degree_latitude

# SENSORS PARAMETERS

locator distance = 0.0 #
meter

lidar distance = 1.74 #
meter

collision radius = 0.6 #
meter

Ims511 radius = 0.001 #
meter

poslvx ip = '192.168.1.229'

poslvx _port = 5017
Ims511 ip = '192.168.1.101"'

Ims511 port = 2111

# VEHICLE PHYSICAL CALIBRATION
PARAMETERS

steering gain =
0.0000498013323955794

# 1/meter steering position
steering offset =
0.431766151719804

# 1/meter

# DECISION WEIGHT

distance score weight = 1.5

# dimensionless
heading_score_weight = 0.01

# dimensionless

steering smoothness weight = 0.0
# dimensionless

Line
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128

129

130

131
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133
134
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Code

os.mkdir (log directory)
except FileExistsError:

print (' [WARNING] Output directory
already exist')

log filename = log directory +
datetime.datetime.now () .strftime ('
\\$SSMSHSdSmSy.1g")

# NAVIGATION ROUTINE

# system controller.set(9, 1)
system controller.set (7, 1)

# system controller.set (0, 1)
cruise controller.set(1l, 1)
time.sleep(0.1)

steering controller.set (1, 1)
time.sleep(0.1)

if command speed is not None:

cruise_controller.set (0,
int (command_speed * 100.0))

initial time = time.time()
timestamp = time.time ()
while True:

longitude = poslvx.GPRMClongitude
latitude = poslvx.GPRMClatitude

navigation_heading =
poslvx.GPHDTheading
current_steering position =
steering controller.poll(10)
current_speed =

cruise controller.poll(11)

if current steering position <
1500 or current steering position
> 16000:

current steering position =
previous_steering position

if current speed < -6000 or
current_speed > 6000:

current speed = previous_ speed

if current speed ==

current speed = 0.01
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41

42

43

44

45
46
47

48

49

50

51

52

obstacle score weight = -0.1
# dimensionless

collision_score weight = -0.25
# dimensionless

# ALGORITHM PARAMETERS

control loop interval = 0.20

# second

algorithm collision radius = 0.8
# meter

algorithm predicted distance =
12.0 # meter

trimmed waypoints_ length = 100
# point

trimmed forward ratio = 70

# percent

command_speed = 7
# km/hr , None

waypoints_ filename =
'waypoints\\SKP (MAINROUTE) .wp"
# .wp filepath

steering profile filename =
'steering profile\\ (3S0).sp'

# .sp filepath

# DISPLAY SETTING

display width = 960 #
pixel

display height = 720 #
pixel

display plotspace = 0.8 #
ratio

display division = 40 #
division

lidarscan_display color =
numpy.array ([ [255, 0, 255]1)
# BGR colorspace

trimmed waypoints display color =

160
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172
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locator position =
waypoints.to meter (numpy.array([lo
ngitude, latitude]))

car heading =

waypoints.to mathematic angle (navi
gation heading)

car_position = locator_position +
(locator distance *

numpy.array ([numpy.cos (car_heading
), numpy.sin(car heading)]))
lidar_position = locator_position
+ (lidar_distance *

numpy.array ([numpy.cos (car_heading
), numpy.sin(car heading)]))

lidarscan =

Ims511.get scan(car_ heading,

lidar position)

lidarscan color =

numpy.repeat (lidarscan_display col
or, lidarscan.shape[0], axis=0)

_, car_position_index =
waypoints.meter manager.query(car_
position)

if abs(car_position_ index -
previous trim index) >

trimmed waypoints length and 50 <
car_position_index <
(waypoints.meter waypoints.shape[0
] - 50):

trim_index = previous_trim index

else:

trim index = car_position_ index

previous_trim index = trim index

trim params = (trim index,

trimmed waypoints_length,

trimmed forward ratio)

prior command_ steering,

prior command_ index,
required_speed, blocked status,
predicted path, predicted heading,
predicted path color,

trimmed waypoints,

raw_steering profile,
adjust_profile resolution,

time resolution =
algorithm.update (car_position,

car _heading, current speed/360.0,
current steering position,
obstacle=lidarscan,

trim params=trim params)

trimmed waypoints_color =
numpy.repeat (trimmed waypoints dis
play color,

trimmed waypoints.shape[0],
axis=0)

selected path =

predicted path[prior command index
* time resolution:

(prior command index + 1) *

time resolution, :]
selected path color =
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60

61

62

63

64

65
66
67

68
69

70

71
72

73

74
75

76

77

numpy.array ([[255, 0, 01]) #
BGR colorspace

selected path display color =
numpy.array ([ [255, 0, 255]1])
# BGR colorspace

# LOG SETTING

log directory = 'logdata'

# COMPENSATION ALGORITHM

INITIALIZATION
gain_compensation = 0.7

# dimensionless
initial gain compensation = 1.0

# dimensionless

gain_compensation_increment =
0.005 # dimensionless
gain_compensation_exponent = 1.10
# dimensionless

minimum gain = 0.3

# dimensionless

maximum gain = 1.0

# dimensionless
compensation_status = True

# COMPENSATION TUNING PARAMETERS

tuning gain = 1.0

tuning offset = 0.0

# NAVIGATION MODE SETTING

cruise control status = False

# VEHICLE COMMUNICATION

available ports =
serial.tools.list ports.comports()

ports_serial number =
[i.serial number for i in
available ports]

ports name = [i.device for i in
available ports]
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numpy.repeat (selected path display
_color, selected path.shape[0],
axis=0)

if compensation status:

gain compensator direction =
(expected steering position -
current steering position) *
command_steering direction

