

PATH FOLLOWING AND OBSTACLE AVOIDANCE FOR

AUTONOMOUS VEHICLE BASED ON GNSS

LOCALIZATION

Mr. Kanin Kiataramgul

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering in Mechanical Engineering

Department of Mechanical Engineering

FACULTY OF ENGINEERING

Chulalongkorn University

Academic Year 2019

Copyright of Chulalongkorn University

ระบบขบัตามเส้นทางและหลบส่ิงกีดขวางส าหรับยานยนตอ์ตัโนมตัิโดยใชร้ะบบดาวเทียมน าร่อง
ในการระบุต าแหน่ง

นายคณิน เกยีรติอร่ามกุล

วิทยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวิศวกรรมศาสตรมหาบณัฑิต
สาขาวิชาวิศวกรรมเคร่ืองกล ภาควิชาวิศวกรรมเคร่ืองกล

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลยั
ปีการศึกษา 2562

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลยั

Thesis Title PATH FOLLOWING AND OBSTACLE AVOIDANCE
FOR AUTONOMOUS VEHICLE BASED ON GNSS

LOCALIZATION

By Mr. Kanin Kiataramgul

Field of Study Mechanical Engineering
Thesis Advisor Assistant Professor NUKSIT NOOMWONGS, Ph.D.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in
Partial Fulfillment of the Requirement for the Master of Engineering

Dean of the FACULTY OF

ENGINEERING
 (Associate Professor SUPOT TEACHAVORASINSKUN,

Ph.D.)

THESIS COMMITTEE

Chairman

 (Assistant Professor SUNHAPOS
CHANTRANUWATHANA, Ph.D.)

Thesis Advisor

 (Assistant Professor NUKSIT NOOMWONGS, Ph.D.)

Examiner

 (Assistant Professor GRIDSADA PHANOMCHOENG,
Ph.D.)

External Examiner

 (Pasan Kulvanit, Ph.D.)

 iii

ABSTRACT (THAI) คณิน เกียรติอร่ามกุล : ระบบขบัตามเส้นทางและหลบส่ิงกีดขวางส าหรับยานยนต์อัตโนมติัโดยใช้ระบบดาวเทียมน าร่องใน

การระบุต าแหน่ง. (PATH FOLLOWING AND OBSTACLE AVOIDANCE FOR

AUTONOMOUS VEHICLE BASED ON GNSS LOCALIZATION) อ.ที่ปรึกษาหลกั :
ผศ. ดร.นักสิทธ์ นุ่มวงษ์

ในปัจจุบนั ระบบต่าง ๆ ที่แต่เดิมอาศยัมนุษยใ์นการด าเนินงานก าลงัไดรั้บการพฒันาให้สามารถท างานไดโ้ดยพ่ึงพาการควบคุมจากมนุษย์

ให้น้อยที่สุด และหน่ึงในระบบที่ก าลังไดรั้บความสนใจมากที่สุดระบบหน่ึงน้ันไดแ้ก่ ระบบยานยนต์อัตโนมตัิ อย่างไรก็ตามระบบยานยนต์อตัโนมตัิที่
ก าลงัไดรั้บการพัฒนาอยู่ในปัจจุบันน้ัน โดยส่วนใหญ่ไดม้ีการน าอุปกรณ์รับรู้ที่มีราคาสูง เช่น กลอ้งและเคร่ืองกราดตรวจเลเซอร์ มาใช้เป็นอุปกรณ์รับรู้
หลกัของระบบ อีกทั้งอุปกรณ์เหล่าน้ีไม่สามารถท างานไดโ้ดยล าพงั โดยยงัคงตอ้งอาศยัหน่วยประมวลผลที่มีประสิทธิภาพสูงมาใช้ในการท างานร่วมกัน
อีกด้วย ส่งผลให้ระบบที่พัฒนาขึ้นมีราคาที่ค่อนข้างสูงจึงไม่เหมาะสมต่อการน าไปประยุกต์ใช้งานในหลายรูปแบบ ดงัน้ัน งานวิจัยน้ีจึงมุ่งเน้นที่จะน า
อุปกรณ์หรือระบบตรวจรู้ชนิดอื่นที่เมื่อน ามาใช้แลว้สามารถท าให้ระบบที่พฒันาขึ้นมีราคาที่ค่อนขา้งต ่าเมื่อเทียบกบัระบบอื่นที่ก าลงัพฒันาอยู่ในปัจจุบัน

ดงัน้ัน ระบบดาวเทียมน าร่องโดยอาศยัการปรับแกแ้บบจลน์ตามเวลาจริง (เรียลไทม์ไคนิเมทิก) จึงไดถู้กน ามาใช้เป็นอุปกรณ์ตรวจรู้หลกัส าหรับงานวิจยัน้ี

อย่างไรก็ตาม เคร่ืองกราดตรวจเลเซอร์จะยงัคงถูกน ามาใช้ในระบบที่พฒันาขึ้นในฐานะอุปกรณ์ตรวจรู้รองส าหรับการตรวจจบัส่ิงกีดขวางซ่ึงไม่สามารถ
รับรู้ได้โดยอาศัยระบบดาวเทียมน าร่องเพียงอย่างเดียว โดยระบบที่พัฒนาขึ้นจะถูกออกแบบให้ใช้งานได้อย่างมีประสิทธิภาพในสภาวะแวดล้อมที่
เอื้ออ านวยต่อการท างานของระบบดาวเทียมน าร่องที่ความเร็วไม่เกิน ๑๕ กิโลเมตรต่อชัว่โมง ในงานวิจยัน้ี รถยนต์พลงังานไฟฟ้าขนาดเล็กไดถู้กน ามา
ดดัแปลง โดยท าการติดตั้งอุปกรณ์ที่ไดอ้อกแบบขึ้นส าหรับควบคุมระบบบงัคบัเลี้ยวและระบบควบคุมความเร็วซ่ึงประกอบไปดว้ยระบบควบคุมอตัราเร่ง
และระบบห้ามลอ้ โดยรับค าส่ังจากระบบควบคุมระดบัสูง จากน้ันจึงท าการพฒันาส่วนชุดค าส่ังของระบบควบคุมระดบัสูง ซ่ึงระบบควบคุมระดบัสูงน้ีได้
ถูกออกแบบให้สามารถควบคุมรถไปตามเส้นทางที่ก าหนดโดยมีระบบดาวเทียมน าร่องเป็นอุปกรณ์รับรู้ส าหรับกระบวนการระบุต าแหน่ง และใช้เคร่ือง
กราดตรวจเลเซอร์ในการหลบหลีกส่ิงกีดขวางโดยอาศยัขั้นตอนวิธีการให้คะแนนเส้นทางที่คาดการณ์ ซ่ึงเป็นขั้นตอนวิธีที่พฒันาขึ้นในงานวิจยัน้ี ต่อมาจึง
ไดท้ าการปรับแต่งตัวแปรต่าง ๆ ที่ส่งผลต่อระบบควบคุมทั้งในระดบัล่างและระดบัสูงจนผลการตอบสนองที่ได้เป็นที่น่าพึงพอใจ จากน้ันจึงไดท้ าการ
ทดสอบและประเมิณผลระบบน าทางยานยนต์อตัโนมตัิที่ไดพ้ฒันาขึ้นในสถานที่ทดสอบควบคุม โดยแยกท าการทดสอบระหว่างระบบขบัตามเส้นทางและ
ระบบหลบส่ิงกีดขวาง ซ่ึงหลังจากไดท้ าการทดสอบระบบขับตามเส้นทางที่ความเร็ว ๑๐ และ ๑๕ กิโลเมตรต่อชั่วโมง พบว่า ระบบที่ออกแบบขึ้น
สามารถใช้การได้ถึงแม้ว่าบางช่วงของเส้นทางการทดสอบจะถูกปกคลุมไปด้วยตน้ไม้ใหญ่หรือถูกล้อมรอบไปด้วยอาคารซ่ึงเป็นขอ้ด้อยของระบบ
ดาวเทียมน าร่อง โดยผลการทดสอบมีระยะเบี่ยงเบนออกจากเส้นทางเฉลี่ยประมาณ ๑๐ เซนติเมตร ส าหรับระบบหลบส่ิงกีดขวาง ผลการทดสอบพบว่า
ระบบมีการตอบสนองต่อส่ิงกีดขวางตามขั้นตอนวิธีที่ไดก้ าหนดไว ้โดยสามารถหลบหลีกส่ิงกีดขวางและกลบัเขา้สู่เส้นทางที่ก าหนดไวไ้ดอ้ย่างปลอดภยั

สาขาวิชา วิศวกรรมเคร่ืองกล ลายมือชื่อนิสิต ..
ปีการศึกษา 2562 ลายมือชื่อ อ.ที่ปรึกษาหลกั

 iv

ABSTRACT (ENGL ISH) # # 6070403421 : MAJOR MECHANICAL ENGINEERING

KEYWORD: autonomous driving system, autonomous navigation system, path following

system, obstacle avoidance system, global navigation satellite system

 Kanin Kiataramgul : PATH FOLLOWING AND OBSTACLE AVOIDANCE FOR

AUTONOMOUS VEHICLE BASED ON GNSS LOCALIZATION. Advisor: Asst. Prof.

NUKSIT NOOMWONGS, Ph.D.

Nowadays, many systems, formerly operated by human beings, are now developed to
minimize user control effort. One outstanding system that receives close attention is the autonomous

driving system. However, several autonomous driving systems that are currently developed utilize

expensive sensing devices, e.g., camera and laser scanner. Moreover, these devices cannot be solely

employed but a high-performance processing unit is also required. These pricey components result

in an expensive system that does not worth to be used in some practical applications. Therefore, this

research intends to utilize other low-cost sensing devices so that the final price of the developed

system can be reduced. Hence, the Global Navigation Satellite System (GNSS) with a Real-Time

Kinematic (RTK) correction was applied to this research as a prior sensor. However, a laser scanner

was still employed as a complementary sensor to detect obstacles which cannot be detected by the

GNSS alone. This developed system was designed to effectively operate at a travel speed lower than

15 kilometers per hour in a GNSS-friendly environment. In this research, the micro electric vehicle
was modified by installing the steering control system and the speed control system, which consists

of the acceleration control system and the braking control system. These supplementary systems are

controlled by the high-level control system. Next, the high-level control system software was

developed. This software controls a vehicle to follow a predefined route by using the GNSS in a

localization process and using a laser scanner in the obstacle avoidance algorithm which was

developed in this research, i.e., the Scored Predicted Trajectory. Then, the parameters, which affect

the high and low-level control system characteristic, was tuned until a satisfactory response was

achieved. Next, the developed autonomous navigation system evaluation experiment was conducted

in a controlled environment area by separately evaluated the path following system and the obstacle

avoidance system. After the path following system experiment was launched using a travel speed of

10 and 15 kilometers per hour, it has been found that the developed system effectively performs

even some portions of the test track are either covered by large trees or surrounded by buildings, i.e.,
the environment by which the performance of the GNSS is degraded. The result of this experiment

shows the average deviation distance from the waypoint of about 10 centimeters. In the obstacle

avoidance system experiment, the result shows that the developed system responds to the obstacle by

evading it and safely converging to the predefined path according to the designed algorithm.