gain compensator direction =

gain compensator direction/abs (gai
n_compensator direction) if not
gain compensator direction ==

else 0

gain compensation =

gain compensator.update (gain compe
nsator direction)

command_ steering =
gain_compensation *

(prior command steering -

current steering position) +
current steering position

else:

command_steering = tuning gain *
(prior command steering -
current steering position) +
current_steering position +
tuning offset

if command_steering > 15500:
command_steering = 15500
elif command steering < 2500:

command_steering = 2500

steering controller.set (0,
int (command_steering))
if cruise control status:

command_speed = required speed *
360.0

cruise controller.set (0,

int (command_speed))

print (' [INFO]
SA\tsd\tsd\tss\t%.3f\t"' %
(command_steering,

prior command steering,
command_speed, blocked status,
gain_compensation), end='")

print (expected steering position,
current steering position)

visualizer.points =

numpy.row_ stack((predicted path,
lidarscan, trimmed waypoints,
selected path))
visualizer.points color =
numpy.row_ stack((predicted path co
lor, lidarscan color,

trimmed waypoints color,
selected path color))

key received =
visualizer.update (text info=('(%.6
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84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

ports table =

dict (zip (ports serial number,
ports name))

system controller =
smrclib.SystemController (ports tab
le['0775"], 57600)

cruise controller =
smrclib.CruiseController (ports tab
le['0768"'], 57600)

steering controller =
smrclib.SteeringController (ports t
able(['0918'], 57600)

# SENSOR INITIALIZATION

poslvx = smrclib.PosLVX (poslvx ip,
poslvx port)

Ims511 = smrclib.LMS511 (1ms511 ip,
Ims511 port, 1lms511 radius)

poslvx.start ()

Ims511.start ()

# NAVIGATION ALGORITHM
INITIALIZATION

trimmed forward ratio =
trimmed forward ratio / 100.0
steering center =

steering offset/steering gain
score_weight =

numpy.array ([distance score weight
, heading score weight,
steering smoothness weight,
obstacle score weight,
collision score weight])

waypoints =

smrclib.WaypointsMap (waypoints fil
ename, longitude gain,

latitude gain)

steering profile =
smrclib.SteeringProfile(steering p
rofile filename, steering gain,
steering offset)

visualizer =
smrclib.Visualizer2D('Navigator',
display width, display height,
display plotspace,

display division,

waypoints.meter waypoints)
algorithm =
smrclib.ScoredKinematicPath2D (wayp
oints, steering profile,
score_weight,

algorithm collision_ radius,
algorithm predicted distance,
neglect collision=True)
gain_compensator =
smrclib.ExponentialGainAdjustment (
initial gain_compensation,

gain compensation increment,

gain compensation exponent,
minimum gain, maximum gain)
expected steering time index =

207
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224

225
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f, $.6f)' $ (longitude, latitude),
car position))
if key received == 114:

visualizer.reset view()

elif key received == 27:

break

previous steering position =
current steering position
previous speed = current speed

expected steering position =

raw steering profile[prior command
_inaex, B B
expected steering time index]
command_steering direction =
command_steering -

current steering position

while time.time () - timestamp <
control loop_ interval:
pass

timestamp = time.time ()

with open(log_filename, 'a') as f:

f.write('%$.10£\t' % (timestamp-
initial time))
f.write('%$.10£f\t"' % longitude)

f.write('$.10£f\t' % latitude)

f.write('$.10£\t" %
navigation heading)

f.write('%d\t' %
current_steering position)

f.write('$d\t' % (current speed /
100.0))

f.write ('$d\t' % command steering)
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numpy.abs (steering profile.time ax
is -
control loop interval).argmin()

longitude = poslvx.GPRMClongitude

latitude = poslvx.GPRMClatitude

navigation heading =
poslvx.GPHDTheading

locator position =
waypoints.to meter (numpy.array([lo
ngitude, latitudel]))

car heading =

waypoints.to mathematic angle (navi
gation heading)

car_position = locator position +
(locator distance *

numpy.array ([numpy.cos (car_heading
), numpy.sin(car heading)]))

_, previous trim index =
waypoints.meter manager.query (car_
position)

previous steering position =
steering controller.poll(10)
previous speed =

cruise controller.poll(11)

while not (1500 <
previous_steering position <
16500) :

previous steering position =
steering controller.poll (10)
time.sleep(0.1)

while not (-6000 < previous_speed
< 6000) :

previous_speed =

cruise_ controller.poll(11)
time.sleep(0.1)

expected_steering position =
previous_steering position
command_steering direction = 0

brake pedal status = False

cruise controller emergency status
= False

# LOG INITIALIZATION

try:

226
227

228
229

230

231

232

234
235

237
238

246
247
248
249

f.write ('$d\t' % command speed)

f.write('$.10£\t" %
longitude gain)

142

f.write('%.10f\t"' % latitude gain)

f.write('$.3£\t" &
distance score weight)
f.write('$.3£\t" %
heading score weight)

f.write ('%.3f\t' %
obstacle score weight)

f.write('$.3f\n"' %
collision score weight)

cv2.destroyAllWindows ()

cruise controller.set (1,
time.sleep(0.1)

system_controller.set (1,

time.sleep(0.1)

2)

0)

steering controller.set (1,

time.sleep(0.1)

system controller.set (2,
time.sleep(0.1)

system controller.set (0,
time.sleep(0.1)

system controller.set (7,

time.sleep(0.1)
system controller.set (9,

time.sleep(0.1)

while cruise controller.poll(11)

0:
time.sleep(0.1)

cruise controller.set (1,

0)

0)
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