Field of Study: Mechanical Engineering Student's Signature

Academic Year: 2019 Advisor's Signature

 v

ACKNOWLEDGEM ENT S

ACKNOWLEDGEMENTS

After three years have passed, this research now reaches its destination. There are so

many people contribute to this achievement. First of all, I am so grateful to Asst Prof. Nuksit

Noomwongs, my supervisor in this master’s degree topic and also project advisor in my

bachelor’s degree level, and Asst. Prof. Sunhapos Chantranuwathana for have been supporting

and advising me during my years as an undergraduate student and these years of graduate

studies. I thank Soravas Treenok and Kant Chaisuwan for my best time of being a member of

the Smart Mobility Research Center (SMRC), Faculty of Engineering, Chulalongkorn

University. I also thank Sedtawud Larbwisuthisaroj for his information that has been used in this

research and thank Krit T'Siriwattana for his helping hands. For the very first year of this

research, I thank Thawin Subpinyo, Nattakit LeelapornUdom, Pobtham Sookatup, Peerathad

Nakdilok, Patthara Chuanakha, and Puvit Sinrat for their assistance in the early days of this

research. For the second year, I am so thankful to Kuptabadee Tantipukanont, Kwannuan

Klaykew, Lattapol Wongpiya, Noppakit Tang-on, Prin Phutthaburee, and Thanadol

Kosolvattanasombat for their contribution to a great leap in this research. Also, I would like to

thank Kanutsanant Banpakan, Junraprach Petchang, Chumpol Hamprommarat, Anan Sutapun,

and Surat Kwanmuang for their tools and technical support during the time this research was in

process. I also would like to express my gratitude to Akira Nagao and his Asia Technology

Industry’s staff for device and technical support provided to this research. Also, I am so grateful

to the Toyota Motor Thailand (TMT) for the insight specification, which has been used in

modifying the Toyota COMS, and for funding this research. And I would like to give my special

thanks to Suphap Mou-ubom and Nutwara Chunsakul for non-technical support, however,

tremendously contribute to the accomplishment of this research. Moreover, I am thankful to

Asst. Prof. Gridsada Phanomchoeng for accepting to be a member of this thesis committee, and

Pasan Kulvanit for accepting to be an external examiner of this thesis. At last, I would like to

express my thankfulness to my family and all who somehow contributed to this accomplishment

for their encouragement, either mentally or physically, throughout these years of this research.

Kanin Kiataramgul

TABLE OF CONTENTS

 Page

 ... iii

ABSTRACT (THAI) .. iii

 ... iv

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES .. x

LIST OF FIGURES .. xi

CHAPTER I INTRODUCTION .. 1

1. Background and Significant of the Research Problem 1

1.1. Levels of Driving Automation According to SAE 1

1.1.1. 0th Level, No Automation ... 1

1.1.2. 1st Level, Driver Assistance .. 2

1.1.3. 2nd Level, Partial Automation ... 2

1.1.4. 3rd Level, Conditional Automation .. 2

1.1.5. 4th Level, High Automation .. 2

1.1.6. 5th Level, Full Automation .. 2

1.2. Level of Driving Automation According to BASt 3

1.3. Driver Assistance Systems .. 4

1.3.1. Cruise Control ... 4

1.3.2. Collision Avoidance .. 5

1.3.3. Lane Keeping Assist .. 5

2. Objectives of Research .. 5

3. Scope of the Research .. 6

4. Expected Benefits .. 6

 vii

CHAPTER II LITERATURE REVIEW .. 7

1. Localization Techniques .. 7

1.1. Landmark-based Localization ... 7

1.1.1. Natural Landmark-based Localization ... 7

1.1.2. Artificial Landmark-based Localization 9

1.2. Localization Base on Global Navigation Satellite System 11

1.3. Summary of Localization Technique ... 12

2. Path Follower Autonomous ... 14

2.1. The Dynamic Window Approach (DWA) ... 14

CHAPTER III RELATED THEORY... 16

1. Global Navigation Satellite System (GNSS)[22] .. 16

1.1. The Global Positioning System (GPS) .. 16

1.2. Source of GNSS Measurement’s Error .. 18

1.3. Pseudorange Equations ... 18

1.4. Differential Global Positioning System (DGPS) 20

1.5. Relative Positioning .. 22

2. Proportional-Integral-Derivative Controller ... 22

2.1. Proportional Controller ... 23

2.2. Integral Controller .. 24

2.3. Derivative Controller .. 24

2.4. Implementation ... 25

CHAPTER IV DEVELOPMENT OF AUTONOMOUS DRIVING SYSTEM......... 26

1. Low-level Control System ... 26

1.1. Power Supply System Modification .. 26

1.2. Electronic System Modification .. 27

1.2.1. Modified Switch Circuits ... 27

1.2.2. Microcontroller software ... 30

1.3. Steering Control System ... 31

1.3.1. Mechanical Actuator System ... 31

 viii

1.3.2. Electronics System .. 33

1.3.3. Low-level Steering Control System ... 34

1.3.4. Microcontroller Software ... 34

1.3.5. Steering Units Relationship ... 36

1.3.6. PID Controller Output Description .. 37

1.3.7. Parameters Tuning ... 37

1.3.8. Response Model .. 38

1.4. Speed Control System ... 39

1.4.1. Mechanical Actuator System ... 39

1.4.2. Electronics System .. 41

1.4.3. Low-level Speed Control System ... 43

1.4.4. Microcontroller Software ... 44

1.4.5. Parameters Tuning ... 47

2. High-level Control System .. 48

2.1. Vehicle Model .. 48

2.1.1. Single-Track Kinematic Model .. 49

2.1.2. Approximated Linear Relationship .. 50

2.1.3. Effective Inverse Wheelbase Calibration 51

2.2. Scored Predicted Trajectory .. 53

2.2.1. Trajectory Prediction ... 53

2.2.2. Trajectory Evaluation and Scoring ... 55

2.2.2.1. Linear Deviation Evaluation .. 55

2.2.2.2. Angular Deviation Evaluation...................................... 57

2.2.2.3. Collision Distance Evaluation 57

2.2.2.4. Overall Score Combination .. 58

2.2.3. A Modification for Algorithm Implementation 59

2.2.3.1. Vehicle Trajectory Approximation............................... 59

2.2.3.2. Discrete Linear Deviation Evaluation 60

2.2.3.3. Discrete Angular Deviation Evaluation 60

 ix

2.2.3.4. Discrete Collision Distance Evaluation 61

2.2.3.5. Critical Obstacle Distance Evaluation 62

2.2.3.6. Overall Discrete Score Combination 63

2.2.4. Software Implementation ... 63

2.3. High-level Autonomous Navigation Software 66

2.3.1. Speed-independent Navigation System Algorithm 66

2.3.2. Exponential Gain Compensation .. 68

2.3.3. Speed-dependent Autonomous Navigation Algorithm 70

3. Geographic Conversion Factor Calibration .. 72

CHAPTER V SYSTEM EVALUATION EXPERIMENT 75

1. Experiment Setup .. 75

2. Autonomous Path Following Navigation Evaluation 77

3. Obstacle Avoidance Evaluation ... 84

4. Discussion ... 90

CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS 92

1. Conclusions ... 92

2. Recommendations ... 93

REFERENCES .. 94

APPENDIX A NAVIGATION SENSORS .. 97

APPENDIX B PROCESSING UNIT ... 101

APPENDIX C CAR SPECIFICATION ... 102

APPENDIX D DEVELOPED MASTER CYLINDER ... 105

APPENDIX E LOW-LEVEL CONTROLLER CIRCUIT 106

APPENDIX F SOURCE CODE .. 111

VITA ... 143

LIST OF TABLES

 Page

Table 1 Summary of level of driving automation according to SAE[1] 3

Table 2 Summary of level of driving automation according to BASt[3] 4

Table 3 Summary of the performance metrics[15] ... 12

Table 4 Parameters in the designed autonomous software .. 78

Table 5 Performance without GNSS outages ... 98

Table 6 Performance with 1 km or 1 minute GNSS outages 99

Table 7 LMS511 laser measurement sensor technical specifications 99

Table 8 LMS511 laser measurement sensor performance specification 100

Table 9 Lenovo Legion Y530‑15ICH technical specification 101

Table 10 Toyota COMS ZAD-TAK30-DS general specification 102

Table 11 Toyota COMS ZAD-TAK30-DS motor specification 103

Table 12 Toyota COMS ZAD-TAK30-DS steering mechanism specification 103

Table 13 Toyota COMS ZAD-TAK30-DS braking mechanism specification 104

Table 14 Electronic system controller source code (Arduino IDE) 111

Table 15 Steering control system controller source code (Arduino IDE) 113

Table 16 Speed control system controller source code (Arduino IDE) 117

Table 17 High-level autonomous navigation dependency source code (Python) 122

Table 18 High-level autonomous navigation software source code (Python) 138

LIST OF FIGURES

 Page

Figure 1 Extracted natural landmark (dominant curvature) and laser rangefinder

image[7] .. 8

Figure 2 Designed landmark[9].. 9

Figure 3 a) Detected label b) extracted QR code .. 9

Figure 4 Sample artifact landmarks .. 10

Figure 5 a) Multipath interference b) NLOS reception[14] 11

Figure 6 Uncertainty area from odometry reading only[11] 13

Figure 7 Experimental results from odometry and localization[16] 13

Figure 8 Dynamic window from the Dynamic Window Approach (DWA)[21] 15

Figure 9 Time lag determined from GPS signal ... 17

Figure 10 Phase-carrier ranging ... 18

Figure 11 Parameters used in the pseudorange equation. .. 20

Figure 12 The Differential Global Positioning System (DGPS) configuration 21

Figure 13 Classical feedback controller block diagram .. 23

Figure 14 (a) Low proportional coefficient response (b) High proportional coefficient

response .. 24

Figure 15 (a) Underdamped response (b) Critically damped response (c) Overdamped

response .. 25

Figure 16 The TOYOTA COMS with modified low-level systems 26

Figure 17 Power supply system’s configuration ... 27

Figure 18 Electronics system components diagram .. 28

Figure 19 Modified shifter switch circuit ... 29

Figure 20 Modified signal lights switch circuit .. 29

Figure 21 Modified wiper switch circuit .. 30

Figure 22 Electronics system controller software’s flowchart................................... 31

Figure 23 Steering control actuator system .. 32

Figure 24 Steering wheel position sensor ... 32

 xii

Figure 25 Steering control system’s electronic components diagram 33

Figure 26 Steering control system block diagram ... 34

Figure 27 low-level steering control software’s flowchart .. 35

Figure 28 Relationships among different steering position units 37

Figure 29 Step response of a steering control system ... 38

Figure 30 Designed brake actuator ... 39

Figure 31 Section views of a designed master cylinder .. 40

Figure 32 Installation of the designed brake actuator ... 41

Figure 33 Modified accelerator pedal position sensor circuit wiring diagram 41

Figure 34 Speed control system’s electronic components diagram 42

Figure 35 Speed control system block diagram .. 43

Figure 36 Output of the discontinuous gain transfer function 44

Figure 37 low-level speed control software’s flowchart ... 46

Figure 38 Step response of a speed control system ... 48

Figure 39 Single-track vehicle model ... 49

Figure 40 Trajectory curvature from the single-track kinematic model at any steering

angles .. 50

Figure 41 Actual trajectory curvature and approximated linear relationship 52

Figure 42 single-track kinematic model ... 53

Figure 43 Linear deviation evaluation of a certain trajectory 55

Figure 44 Collision distance evaluation of a certain trajectory.................................. 58

Figure 45 Critical obstacle distance and the buffer area .. 62

Figure 46 Scored Predicted Trajectory algorithm ... 64

Figure 47 Speed-independent autonomous navigation software flowchart 66

Figure 48 Exponential Gain Compensation algorithm .. 68

Figure 49 Speed-dependent autonomous navigation software flowchart 71

Figure 50 Recorded circular path and ellipse least square regression 74

Figure 51 Prototype navigation software’s graphical user interface 75

Figure 52 Enlarged predicted trajectories display ... 75

 xiii

Figure 53 Test vehicle with the 2D laser scanner and the GNSS receiver installed ... 76

Figure 54 Test track located in Chulalongkorn University .. 77

Figure 55 Autonomous path following trace at 10 kilometers per hour 80

Figure 56 Autonomous path following trace at 15 kilometers per hour 80

Figure 57 Autonomous path following heading angle at 10 kilometers per hour 81

Figure 58 Autonomous path following heading angle at 15 kilometers per hour 81

Figure 59 Linear deviation histogram of 10 kilometers per hour track 82

Figure 60 Linear deviation histogram of 15 kilometers per hour track 82

Figure 61 Angular deviation histogram of 10 kilometers per hour track 83

Figure 62 Angular deviation histogram of 15 kilometers per hour track 83

Figure 63 Recorded obstacle position .. 85

Figure 64 Autonomous path following with obstacle avoidance result (1st experiment)

 .. 86

Figure 65 Autonomous path following with obstacle avoidance result (2nd experiment)

 .. 86

Figure 66 Linear deviation resulted from obstacle avoidance (1st experiment) 87

Figure 67 Linear deviation resulted from obstacle avoidance (2nd experiment) 87

Figure 68 Displacement to obstacle at any instance (1st experiment) 88

Figure 69 Displacement to obstacle at any instance (2nd experiment) 88

Figure 70 Linear deviation versus displacement to obstacle (1st experiment) 89

Figure 71 Linear deviation versus displacement to obstacle (2nd experiment) 89

Figure 72 POS LVX dual GNSS-inertial[23] ... 97

Figure 73 LMS511 Laser measurement sensor[24] .. 99

Figure 74 Lenovo Legion Y530‑15ICH[25] ... 101

Figure 75 Toyota COMS ZAD-TAK30-DS[27] ... 102

Figure 76 Master cylinder assembly view .. 105

Figure 77 Low-level controller circuit diagram .. 106

Figure 78 Low-level controller printed circuit board component outline 108

Figure 79 Low-level controller printed circuit board top layer................................ 109

Figure 80 Low-level controller printed circuit board bottom layer.......................... 110

 xiv

CHAPTER I

INTRODUCTION

1. Background and Significant of the Research Problem

 Autonomous driving nowadays receiving great attention from the public and

their authority throughout the world. Several numbers of organizations, not only the

originally automotive field companies, are now focusing on the development of the

autonomous vehicle. Among these corporations, there appear a common objective

between them in developing of an autonomous driving system which is to reach the

solutions to any complications emerge from currently traffic situation, e.g., improving

traffic congestion problem, enhancing road safety by diminishing human mistake, etc.

However, before moving to further topics, a common convention on terminology

should be established. In the following section, a definition of levels of driving

automation is presented.

1.1. Levels of Driving Automation According to SAE

 According to the Society of Automotive Engineers (SAE) standard[1], levels

of driving automation can be divided into 6 levels, ranging from 0th to 5th level,

which a higher level represents a higher degree of driving automation, i.e. 0th and 5th

level autonomous indicates no automation and full automation, respectively. The

followings describe a narrative definition of each level.

1.1.1. 0th Level, No Automation

 In this level, the human driver performs full control all over the driving period.

Some of the warning systems may be introduced to this level, however, the driver’s

decision completely dominates the dynamics driving task. Example of mentioned

warning systems which are now available is Lane Change Assistance (LCA), Lane

Departure Warning (LDW), Forward Collision Warning (FCW), Park Distance

Control (PDC), etc.

 2

1.1.2. 1st Level, Driver Assistance

 An assistance system is introduced to this level. This assistance system could

be either by automated steering or acceleration control which performs on human

driver request, however, other dynamic driving tasks are fully controlled by the

driver. Available technologies of these assistance systems including Adaptive Cruise

Control (ACC), Park Assist (PA), Lane Keeping Assist (LKA), etc.

1.1.3. 2nd Level, Partial Automation

 More assistance systems are applied to this level. Identical to the 1st Level, the

system is still activated only when the human driver making a request. Nevertheless,

other remaining dynamic driving tasks are fully controlled by the driver. The

following named assistance systems are included in this level: Park Assistance,

Traffic Jam Assist, etc.

1.1.4. 3rd Level, Conditional Automation

 All dynamics driving tasks perform automatedly by automated assistant

systems. However, in some situations, an automated assistant system could request a

human driver to take control of a dynamic driving task. Some features included in this

level are Traffic Jam Chauffeur, Motorway Chauffeur (MWC), etc.

1.1.5. 4th Level, High Automation

 The distinction between this 4th Level and the 3rd Level of driving automation

is that in this level, whenever in some defined situations and a human driver is

requested by an automated system to intervene. If the driver does not respond to this

request appropriately, the automated system should have the ability to perform a

proper dynamic driving task. Highway Pilot and Piloted Parking are some of the

example functions in this level.

1.1.6. 5th Level, Full Automation

 A fully automated system in this level performs all dynamic driving tasks for

the overdriving period. There will be no request for a human driver to intervene in a

 3

dynamic driving task in any situation. However, the human driver still possesses an

ability to manage the roadways and environmental conditions.

 Table 1 shows a summary of the level of driving automation according to the

SAE. Note here for named technologies, features, and assistant systems mention

above are not all commercially introduced[1].

Table 1 Summary of level of driving automation according to SAE[1]

1.2. Level of Driving Automation According to BASt

 According to the report from Transportation Research Board (TBR), the

German Federal Highway Research Institute (BASt)[2]. The level of driving

automation can be classified as 5 levels including 1) Driver Only 2) Driver Assistance

3) Partial Automation 4) High Automation and 5) Full Automation. For the first 3

levels, their definitions are identical to the first 3 levels described by the Society of

Automotive Engineers (SAE). For the last 2 levels, their definition can also be

described by the 3rd and 4th Levels of the SAE classification, respectively. Table 2

describes a narrative summary of the level of driving automation according to the

BASt.

 4

Table 2 Summary of level of driving automation according to BASt[3]

 From here on, any levels of automation mentioned will refer to the levels

classified by the Society of Automotive Engineers.

Throughout this text, the main attention is given to the 2nd to 5th levels of driving

automation. Since driver assistance systems are fundamentals for autonomous or self-

driving vehicles, the following section gives a brief explanation for theses selected

systems.

1.3. Driver Assistance Systems

Driver assistance systems are fundamentals for vehicles categorized in the 2nd to 5th

driving automation level. Longitudinal and lateral directions control are mainly

systems applied to an autonomous driving system. In this section, cruise control

collision avoidance and lane-keeping assist systems are taken to be introduced[4].

1.3.1. Cruise Control

The cruise control system is applied to a vehicle to maintain the speed of a vehicle or

space between the host and a preceding vehicle. The cruise control system can be

classified as 2 different types, standard and adaptive cruise control systems. In the

standard cruise control system, only speed is to be maintained by means of controlling

vehicle acceleration or deceleration. For adaptive cruise control (ACC), both spacing,

refer to space between vehicles, and speed are controlled. By comparing space to a

 5

certain threshold, depending on the vehicle’s speed, an adaptive cruise control system

can then determine whether space or speed control is safe and appropriate to the

current driving situation.

1.3.2. Collision Avoidance

Like the adaptive cruise control system, however, the collision avoidance system

contains some different details that differ from the adaptive cruise control system.

Collision avoidance system operates by deciding whether a current driving speed is

safe or not, then, if dynamics driving take is indispensable to avoid a collision,

deceleration, or even emergency braking is performed. Collision warning may also be

included in this system.

 Furthermore, there appear several researches suggest that collision avoidance

cannot be performed by only braking or deceleration[5, 6]. But in some situations,

depending mainly on the time to collision (TTC), a duration which a host vehicle will

collide with a preceding one if a current velocity is maintained, evasive steering man

1.3.3. Lane Keeping Assist

Lane-keeping assist (LKA) system provides an automated lateral position control for

a vehicle to keep the vehicle’s lateral position in a proper region between lane

marking and prevent a vehicle from an unintended lane changing. This system is

extended from the lane departure warning (LDW) system by including actuators to

control and perform the dynamic driving task. The crucial part of the system is to

detect and estimate the lateral position of a vehicle. Several organizations have

proposed different techniques in measuring a lateral position, e.g., magnetic field

guided, vision base measurement, a global positioning system (GPS).

 This research will utilize these driver assistance systems as fundamentals, and

by further system implementation, to develop an autonomous, or a self-driving car,

based on the global navigation satellite system (GNSS).

2. Objectives of Research

2.1. To develop the hardware segment of the low-level control system including

the speed control system, braking control system, and steering control system.

 6

2.2. To develop a software of the high-level control system based on the global

navigation satellite system localization.

2.3. To develop the obstacle avoidance algorithm for the collision avoidance

system

3. Scope of the Research

3.1. To develop hardware as implementations that can be used in an autonomous

driving system.

3.2. A developed autonomous navigation system mainly relies on the GNSS

positioning system, which effectively operates in an open sky area.

3.3. The expected operation speed in this research is set to be under 15 kilometers

per hour.

3.4. A developed autonomous vehicle can safely interact with a detected threat in

a predefined scenario.

4. Expected Benefits

 Since other autonomous vehicle systems that were recently developed mostly

utilize an expensive sensing device, e.g., 3D lasers scanner, and require a high-

performance processing unit. Hence, this research aims to develop an alternative

autonomous navigation system that employs a lower cost sensing device compare to

other developed systems that are currently available. However, the developed system

is not intended to be used in the same application level as the available systems. The

developed system will be designed to be used in a low-speed application, i.e. below

15 kilometers per hour, and operates in a constrained environment.

 7

CHAPTER II

LITERATURE REVIEW

1. Localization Techniques

 To set a navigation course, an autonomous vehicle needs to know its position,

either global or local position. Besides position in space, orientation, or pose, is also

required for autonomous driving navigation. Localization is, therefore, one of the

most crucial parts of mobile robotics which can also be applied to a low speed

autonomous, the main consideration of this research topic. The following presents

reviews of some literature on the localization method in a different technique.

1.1. Landmark-based Localization

 Landmark-based localization can be classified as 2 main types, i.e. natural and

artificial landmark-based localization.

1.1.1. Natural Landmark-based Localization

 Natural landmark-localization is the localization method by which a position is

determined using features extracted from the actual unmodified environment. Various

types of sensing information can be used as input for feature extraction, e.g., radial

distance from a laser rangefinder. According to R. Madhavana and H. F. Durrant-

Whyte in “Natural landmark-based autonomous vehicle navigation”[7], Their

research focuses on developing an algorithm to effectively extract natural dominant

point landmarks obtained by using a laser range finder. In their research, features

from the unmodified environment are extracted by applying a specific technique

called the Curvature Scale Space (CSS) algorithm. In brief, extracted curvatures are

derived from segmented range images from a laser rangefinder. These segmented

range images are convoluted by Gaussian kernel with different levels of scale,

depending on kernel’s width to produce preferable curvature values. Dominant

curvatures, extrema curvatures, are then identified by applying to a certain condition.

 In the localization section, these dominant curvatures are used as natural

landmarks along with the odometry method, i.e. relative positioning by dead-

 8

reckoning estimation, by applying the Extended Kalman Filter (EKF) to determined

vehicle position. After comparing with reference ground truth position, i.e. Real-Time

Kinematic (RTK) Global Positioning System (GPS), they state that error results in

lower than 25 centimeters for the position and 2 degrees for orientation.

Figure 1 Extracted natural landmark (dominant curvature) and laser rangefinder

image[7]

 From the last article mentioned, several landmarks, more than one, are

required to identify a position in the matching process. However, instead of detecting

several landmarks, one can perform a modified approach by detecting only single

landmarks but twice by different positions. According to Bais et al. in “Single

landmark based self-localization of mobile robots”[8], a robot’s position is

determined by range measurement of a single landmark in 2 different arbitrary

positions. The displacement between these 2 positions is assumed to be known

exactly, by adopting a dead-reckoning measurement, and be used along with 2 range

measurements of this landmark from 2 different positions, determined by stereo vision

approach, in geometrical approach, namely triangulation, to estimate the position

relative to this landmark. Furthermore, vision-based measurement, i.e. color

 9

transition, line detection, is used in this research to extract landmarks, e.g., color

transition, corner, line intersection, and junction.

1.1.2. Artificial Landmark-based Localization

 Several artifacts are utilized as artificial landmarks for landmark-based

localization, most of them are vision-based landmarks, and however, different

approaches are presented in some article. In vision-based landmark research, various

types of machine-readable codes are mentioned. According to Kartashov et al. in

“Fast artificial landmark detection for indoor mobile robots”[9], QR code is employed

as an artificial landmark. Their work concentrates on the implementation of an

additional color plate to a plane QR code. The additional part consists of 4 different

color regions, and by selecting an appropriate color, the contour of the QR code panel

is detected and QR code information is identified. Figure 2 illustrates their designed

artificial landmark and Figure 3 depicts the result.

Figure 2 Designed landmark[9]

Figure 3 a) Detected label b) extracted QR code

 Another vision-based landmark technique proposed by Salahuddin et al., “An

efficient artificial landmark-based system for indoor and outdoor identification and

 10

localization”[10] can be used for the outdoor environment. A landmark label mainly

depends merely on the encoded color pattern, however, more than one pattern in each

landmark label is suggested. According to this article, this approach can also be used

in determining the distance between vehicle, or sometimes called headway distance,

by attaching this label, containing more than a single pattern, to preceding vehicle.

Figure 4 depicts the examples of the proposed landmark label for license plate and

road sign.

Figure 4 Sample artifact landmarks

 Apart from the vision-based artificial landmark, a technique that is frequently

mentioned in several literatures is the Radio Frequency Identification (RFID)-based

localization. One research on this type of landmark, “A RFID Landmark Navigation

Auxiliary System”[11], illustrate the potential of RFID to be used instead of vision-

based or other natural artificial landmark localization. According to this article, 7

RFID tags are organized in the hexagon array form, and by this configuration with

knowledge of antenna detection radius, tag array dimension, body speed and time

duration of tag detection, the position including orientation of vehicle can be

identified.

 According to the “Machine learning approach to self-localization of mobile

robots using RFID tag”[12] by Senta et al., a different approach from the previously

mentioned article for RFID landmark localization is proposed. Instead of determining

position and orientation by solving the kinematic or geometric problem, this research

applying the machine learning approach, namely the support vector machine (SVM),

to avoid some difficulties, e.g., define every tag’s position, complex kinematic

problem.

 11

1.2. Localization Base on Global Navigation Satellite System

 Global Navigation Satellite System (GNSS), nowadays, receives great

attention from any system developers who involve in determining a global position. In

the early of global positioning by using earth-orbiting satellite, the Doppler shift

technique was used in determining global position, the American Navy Navigation

Satellite System (NNSS), or TRANSIT, is an example for this technology. However,

TRANSIT shows the main disadvantage, i.e. lack of accuracy and its complexity[13],

Global Positioning System (GPS), the American GNSS, are thereby developed to

replace the TRANSIT.

Although GPS, and other equivalent systems, other GNSS, such as GLONALL,

Galileo, etc., are widely acceptable, complexity and limitation still occur in

determining the position. According to Zhu et al. in “GNSS Position Integrity in

Urban Environments: A Review of Literature”[14], GNSS application in the urban

environment may emerge from signal reception. In an urban environment, lots of

obstacles, e.g., trees, buildings, etc., may cause a signal to be distorted or attenuated

or sometimes these obstacles even totally block the entire signal to the receiver, even

though the GNSS was designed to provide at least 4 satellite signals anytime for

receiver anywhere on earth. Figure 5 depicts 2 different phenomena that cause

complexity for GNSS in the urban environment, i.e. multipath interference and Non-

Line of Sight (NLOS) phenomena.

Figure 5 a) Multipath interference b) NLOS reception[14]

 Apart from the terrestrial object, the ionosphere and atmosphere environment

can cause the signal to undergo perturbation. From these phenomena, positioning

accuracy of about 2 to 4 meters may be determined. One method, that currently is

given great attention, used to reduce this deviation is the Real-Time Kinematic (RTK)

 12

approach. Several low-cost commercial GNSS devices currently equipped with this

technology. According to Jackson et al., in “A performance assessment of low-cost

RTK GNSS receivers”[15], 5 low-cost (lower than 500 USD), i.e. Piksi Multi,

NV08C-RTK, Reach, NEO-M8P and S2525F8-RTK, and 1 relatively expensive

(more than 1,000 USD), i.e. Eclipse P307, receivers are taken to be investigated in

performance. Five types of standard performance metrics are used as criteria for

performance comparison, i.e. accuracy, continuity, availability, and time to first fix

metric type. Metrics and their summary descriptions are given in Table 3.

Table 3 Summary of the performance metrics[15]

 This research reveals that all the 6 receivers reached a centimeter-level

accuracy up to the 95th percentile of the measurement. Another interesting result is

that the performance evaluated also depends on the antenna type, i.e. rover or patch

antenna.

1.3. Summary of Localization Technique

 The different techniques in localizations undergo different drawbacks. In

landmark-based localization, for natural landmark case, the introduced article[7]

suggests that a high dynamic environment should not be used as a resource for natural

landmark extraction. Since our research objectives concentrate on autonomous driving

which test experiment intends to perform in a considerably dynamic environment.

Then natural landmarks may not be totally suitable for this research. However, some

techniques, such as maxima curvature extraction by laser rangefinder, could be

applied to our system.

Another research in natural landmark-based localization presented[8] tries to utilize

only a single detected landmark to determine the robot position. However, the

 13

assumption they used, i.e. the exact relative position is known by a dead-reckoning

estimation, is mentioned by several literatures[11, 16] that will gradually encounter

the commutative error along the navigation path. Figure 6 and Figure 7 depict that

commutative error growth along the distance traveled.

Figure 6 Uncertainty area from odometry reading only[11]

Figure 7 Experimental results from odometry and localization[16]

 For vision based-landmark localization, most complexities come from

environmental factors, such as ambient light. However, difficulties may emerge from

the detection algorithm itself that required sophistication and robustness to effectively

detect and extract information from any pattern label[9, 10].

 GNSS can also provide a very precise location, however, further technique,

e.g., Differential Global Positioning Systems (DGPS), Real-Time Kinematic (RTK),

need to be applied to achieve a high accuracy positioning. Although high precision

localization can be achieved by GNSS, as performance evaluation shown in the article

 14

above[15], GNSS still cannot be used as a single localization approach due to lack of

continuity.

2. Path Follower Autonomous

 Path follower robot can be examined as basic for a more sophisticated

autonomous driving system. At first glance, several path follower robots utilized

numbers of the proximity sensor in determining their position. With a simple

hysteresis controller, many of them perform an application acceptable result[17, 18].

Apart from a simple hysteresis controller, several more sophisticated controllers are

proposed, e.g., legendary Proportional Integral Derivative (PID) controller. According

to A. Al Arabi et al. in “Autonomous Rover Navigation Using GPS Based Path

Planning”[19], the autonomous rover utilized the PID controller by selecting the path

deviation distance derived from the GNSS positioning system as a controlled

parameter, the result shows that the autonomous rover properly follows the predefined

path. Furthermore, from M. Engin et al. in “Path Planning of Line Follower

Robot”[20], the PID controller shows better results than the simple hysteresis

controller in both maximum velocity used and tendency to astray from a predefined

path.

 However, a complicated autonomous driving application required more

control techniques to achieve a satisfactory performance, furthermore, several real

situation incidents need to be taken into consideration, e.g., the appearance of an

unpredicted obstacle. Consequently, the high-level algorithm for autonomous path

planning is utilized.

2.1. The Dynamic Window Approach (DWA)

 Besides prescribing a fixed predefined path for an autonomous car to follow,

the instantaneous path generating algorithm is popularly adopted by numbers of

research, one outstanding algorithm is the Dynamic Window Approach (DWA).

According to D. Fox, W. Burgard, and S. Thrun, in “The Dynamic Window Approach

to Collision Avoidance”[21], DWA is a local path planner which optimized robot

velocities base on its performance, i.e. maximum linear and angular acceleration or

deceleration, such that results in the optimal admissible path. For this algorithm, an

 15

admissible local path is calculated by maximizing the cost-like function, called the

objective function, considering target heading, clearance to the obstacle, and robot

velocity from dynamic window search space.

Figure 8 Dynamic window from the Dynamic Window Approach (DWA)[21]

 16

CHAPTER III

RELATED THEORY

1. Global Navigation Satellite System (GNSS)[22]

 The Global Navigation Satellite System (GNSS) is a localization system using

signal broadcasted Medium Earth Orbiting (MEO) satellites whose altitude are about

20,000 km above the earth's surface. Nowadays, GNSS systems that available for

civilian applications are the Global Positioning System (GPS – Unites States),

GLObal NAvigation Satellite System (GLONASS – Russia), Galileo (European

Union), and BeiDou (China). Among all these GNSS systems, GPS is the most

outstanding system that was first developed before other systems, originally for

military purposes. Therefore, a general principle of the GPS will be introduced in this

section as an example that represents an overview of the GNSS.

1.1. The Global Positioning System (GPS)

 By April 2020, the GPS already has 31 satellites in operation and 9 in reserve.

Originally, 24 satellites are expected to be a number of the least satellites operated by

the GPS. The principle underlying the GPS ability to localize a certain terrestrial

object is simply measuring the distances between at least 4 satellites and a receiver

attached to such object. Basic components of the GPS consist of 3 parts, i.e. a control

station, satellites, and a receiver. The first component, i.e. control stations, located

around the world, keeps tracking and monitoring all satellites. Each satellite’s

ephemeris, a satellite’s predicted position and velocity, is updated by these control

stations providing a precise localization to the system. Inside each satellite contain a

high precision atomic clock, this atomic clock is used to generate 2 GPS carrier waves

with different frequencies, i.e. 1575.42 and 1227.60 megahertz, known as L1 and L2,

respectively. Each wave is modulated with a stream of bit called a Pseudo Random

Noise (PRN) determined by a precise mathematic algorithm. These waves later are

broadcasted to the earth and received by a terrestrial receiver. Two methods are

available in distance measurement, i.e. a code ranging and a carrier-phase ranging. In

a code ranging, The receiver determines a distance toward the satellite by measuring a

 17

time lag between a received signal and a synchronous receiver-satellite generated

signal, as shown by Figure 9. The equation relates a time lag and the distance between

a receiver and the satellite is given by Equation (1).

 p c= (1)

Where p denotes the distance between a receiver and the satellite, known as the

pseudorange. c represents the signal traveling speed and  is a measured time lag as

shown by Figure 9.

Figure 9 Time lag determined from GPS signal

 The GPS signal carrier wave’s phase is measure in a carrier-phase ranging

method providing a higher precision than what obtained by a code ranging method.

However, the carrier-phase ranging only determines the fractional phase part of the

total pseudorange, i.e.  in Figure 10, leading to the unknown number of complete

wavelengths N , known as an integer ambiguity. To determine this integer ambiguity,

the code ranging along with more receiver is utilized by a certain technique called a

double differencing. Equation (2) shows the relationship of parameters in a carrier-

phase ranging method.

 ()p N  = +

(2)

Where p , N ,  , and  denote a pseudorange, integer ambiguity, measured phase,

and the carrier signal’s wavelength.

 18

Figure 10 Phase-carrier ranging

1.2. Source of GNSS Measurement’s Error

 The error in measuring a pseudorange of the GNSS may emerge in different

levels of the system. In the satellite level, an inaccurate ephemeris of the satellite may

be broadcasted to the geodesic receiver. Therefore, the receiver will output the false

position. This sort of error may be caused by insufficient monitoring by the ground

station. Also, gravitational attraction by other planets, moon, or sun, and the solar

radiation pressure can deviate the actual satellite position away from the prediction,

i.e. an ephemeris. While traveling from the satellite to a receiver, the GNSS signal’s

speed is distorted along the way through the earth’s atmosphere. According to

Equation (1), since the signal traveling speed changes, then the pseudorange

determined by using a speed of light will be invalid. This error in an atmosphere level

occurs in both the ionosphere and troposphere layer. In these layers, charged and

neutral particles contribute to a change in the traveling velocity of a signal. Moreover,

the indirect path of the signal may occur by reflecting any terrestrial objects before

reaching the receiver’s antenna, this kind of error is called a multipath error.

 In code ranging, the measured time lag plays a major role in determining a

pseudorange. Therefore, the precise pseudorange must be determined by a precise

time measurement. One major problem existed in the receiver level is a clock error.

However, a clock error also happens in a satellite level but compared to the receiver

level, an error in a receiver clock results in more severe to the measured pseudorange.

1.3. Pseudorange Equations

 An unknown position point in 3-dimensional space can be determined by

using three distances between that unknown position point and the other three

 19

reference points whose position is exactly known. However, as previously mentioned,

the measured pseudorange can be deviated from the actual distance toward a satellite

by the clock error. Therefore, the relation between a pseudorange and the actual

distance toward a satellite can be stated by Equation (3).

 p  = + (3)

Where p is the pseudorange,  is the actual distance toward a satellite, and  is the

distance error due to a clock error. Since the position of the satellite is assumed to be

known exactly from the satellite’s ephemeris. Then, Equation (3) can be rewritten to

Equation (4).

 () () ()
2 2 2

r r rp x x y y z z c= − + − + − +

 (4)

Where x , y , and z denote the position of a satellite in a cartesian coordinate system.

rx
, ry

, and rz
represent the position of a receiver in a cartesian coordinate system. c

is the carrier wave traveling speed and  is the clock error time. Since the clock

variation among satellites is negligible compare to the time difference between a

satellite and a receiver. Then the clock error time is considered to be equal for every

pseudorange measured by one certain receiver. Also, by assuming that the carrier

wave traveling speed is known, the pseudorange equations constructed as shown by

Equation (5).

() () ()

() () ()

() () ()

() () ()

2 2 2

1 1 1 1

2 2 2

2 2 2 2

2 2 2

3 3 3 3

2 2 2

4 4 4 4

r r r

r r r

r r r

r r r

p x x y y z z c

p x x y y z z c

p x x y y z z c

p x x y y z z c









= − + − + − +

= − + − + − +

= − + − + − +

= − + − + − +

 (5)

Where ix
, iy

, and iz
denote the position of the i satellite in a cartesian coordinate

system, and ip
 is the pseudorange of the i satellite. Since 4 unknowns with 4

equations appear in Equation (5), then the position of the receiver can be solved using

the measure pseudorange from 4 satellites. Moreover, the result has included the

clock error effect. Figure 11 illustrates the parameters used in the pseudorange

equation.

 20

 It can be shown that if the receiver is operated in a static positioning mode, i.e.

the receiver is held in place measuring a static position, one can utilize only 2

satellites in pseudorange measurement at a time, however, the measurement process

has to be repeated at least 3 times. Whereas in kinematic positioning, i.e. the receiver

is moving while receiving the GNSS signal, at least 4 satellites are required for each

measurement.

Figure 11 Parameters used in the pseudorange equation.

1.4. Differential Global Positioning System (DGPS)

 The accuracy of the GNSS positioning can be improved by introducing the

second receiver. This second receiver is employed as a base station, i.e. base receiver,

of which the exact position is assumed to be known. The Differential Global

Positioning System (DGPS) determines the error in pseudorange according to

Equation (6), assuming the position of both the satellite and a base receiver is known

exactly. The correction obtained from this equation is called a Pseudorange

Correction (PRC).

 () () ()
2 2 2

1i i b i b i b ip x x y y z z p = − + − + − −

 (6)

Where ip
 represents the Pseudorange Correction (PRC) for the i satellite. ix

, iy
,

and iz
 denote the position of the i satellite in a cartesian coordinate system. bx

, by
,

 21

and bz
 denote an exactly known position of the base receiver and 1ip

 is the

pseudorange of the i satellite measured by the base receiver.

 However, if the distance between the base receiver and the rover receiver, i.e.

another receiver that the position is needed to be found, is not too long, the PRC can

be applied to the corresponding pseudorange measured by the rover receiver since the

atmosphere for 2 areas in close proximity is considered to be the same, hence, leading

to identical pseudorange corrections. Therefore, the corrected pseudorange of the

rover receiver is given by Equation (7).

 2 2i i ip p p= + 
 (7)

Where 2ip
 denotes the corrected pseudorange of the i satellite measured by a rover

receiver. 2ip
 is the original pseudorange of the i satellite measured by a rover

receiver. Figure 12 depicts the DGPS configuration and explains the parameters used

in the above equations.

Figure 12 The Differential Global Positioning System (DGPS) configuration

 The pseudorange used in determining the PRC can be determined by the code

ranging or the carrier-phase ranging method. By utilizing the code-pseudorange, one

can obtain the accuracy down to the decimeter level in real-time application.

However, to enhance more accuracy, one famous algorithm named Real-Time

 22

Kinematic (RTK) applies the carrier-phase pseudorange to the DGPS fundamentals,

resulting in an accuracy of about 2 to 5 centimeters.

1.5. Relative Positioning

 Instead of correcting the pseudorange measured by receivers that are in close

proximity, the relative positioning method determines the relative position using the

raw pseudorange from both the base receiver and the rover receiver. Then, similar to

the DGPS, the assumed known exact position of the base receiver is added to the

relative position, giving a final position. However, this method is intended to be used

in post-process application in which the carrier-phase pseudorange is performed.

Equation (8) describes the mathematic form of the relative positioning method.

 () 0r r b= − +x x x x

 (8)

Where rx
 is the corrected rover position by the relative positioning method. rx

 and

bx
 denote the position of the rover and base receiver, respectively, determined by

Equation (5) using the original pseudorange. 0x
 is the assumed known exact position

of the base receiver.

2. Proportional-Integral-Derivative Controller

 A classical feedback controller block diagram is shown in Figure 13. The

dynamic error is controlled and minimized by this feedback configuration. Depending

on the plant transfer function, system disturbance, and the reference signal, different

types of controllers can be applied results in the different dynamic responses of the

controlled parameters. Normally, the sensor transfer function is neglect and assumed

to be unity, thus the plant output y then equals the sensor output y .

 23

Figure 13 Classical feedback controller block diagram

 The well-known feedback controller used for the low-level controller system

in this research is the Proportional-Integral-Derivative controller, as known as the PID

controller. The general control equation form of such controller is shown by Equation

(9).

 () () () ()
0

t

p i d

t

d
u t K e t K e d K e t

dt
 = + + (9)

Where pK , iK , and dK are the proportional, integral, and derivative coefficient,

respectively, all coefficients are non-negative value. e denotes the dynamic error

defined as a difference between the reference signal and the sensor output, stated

mathematically by Equation (10). u represents the controller output.

 e r y r y= − = − (10)

 The PID controller can be separated and utilized as a combination of the

individual controller. Typical combinations that always used are a proportional-

integral (PI) controller and a proportional-derivative (PD) controller, depending on

the characteristic of the controlled system. However, each controller has its own

remarkable response to different types of dynamic errors.

2.1. Proportional Controller

 The proportional controller, described by Equation (11), gives the output

proportional to the dynamic error without imposing any dynamic to the output. This

controller is a basic for every combination to be included. The proportional controller

impacts the early portion of the response from the feedback controller by shortening a

response’s rise time whenever the proportional coefficient is increased and vice versa.

However, increasing the coefficient also leads to an increase in response overshoot

and oscillation as shown in Figure 14. Also, using only the proportional controller

will not guarantee the zero steady-state error.

 () ()pu t K e t= (11)

 24

Figure 14 (a) Low proportional coefficient response (b) High proportional coefficient

response

2.2. Integral Controller

 As state earlier, using the proportional controller only may result in a non-zero

steady-state error. This constant steady-state error may emerge from the system plant

which doesn’t possess any integrator of the number of integrators is not enough to

cope with a certain reference signal. Also, the mechanical defect can cause the steady-

state error. The integral controller, shown by Equation (12), can manage to eliminate

this type of error. According to Equation (12), the integral controller can output the

non-zero control signal even when the error is zero, which in case of the proportional

controller will give a zero output. However, increasing the integral coefficient too

high can cause a response to be unstable.

 () ()
0

t

i

t

u t K e d =  (12)

2.3. Derivative Controller

 The derivative controller, shown by Equation (13), resists the rapid change in

a dynamic error. Considering the proportional controller with a high proportional

coefficient, the response of such a controller will encounter a large overshoot and

sometimes turn to constantly oscillate. The derivative controller can deal with this

response behavior by decrease the other controller's output whenever the error

changes too quickly.

 25

 () ()d

d
u t K e t

dt
= (13)

 The result response from this derivative controller can be classified into 3

types, i.e. underdamped, critically damped, and overdamped response, illustrated by

Figure 15. The low derivative coefficient may lead to the underdamped response

which still possesses an oscillating behavior. In an overdamped case, caused by a high

derivative coefficient, time takes until reaching the steady state will be long, however,

without oscillating behavior. The correct derivative coefficient gives a non-oscillating

response by using the least time to reach a steady state.

Figure 15 (a) Underdamped response (b) Critically damped response (c) Overdamped

response

2.4. Implementation

 Instead of using an analog device, the digital implementation of the PID

controller is deployed in this research. The continuous PID controller Equation (9) is

digitalized to Equation (14) using the rectangular approximation. However, the

digitalized version of the PID controller may develop an overshoot behavior in the

dynamic response. Thus, the sample period of the digitized PID controller used in this

research will keep at a relatively low, about 5 milliseconds, such that the digitized

version can imitate the continuous PID controller.

 () () () () () 
0

k

s p s i s d s s s

n

u kT K e kT K e nT K e kT e kT T
=

= + + − − (14)

Where k I + denotes the sampling number.

 26

CHAPTER IV

DEVELOPMENT OF AUTONOMOUS DRIVING SYSTEM

1. Low-level Control System

 The first step in creating the autonomous driving system is to develop a low-

level system. In this research, an electric vehicle available in the market, i.e. the

TOYOTA COMS, is modified by introducing the steering control and speed control

system to the original car. The detail in vehicle modification is described below.

Figure 16 The TOYOTA COMS with modified low-level systems

1.1. Power Supply System Modification

 Additional modified systems are supplied by a set of batteries that are

separated from the car's original batteries. These batteries power the steering control

system, speed control system, and sensors used in autonomous navigation, i.e. a

GNSS receiver and a laser scanner. As shown by Figure 17, a set of 4 12V-45Ah

LiFePO4 batteries is divided into 2 separate supply circuits. Two batteries in the left

are connected in series producing a supply voltage of 24 volts for high current

drawing devices, including a brake motor and a steering motor. Two batteries on the

right are also connected in series producing a 24 volts supply for electronic devices

 27

that consume less current, e.g. a GNSS receiver, laser scanner, control circuits, etc.

when the 220V power is supplied to the charge controller, all batteries are

disconnected from devices they supplied and parallelly charged by the charge

controller.

Figure 17 Power supply system’s configuration

1.2. Electronic System Modification

 Motor rotational direction, turn signal lights, a hazard light, a wiper system,

etc. are controlled using an electronic signal. Thus, to convert a vehicle into an

autonomously controlled car, a modification on the electronics system needed to be

made.

1.2.1. Modified Switch Circuits

 Figure 18 illustrates the component diagram of the modified electronics

system. Formerly, the control signal from switches is connected to the Electronic

Control Unit (ECU) directly. However, the modified system utilizes selector circuits

that switch the control signal between the microcontroller and mechanical switch

outputs so that the car can be controlled manually and automatically. These 3 selector

circuits are employed for 3 switch circuits, i.e., a shifter switch, signal lights switch,

 28

and wiper switch circuit. The 16-Relay module receives the control signal from

selector circuits and outputs the final control signal to the ECU.

Figure 18 Electronics system components diagram

 The modified circuit of a shifter, signal lights, and wiper control switch is

shown by Figure 19, Figure 20, and Figure 21, respectively. These modified circuits

switch the ECU input signal using signal selectors, i.e. 2-to-1 digital multiplexers.

Note that all multiplexers’ selector input is connected together and controlled by the

electronics system microcontroller. Also, all mechanical relays appear in these figures

belong to the 16-relay module.

 29

Figure 19 Modified shifter switch circuit

Figure 20 Modified signal lights switch circuit

 30

Figure 21 Modified wiper switch circuit

 The modified system is installed by replacing the direct connection between

car and switches with modified circuits in between. The obvious advantage of this

configuration is that the car can be converted back to the original circuit system easily

by removing the modified circuit connector and connect the switch connector back to

the corresponding car side connector.

1.2.2. Microcontroller software

 Figure 22 describes the workflow of the electronics system controller

software. Firstly, a microcontroller starts an initialization routine. This includes

binding the relay module to output ports and initializing the corresponding initial state

to these ports. Then, a loop routine is entered starting by looking for the incoming

command message from the high-level controller. If the command message is

received and verified to be valid, then the controller will execute the instruction

according to the received command message. Finally, the new loop routine begins

repeatedly.

 31

Figure 22 Electronics system controller software’s flowchart

1.3. Steering Control System

 In modifying the steering control of the car to be used for the autonomous

navigation system, three main subsystems must be installed, i.e. mechanical actuator

system, electronics system, and the low-level steering control system. These

subsystems are explained below.

1.3.1. Mechanical Actuator System

 The car used in this research originally came without a steering assistant

system, e.g. power steering system. Thus, the steering wheel of a car cannot be

controlled using the Controller Area Network (CAN) protocol communication. To

control a steering wheel, hence steering angle, an electric motor is installed as shown

 32

in Figure 23. The motor transmits power through a speed reduction gearbox of a

1:9.78 gear ratio, and then by a chain-sprockets system with a sprocket ratio of 1:1 to

a steering rack.

Figure 23 Steering control actuator system

 To control the position of a steering wheel, the sensor for measuring the

steering wheel position is required. Here, the sensor is chosen to be a 10-round audio

potentiometer with a total resistance of 10 kiloohms. Since the steering wheel of the

car can be turned for about 4 rounds, lock to lock, then a gear set that increases a

turning round of the potentiometer should be applied so that a full measurement range

of 10 rounds can be properly utilized. For this reason, a gear set of 4:9 gear ratio is

installed. A 1 round excess is introduced in case the steering wheel undergoes an

overturn resulted from unexpected situations. The steering wheel position sensor is

attached to a steering column as shown by Figure 24.

Figure 24 Steering wheel position sensor

 33

1.3.2. Electronics System

 A DC motor is driven by the H-bridge DC motor driver which is controlled by

a microcontroller unit of the low-level steering controlled system. Power supplied to

the motor has a voltage of 24 volts but limited by a pulse width modulation of 50

percent for safety reasons. The steering wheel position sensor, i.e. a potentiometer, is

connected to an Analog to Digital Converter (ADC) which provides a digitalized

steering wheel position to the microcontroller unit. An emergency stop switch and a

circuit breaker are installed for the user to manually disconnects the motor and the

supply battery, respectively. The electronic components diagram is shown by Figure

25.

Figure 25 Steering control system’s electronic components diagram

 Also, note that the voltage level of links between each component is

represented by a corresponding line type, i.e. a dashed line represents a 24-volt power

line and a solid line represents a low voltage signal, typically a 3.3 volts COMS logic

level communication line.

 34

1.3.3. Low-level Steering Control System

 A 1-dimensional Proportional Integral Derivative (PID) controller model is

utilized in a low-level steering control system. By receiving a required steering wheel

position, i.e. a reference signal, from the high-level control system, the controller then

determines the output signal which, for this system, is defined as a duty cycle of the

pulse width modulated 24 volts power supply, according to PID control law using a

set of predefined tuned gain coefficient. Note that a unity gain transfer function

assumption is applied to the steering wheel position sensor. A control bock diagram of

the steering control system block diagram is shown by Figure 26.

Figure 26 Steering control system block diagram

1.3.4. Microcontroller Software

 In order that the low-level steering control system can be controlled or

communicates with the high-level control system, a certain interface software need to

be applied. This software manipulates the incoming command from a high-level

controller and executes a certain routine corresponding to a received command.

 The software begins with initializing parameters by reading from the

microcontroller’s Electrically Erasable Programmable Read-only Memory

(EEPROM). The initialized parameters are listed below.

❖ An initial reference steering wheel position for the automatic control mode

❖ PID controller gain coefficients, including proportional, integral, and

derivative coefficient

❖ Limited positions of a steering wheel, both minimum and maximum limit

position

❖ A controlled loop time interval

 After finish initialization, the current steering wheel position is measured.

Subsequently, the microcontroller will check for the incoming command message

 35

from a high-level controller. If the command message is available and verified, the

microcontroller then executes a routine requested by a high-level controller. Then, if

the automatic control mode is engaging, the microcontroller will calculate the output

duty cycle using the PID control model and output a result to the motor driver. Note

that the PID controller used in this system is discretized to be utilized in this system.

However, if the controller is not in the automatic control mode, a motor will be

released from a motor driver allows the driver to manually control a steering wheel.

Next, the microcontroller will broadcast the system parameters if they are required by

the high-level system. Eventually, the loop time interval control has proceeded before

the new computational loop begins. Figure 27 illustrates a workflow of the low-level

steering control system software.

Figure 27 low-level steering control software’s flowchart

 36

 This control software is embedded in the microcontroller belongs to this

system. A communication protocol between this steering controller system and the

high-level controller is a serial communication through a Universal Serial Bus (USB)

connection.

1.3.5. Steering Units Relationship

 Early in this section, the steering wheel position is described by several units.

In the beginning, a steering wheel position is mentioned in a geometry degree. Then,

the steering position is measured using a potentiometer through a gear set which gives

a unit of voltage. Subsequently, this voltage is converted by the 16 bit-analog to

digital converter with a service range of ±6.144 volts which return a measured voltage

in signed-integer bits ranged from -32768 to 32767 bits.

 The steering position unit relationship between an actual steering angle and a

potentiometer measured voltage is determined by Equation (15) since a gear set of a

4:9 gear ratio is presented to convert a full range of 4 steering wheel revolutions to 9

turns of a 3.3-volt supplied potentiometer.

 0.04125 1.65E = + (15)

Where E and  denote a measured voltage in volts and the actual steering angle in

degrees.

 A second relationship is between a measured voltage and the ADC output.

Since the ADC range of operation is ±6.144 volts which correspond to the output

range from -32768 to 32767 bits. Also, a potentiometer is supplied by a 3.3-volt

source. Thus, the relationship between these 2 units can be given by Equation (16).

 5333.33E = (16)

Where  denotes the ADC output in bits.

 By combining Equation (15) and Equation (16) we may obtain the relationship

between the actual steering angle and the ADC output as shown by Equation (17).

Figure 28 illustrates the relationship among these units.

 220 8800 = + (17)

 37

Figure 28 Relationships among different steering position units

1.3.6. PID Controller Output Description

 Previously in the microcontroller section, the output of the PID control model

is in a duty bit. Here, a duty cycle bit is defined as a duty cycle-like value that

corresponds to a 100 percent duty cycle when such value equals 4095 bits. Equation

(18) describes the definition of this value.

 0
duty

%
cyc

le

l
 b

y
i

d
t

 ut cyc e 10
4095

=  (18)

1.3.7. Parameters Tuning

 Since the mathematical model of the steering system is not available. Then,

the gain coefficient tuning cannot be done by using a mathematical design method.

Consequently, the empirical tuning method is employed instead of determining a

complex model of the whole system. Later, a satisfactory response is achieved by

manually tuning gain coefficients. Equation (19) describes the values of the

mentioned coefficients.

280

150

10

p

i

d

K

K

K

=

=

=

 (19)

Where pK , iK , and dK are the proportional, integral, and derivative coefficient,

respectively. Figure 29 depicts an example of a steering control system’s step

response with the initial position at 11477 bits and a reference position at 12000 bits.

Note that tuning is done at a controlled loop time interval of 5 milliseconds and these

controller coefficients are intended to be used in a designed microcontroller software

only.

 38

Figure 29 Step response of a steering control system

1.3.8. Response Model

 In developing a high-level autonomous navigation algorithm, an important

part is to determine a predicted trajectory of the vehicle. In the later section, the

steering response model will be required to generate several predicted trajectories.

Later, the steering response model will be referred to as a steering profile. A steering

profile is a sequence of a steering position at any time instance.

 Same as modeling a mathematic model of the steering system, determining an

accurate response mathematic model takes many resources to accomplish. Thus,

instead of investigating the response for a mathematic model, the direct recording of

the steering profile is employed.

 In high-level navigation software that will be introduced in the later chapter,

the algorithm will determine the suitable steering position periodically. Hence, the

steering command signal, i.e. reference steering position, may be considered as a step

function of a certain value. Consequently, the steering profile is recorded by executing

a step reference steering position of different values to several initial positions. In this

research, an equal interval of 500 bits range from 2500 bits to 15500 bits is set to be

both the initial position and reference signal. The record time is set to be 10 seconds

for each record. Finally, 729 steering profiles of different initial and reference steering

position is obtained. This set of steering profiles will be used later in the navigation

 39

section instead of using an exact mathematic model. Another advantage of using

recorded steering profile is that the computational effort will be greatly reduced,

however, induce loads on the memory. Figure 29 is also one of the steering profiles

in a recorded set.

1.4. Speed Control System

 The primary objective of the speed control system is to regulate the vehicle

speed in response to the desire speed command received from the high-level

controller. Same as the steering control system, a modification for the speed control

system is divided into 3 parts, i.e. mechanical actuator system, electronics system, and

the low-level speed control system. Furthermore, controlling speed in an automotive

application involving 2 actuators system, including acceleration and braking system.

1.4.1. Mechanical Actuator System

 Since the existed braking system of the car used in this research is a hydraulic

type without a booster. Then, a desire brake pressure cannot be achieved using the

electrical intervention. Consequently, the additional brake actuator is designed and

installed in the original system. This additional brake actuator was designed such that

the brake pressure can be applied by both user and low-level controller.

Figure 30 Designed brake actuator

 40

 A designed brake module is illustrated in Figure 30. This actuator consists of

2 hydraulic master cylinders for 2 available brake circuits, i.e. front and rear circuit.

This actuator introduces the brake pressure to a circuit by pushing a piston at one end

of the cylinder using an electric motor through a 4:3 sprocket ratio chain transmission

and a 3-millimeter pitch lead screw which transforms a rotational motion to linear

motion.

Figure 31 Section views of a designed master cylinder

 Figure 31 shows section views of a designed master cylinder at 2 working

positions. Inside this master cylinder, 2 pistons are working together. A piston on the

left is connected to a lead screw set and a right piston is floating inside the cylinder.

Not showing in the figure is 2 springs loaded inside the cylinder to maintain both

pistons to be in a position shown by Figure 31 (a), whenever the driving motor is

inactive. Figure 31 (a) illustrate the idle position state of the master cylinder. At this

position, the user applied pressure from the original brake master cylinder enters the

top port of the designed master cylinder and freely leave at the right port to a wheel

cylinder. In the activated state, shown by Figure 31 (b), force is applied to a piston on

the left by a motor. The left piston will also push the floating piston, isolating the

brake line from the original master cylinder and generating pressure in a brake circuit,

thus activates the wheel cylinder. The designed brake actuator is installed to the

original braking system by replacing a portion for the original brake line as shown by

Figure 32.

 41

Figure 32 Installation of the designed brake actuator

1.4.2. Electronics System

 The previous section presents the modification of a braking system which

allows the deceleration of a car to be controlled by a high-level controller. For

acceleration, the original motor controller is controlled by the microcontroller.

Originally, the motor controller of the car receives the acceleration command from the

accelerator pedal. Thus, to take control of a motor controller, a sensed voltage signal

from the accelerator pedal is replaced by a voltage signal generated by the low-level

controller.

Figure 33 Modified accelerator pedal position sensor circuit wiring diagram

 The Accelerator Pedal Position Sensor (APP) of the car generates 2 voltage

signals and measured by the Electronic Control Unit (ECU). One of such voltage

signals is offset to the other by 750 millivolts. The ECU converts these voltage signals

into a driving motor torque command and then sent to the motor using a vehicle CAN.

 42

The modified circuit of the accelerator pedal position sensor is shown in Figure 33. In

this figure, VCP1 and VCP2 are 5-volt sensor supply lines from the ECU. EP1 and

EP2 are the reference ground lines of VCP1 and VCP2, respectively. The voltage

signal lines mentioned above are VPA1 and VPA2. In a modified circuit, the

microcontroller of the speed control system controls a vehicle acceleration through

the generated voltage signals, shown by DAC1 and DAC2 lines in Figure 33. These

signals generated from the dual 12-bit Digital to Analog Converter (DAC) by the

microcontroller and replace the signals from the APP using 2 Single-Pole-Double-

Throw (SPDT) type mechanical relays. Furthermore, the actual odometry speed of the

car is obtained from the vehicle CAN bus.

 Similar to the steering control system, an electric motor of the brake actuator

is driven by the H-bridge DC motor driver supplied by a 24-volt battery, however,

limited by 75 percent of the maximum power to prevent the brake module from

damage caused by a motor running at maximum power. This motor driver is directly

controlled by the microcontroller. Figure 34 illustrates the overview component

diagram of the steering control electronics system.

Figure 34 Speed control system’s electronic components diagram

 43

Note that the dashed line denotes the 24-volt power line and all low voltage level

signal lines are represented by solid lines.

1.4.3. Low-level Speed Control System

 A simple PID is implemented in the speed control system as in the steering

control system. However, 2 actuators are presented in this section, i.e. the brake

actuator and the modified APP circuit. Thus, a modification is applied to the PID

controller output part such that both 2 actuators can be implemented in the PID

controller. The modified output PID controller is shown by Figure 35.

Figure 35 Speed control system block diagram

 As shown in Figure 35, a sensed actual speed is subtracted from the reference

speed received from the high-level control system result in a speed error. Then, the

PID controller with a set of coefficients is fed by this speed error, given an output 

that later plugged into a discontinuous gain transfer function F and G . The transfer

function F and G give the APP sensor voltage and the brake actuator motor driver’s

pulse duty cycle, respectively, and defined by the following Equation (20) and

Equation (21).

 ()F H = (20)

 ()()1 1G H


  


  
= − + +  

  
 (21)

 44

Where ()H x represents the Heaviside step function. Since the vehicle regenerative

braking is activated when is accelerator pedal is in a released position which leads to a

deceleration. And similar to a human driving characteristic in which a brake force is

not applied for every time the speed needed to be reduced. Then, an actuator dormant

interval  is introduced to the brake actuator gain transfer function, i.e. G . Also,

because of a different actuator, a linear proportion to the PID controller output 

assumption is applied by introducing the brake actuator constant gain  to G . The

output of the discontinuous gain G and F versus the PID controller output  is

shown by Figure 36.

Figure 36 Output of the discontinuous gain transfer function

1.4.4. Microcontroller Software

 A workflow of the low-level speed control system software is illustrated by

Figure 37. Start by algorithm initialization, the microcontroller retrieves the initial

parameters listed below from its EEPROM.

❖ The initial reference speed used in automatic control mode

❖ The proportional, integral and derivative coefficients of the PID controller

❖ An actuator dormant interval and a brake actuator constant gain

❖ A controlled loop time interval

 45

 Then, the car speed is read from a vehicle CAN providing an odometry speed

in kilometer per hour with a resolution of 0.004 kilometers per hour. Since this

odometry speed measured by using a resolver contains signal noise. Then, a simple

moving average digital filter of 10 previous samples is applied to the received speed.

Next, the microcontroller will check whether there is a valid command received from

a high-level controller. If so, the corresponding action to the received command will

be executed. Subsequently, if the emergency braking mode is engaged, the

microcontroller will check for the speed and activates the brake actuator in case the

car is moving. In case the automatic control mode is engaged, the controller will

determine the output using the digital PID controller. The output will be classified

into 3 intervals, including a deceleration, acceleration, and dormant interval. The

microcontroller will release an accelerator pedal and activate the brake actuator

according to the output classified into a deceleration interval. On the other hand, the

brake actuator will be released and the accelerator pedal will be activated if the output

is classified into an acceleration interval. If the output is in a dormant interval, then

both the brake actuator and the accelerator pedal are released. However, if the

controller is neither in the emergency nor the automatic control mode, a brake

actuator and an accelerator pedal will be released. Finally, the microcontroller will

return the required parameters to the high-level controller and idly wait for the

controlled loop time interval to be reached, and then begin the next computational

loop.

 46

Figure 37 low-level speed control software’s flowchart

 47

Figure 37 low-level speed control software’s flowchart (continued)

1.4.5. Parameters Tuning

 The proportional, integral, and derivative coefficient of the PID controller, a

brake actuator constant, and the actuator dormant interval is manually tuned in this

tuning process since the exact mathematical model is not available at the moment.

This tuning process’s controlled loop time interval is set at 5 milliseconds. By tuning

until the satisfactory result is achieved, the tuned parameters are obtained as shown by

Equation (22).

5

420

700

30

2

1.2 10

p

i

d

K

K

K





=

=

=

=

= 

 (22)

 48

Where pK , iK , dK ,  , and  denote the proportional, integral, and derivative

coefficient of the PID controller, a brake actuator constant, and the actuator dormant

interval, respectively. Figure 38 illustrates the step response from the initial speed of

3.6 kilometers per hour to the reference speed of 30.0 kilometers per hour. Note that

these tuned coefficients and constants must be used only in the designed low-level

software so that the response illustrated by Figure 38 will be obtained.

Figure 38 Step response of a speed control system

2. High-level Control System

 All components that contribute to the development of the autonomous

navigation software are introduced in this section. Start by considering the vehicle

model, the relationship between a controlled input and the vehicle trajectory is

obtained and later used in a developed path planning algorithm, i.e., a scored

predicted trajectory. Eventually, this algorithm is implemented in the developed

autonomous navigation high-level software.

2.1. Vehicle Model

 To obtain a predicted trajectory of the vehicle to be used in the path evaluation

process, a certain vehicle model needs to be obtained. There are several vehicle

 49

models available to be used in determining the vehicle trajectory. However, they

come with different levels of complexity and, of course, providing different accuracy.

 Since the objective of this research is to navigate the autonomous vehicle at

low speed, also 2-dimensional GNSS is equipped in a localization system.

Consequently, a 2-dimensional single-track kinematic model is considered to be the

most suitable model here for sake of simplicity and a relatively low computational

power.

2.1.1. Single-Track Kinematic Model

Figure 39 Single-track vehicle model

 By considering Figure 39, we may obtain the kinematic relation of a single-

track vehicle model as shown in Equation (23).

 ˆ
f r tre= + v v ω (23)

Where ˆ
r tse=v denotes the rear wheel velocity with a magnitude of s in ˆ

te direction,

fv is the front wheel velocity and k̂=ω is the vehicle angular velocity with a

magnitude of  in ˆ ˆ ˆ
t nk e e=  direction.

By applying a vector product between both sides of Equation (23) with ˆ
te we may

obtain Equation (24).

 sinf r =v (24)

And by applying a scalar product between both sides of Equation (23) with ˆ
te , we

also get the tangential component relation as shown in Equation (25).

 50

 cosf s =v (25)

Eventually, Equation (26) can be derived by combining Equation (24) and Equation

(25).

tan

s r

 
= (26)

From Equation (26) we can see that both sides of the equation represent a curvature of

a certain vehicle trajectory. Hence, for simplicity's sake, we may use
s


 = to denote

a trajectory curvature. Consequently, Equation (26) can be rearranged and results in

Equation (27).

tan

r


 = (27)

2.1.2. Approximated Linear Relationship

 A range of a steering angle in a typical commercial car is around 70 degrees,

which can be divided into around 35 degrees inner steering angle and around 35

degrees outer steering angle. The car used in this research has a steering angle range

of 74 degrees, say 38 degrees inner and 34 degrees outer steering angle, and a

wheelbase of 1.53 meters. By applying a steering angle range and a wheelbase to

Equation (27), we may obtain the plot of the curvature at a different steering angle

which is depicted by Figure 40.

Figure 40 Trajectory curvature from the single-track kinematic model at any steering

angles

 51

 From Figure 40, it can be observed that the relationship between a trajectory

curvature and a steering angle is linearly proportional to each other. Consequently, by

introducing Equation (27) to an infinite series expansion at 0 = we may obtain the

result as Equation (28).

3 5 72 17

...
3 15 315r r r r

   
 = + + + + (28)

By considering only the first term of the right-hand side of Equation (28), an

approximated linear relationship between trajectory curvature and steering angle is

then obtained as Equation (29).

r


 = (29)

2.1.3. Effective Inverse Wheelbase Calibration

 To use the Equation (29) in autonomous navigation one crucial parameter

needs to be substituted, namely a vehicle wheelbase r . Even though the vehicle

wheelbase can be measured directly from the car or get from a car technical manual,

that figure still cannot be used since there will be some other effects from other

components of the car that will deviate the actual trajectory curvature from the result

of Equation (29).

 For this reason, an effective wheelbase that will be used in predicting the car

trajectory must be obtained. To determine the value of this effective wheelbase, one

can directly measure actual curvatures at various steering angles from a certain

empirical experiment. However, directly measuring actual curvatures would be

difficult without a precise localization system. Hence, instead of measuring the

curvature directly, the angular velocity and the vehicle speed will be measured.

 After the actual angular velocity, occasionally yaw rate, and the vehicle speed

at various steering angles are collected, the regression analysis is then introduced.

Since the steering position obtained from the car steering position sensor comes in

scale and offset to the actual steering angle, then a more suitable Equation (30) for

regression analysis is introduced to include all scale and offset parameters in one

single equation.

   = + (30)

 52

As mention earlier,
s


 = where  is a collected yaw rate and s is vehicle speed.

 denotes the inverse effective wheelbase and  demotes the steering position

center.

The inverse effective wheelbase and steering position center can be determined by the

following Equation (31).

 ()
1

T T




− 
= 

 
A A A κ (31)

Where 1 =  A and =κ , which  and  are 1m vector of m collected

steering positions and corresponding trajectory curvatures, respectively.

By substitute collected trajectory curvatures and steering positions into Equation (31),

we may obtain the following parameters.

54.980133239 10 −=  (32)

 0.4317661517 = − (33)

Units of an inverse effective wheelbase and a steering position center are (meters ·

steering position sensor output unit)-1 and (meters)-1, respectively. Figure 41 depicts a

least-square regression analysis result.

Figure 41 Actual trajectory curvature and approximated linear relationship

 53

2.2. Scored Predicted Trajectory

 Scored Predicted Trajectory is the algorithm developed in this research to be

used in the autonomous navigation section. This algorithm determines the most

suitable steering angle such that the car will follow a given waypoint according to the

score weight that will dominate the path following behavior of a vehicle which is

arbitrarily predefined by the user. However, the algorithm doesn’t determine a

vehicle-controlled speed as vehicle speed is one of the algorithm input parameters.

2.2.1. Trajectory Prediction

 The single-track kinematic model has been introduced in the previous section.

In this section, that model is applied again to determine the trajectory of a vehicle,

namely predicted trajectories, for used score evaluation process.

Figure 42 single-track kinematic model

 Instead of locating a vehicle position reference at the center of geometry or the

center of mass of a vehicle, here the center of a rear axle P is utilized. By considering

Figure 42, also with the assumption that the steering system is a perfect Ackermann

steering geometry so that the velocity of the car reference point P will always align

with a car heading direction. Hence, we may construct the equation of the predicted

trajectory of a point P as follow.

 () ()
0

t

rt d = ρ v (34)

 54

Where ()tρ is a car position reference vector of a point P and rv is a velocity of a

point P attached to a vehicle body.

Rearranging Equation (34) gives Equation (35) that splits all parameters in Equation

(34) into 2 components, namely along inertia reference axis î and ĵ .

()

()
()

()

()0

cos

sin

t
x

r

y

t
v d

t

  
 

  

   
=   

  
 (35)

Where () () ()
T

x yt t t  =  ρ , ()x t and ()y t are magnitudes of a car reference

vector ()tρ at any time instance t .

Since () ()
0

t

t d   =  where ()t is the angular speed or yaw rate of a vehicle

body, also of the velocity rv and a vehicle heading direction. Then Equation (35) can

be rearranged as follow.

()

()
()

()

()

0

0

0

cos

sin

t

t
x

r t
y

d
t

v d
t

d

  


 


  

 
 

   =   
   

  






 (36)

Furthermore, it has been shown earlier that for a single-track kinematic model with a

perfect Ackermann steering geometry, the trajectory curvature can be approximately

considered as linearly proportional to a steering angle with a certain gain,

independently from the vehicle speed.

 ()
()

()
()

t
t t

s t


  = = + (37)

Rearranging Equation (37) gives Equation (38).

 () () ()()t s t t  = + (38)

Since () () ()r rt v t s t= =v . Then, combining Equation (36) and Equation (38) results

in the following Equation (39).

 55

()

()
()

() ()()

() ()()

0

0

0

cos

sin

t

t
x

t
y

s d
t

s d
t

s d

    


 


    

 
+ 

   =   
   +

  






 (39)

 Equation (39) above will provide several predicted trajectories for different

steering angles to be evaluated by the score weight mentioned early in this section.

This evaluation process will be introduced in a section below.

2.2.2. Trajectory Evaluation and Scoring

 After several trajectories corresponding to several arbitrary predefined steering

angles are obtained by solving the trajectory Equation (39). These trajectories will be

brought into a scoring evaluation process which is mainly considered in three

different topics, namely, a linear deviation, an angular deviation, and a collision

distance. Then, each of the trajectories will be assigned by three scores from the three

topics evaluation mention earlier and will be combined later according to weights that

arbitrary given by the user.

2.2.2.1. Linear Deviation Evaluation

 Linear deviation evaluation of the trajectory determines the distance between a

certain trajectory and a given waypoint in cartesian space. This evaluation can be

done by performing the integration of the shortest cartesian distance between along

the trajectory need to be evaluated.

Figure 43 Linear deviation evaluation of a certain trajectory

 56

 Figure 43 depicts a linear deviation of a certain trajectory ()ρ , as shown by a

continuous line, from a waypoint ()p , as shown by a dashed line. Point B is the

point closest to point A that lies on a waypoint ()p . Let us rewrite the waypoint as

shown by Equation (40).

 () () ()
T

x yp p   =  p (40)

And so do the trajectory.

 () () ()
T

x y     =  ρ (41)

Let us assume that point A locates on a trajectory ρ where  = and point B

locates on a waypoint p where  = .

 () () ()
T

x yA      = =  ρ (42)

 () () ()
T

x yB p p   = =  p (43)

Since B is the point closest to point A , then a formal condition for  is stated by the

following Equation (44).

 () () ()()argmin


   = −ρ p (44)

It can be shown that  happens when Equation (45) is satisfied.

 () ()() () () ()() ()x x x y y y

d d
p p p p

d d
   

       
 

= =

− = − (45)

To perform an integration over the trajectory length, an infinitesimal length along the

trajectory needs to be defined. This infinitesimal length is shown by Equation (46).

 () ()
2 2

x y

d d
d d

d d
     

 

   
= +   

   
 (46)

Here, the evaluation integral can be performed and results in the following Equation

(47).

 () ()() () ()()() () ()
2 2

22

0

T

l x x y y x y

d d
p p d

d d
           

 
= − + − +

    
    
    



(47)

Note here that l denotes a linear deviation score of a trajectory ρ that is evaluated

over a given waypoint p .

 57

2.2.2.2. Angular Deviation Evaluation

 Angular deviation evaluation determines the difference of gradient between a

trajectory and a given waypoint. This process is done in the same manner as the linear

deviation evaluation. However, in this process, the parameter used in the comparison

is the gradient instead of a cartesian distance.

 Considering again on Figure 43, ()η denotes the tangential vector to a

trajectory at  and ()h represents the tangential vector to the waypoint at  . The

relationship between a trajectory, waypoint, and their tangential vectors are stated in

the following Equation (48) and Equation (49).

 () ()
d

d
 


=η ρ (48)

 () ()
d

d
 


=h p (49)

Since the angular deviation in this process is defined as a difference in a gradient or

heading between a trajectory and a waypoint. Hence, the following Equation (50)

defines the formulation of an angular deviation .

 ()
() ()

() ()
arccos

 
 

 

 
=  

 
 

η h

η h
 (50)

Combining Equation (46) and Equation (50) gives the following Equation (51).

() ()

() ()
() ()

2 2

0

arccos

T

a x y

d d
d

d d

 
     

  

       
= +              


η h

η h
 (51)

Where a represents the angular deviation score of a trajectory ρ that is evaluated

over a waypoint p .

2.2.2.3. Collision Distance Evaluation

 Similar to the linear deviation evaluation, this collision distance evaluation

utilizes a cartesian distance in a scoring process. However, instead of using a

waypoint, this section uses the obstacle point scan to evaluate the score.

 58

Figure 44 Collision distance evaluation of a certain trajectory

 Figure 44 depicts an obstacle point represented by ()λ and a vehicle

trajectory ()ρ . Also N is the obstacle point whose closest point on a trajectory is

M . Since this evaluation process is done the same way as linear deviation

evaluation, except using an obstacle scan instead of using a waypoint. Then, the

formulation of this score can be modified from the linear deviation score Equation

(47). Consequently, the collision distance score can be determined by the following

Equation (52).

 () ()() () ()()() () ()
2 2

22

0

T

c x x y y x y

d d
d

d d
             

 
= − + − +

    
    
    



(52)

Where c is the collision distance score of a trajectory ρ that is evaluated over a

given waypoint p , () () ()
T

x y     =  λ , and  is determined by the following

Equation (53).

 () () ()()argmin


   = −ρ λ (53)

2.2.2.4. Overall Score Combination

 As mentioned earlier in this section, to determine the total score of an

individual trajectory, three scores, namely, linear deviation score, angular deviation

score, and collision distance score, will be linearly combined using their

corresponding arbitrary user predefined weights. Equation (54) states a mathematical

formulation of the overall score combination.

 59

  
l

l a c a

c

w w w



 



 
 

=
 
  

 (54)

Where lw + , aw + , and cw − are the linear deviation, angular deviation,

and collision distance weight, respectively. These weights can be interpreted as

priorities of their corresponding score in the autonomous navigation routine, i.e., a

high absolute value of w indicates a high priority of a corresponding score.

2.2.3. A Modification for Algorithm Implementation

 Since the Score Predicted Trajectory derived from continuous functions of a

trajectory, waypoint, and obstacle scan. However, in the actual situation, those

mentioned come in discrete and discontinue functions. Then, all scoring formulas

need to be modified to deal with a discrete and discontinue function. Also, some parts

or parameters will be neglected for the sake of computation complexity that may

affect the computational time which is a critical topic in real-time implementation of

the autonomous navigation algorithm.

2.2.3.1. Vehicle Trajectory Approximation

 A trajectory Equation (39) indicates that the speed s varies over the time used

in a trajectory integration process. Since the time used in one computational loop, i.e.

a computational time interval, will and short. Also, the objective of this research is to

deal with a low-speed navigation system. Then a constant speed over a finite time

interval that will be used in a finite trajectory integration should be a reasonable

approximation assumption. The approximated trajectory equation then states as

Equation (55).

 ()
()

()

()()

()()

0

0

0

cos

sin

t

t
x

t
y

s d
t

t s d
t

s d

   





   

 
+ 

   = =   
   +

  






ρ (55)

 To utilize the trajectory Equation (55) in software programming, a discretized

form of Equation (55) is more preferable. By replacing all true integration terms by a

 60

trapezoidal numerical integration, Equation (55) then results in the following

Equation (56).

 () 1

1

1 1

cos cos

sin sin2

i
xi j j

i j j

jyi j j

s  
 

  

+

+

= +

+   
= = −   

+   
ρ (56)

Where j is defined by Equation (57).

 () () ()()()1 1

1

2
2

j

j k k k k

k

s
        + +

=

= − + + (57)

Also, i is a discretized time of t interval defined by the following Equation (58).

 ()1i i t = −  (58)

In which a total time interval T of the trajectory is determined by Equation (59).

 ()1T N t= −  (59)

2.2.3.2. Discrete Linear Deviation Evaluation

 In a previous derivation of a continuous linear deviation scoring formula, the

definite integral over the trajectory length is performed. However, a linear deviation

scoring intends to set a parameter that indicates a measure of the total cartesian

distance between a trajectory and a given waypoint along such trajectory.

Consequently, instead of including the infinitesimal distance, i.e., Equation (46), this

distance will be neglected in the discrete version for linear scoring Equation (60).

1

N

l i i

i


=

= − ρ p (60)

Where ip is the closest point to a point iρ lying on a waypoint p and can be

determined by the following Equation (61).

 i j=p p (61)

where ()argmin ij 


= −ρ p .

2.2.3.3. Discrete Angular Deviation Evaluation

 In software implementation of the algorithm, the waypoint used will not be in

continuous function form since the waypoint will be recorded directly from a

 61

localization system. Therefore, performing a true differentiate of a waypoint to get the

tangential vector as in equation cannot be done. Also, applying a finite differentiate

will result in a diffuse tangential vector. Consequently, in this research both heading

angle and position will be recorded directly and will be used as a reference tangential

vector direction and a waypoint, respectively.

Similar to the previous section, the infinitesimal distance determined by Equation (46)

is neglected here. Thus, Equation (62) below defines an angular deviation scoring for

a discrete system.

1

N

a i i

i

h 
=

= − (62)

Where i represents the heading angle of trajectory at iρ and ih is a recorded heading

of the point closest to a point iρ lying on a waypoint p which can be determined by

the following Equation (63).

 i jh h= (63)

where ()argmin ij 


= −ρ p and h is a set of recorded heading corresponding to a

recorded waypoint.

2.2.3.4. Discrete Collision Distance Evaluation

 The obstacle scan data returned from a laser scanner device is a set of a

discrete point cloud of obstacles in range relative to the device position. To use this

set of obstacle points, again discretization of the evaluate equation need to be

performed first. Similar to a discrete linear deviation scoring Equation (60), the

cartesian distance between trajectory and a set of obstacle points is utilized. By

modifying Equation (60) for the usage in this context, we then obtained an equation

for discrete collision distance scoring as follows.

1

N

c i i

i


=

= − ρ λ (64)

Where iλ is the closest point to a point iρ which is a member of a set of obstacle

points λ and can be determined by Equation (65).

 62

 i j=λ λ (65)

As identical to previous sections.

 ()argmin ij 


= −ρ p (66)

2.2.3.5. Critical Obstacle Distance Evaluation

 In all previous sections, the trajectory used in all scoring equation is derived

from a particle model. However, in a practical situation, the vehicle cannot be

considered as a particle and represented by merely a single point. Depending on the

geometry of a vehicle used in a practical implementation, there must be a certain

boundary for the distance between a trajectory and an obstacle point such that this

boundary will act as a buffer area and preventing collision between vehicle and

obstacle.

 Similar to linear deviation and collision distance scoring, this critical obstacle

distance evaluation also uses the cartesian distance in determining the score. This

section utilized the same distance which was used in discrete collision distance

evaluation, however, some modification to Equation (60) is applied and result in the

following equation.

(), if min

0, otherwise

i i m
i I i N

m


 +  

 − 
= 


ρ λ
 (67)

Where m is the critical obstacle distance score and m is the critical obstacle

distance which is specified according to a vehicle geometry.

Figure 45 Critical obstacle distance and the buffer area

 63

 Figure 45 depicts the relationship between trajectory ρ , critical obstacle

distance m , and a buffer area, represented by a dot space enclosed by dashed lines.

The buffer area of 2 m wide resulted from Equation (67). If there was any obstacle

scan point located in this buffer area, the critical obstacle distance score belongs to the

trajectory ρ will be given by  . This infinity score causes its corresponding trajectory

to the lowest preferable track for a vehicle to follow, compare to other possible

trajectories.

2.2.3.6. Overall Discrete Score Combination

 All discrete scores, i.e. a discrete linear deviation, discrete angular deviation,

discrete collision distance, and critical obstacle distance score, can be combined the

same way as performing by Equation (54). However, since the additional critical

obstacle distance score is not included by Equation (54). Then, a new linear

combination equation of all discrete scores is presented by Equation (68).

  1

l

a

l a c

c

m

w w w










 
 
 =
 
 
 

 (68)

Where lw + , aw + , and cw − are the discrete linear deviation, discrete

angular deviation, and discrete collision distance weight, respectively.  is a final

score of a certain trajectory that indicates the suitability of its corresponding

trajectory.

2.2.4. Software Implementation

 Scored Predicted Trajectory software determines several trajectories

corresponding to the steering position command signals. These trajectories will later

be evaluated by means of scoring processes introduced above. Figure 46 describes the

algorithm details.

 64

Figure 46 Scored Predicted Trajectory algorithm

Inputs: Vehicle current position p , vehicle current heading angle  , vehicle

current steering angle  , vehicle current speed s , steering profile model ψ ,

denotes the inverse effective wheelbase  , steering position center  ,

corresponding discrete time space τ , route waypoint λ , route heading angle υ

, obstacle scan μ , score critical obstacle distance 0r , and weight w

Outputs: Trajectory scores corresponding to the input steering profile model

γ , and most suitable steering command signal 

Definitions:

1. η a set of predicted trajectory heading of ψ

2. iδ a set of initial steering angles of ψ

3. fδ a set of final steering angles of ψ

4. ρ a set of predicted trajectory

5. σ a score array of all predicted trajectory

Function:

1.
()argmin ,i i i

i

p    − δ

2.
()  argmin ,i i i p

i

q     −  −δ

3. ,p i p  δ

4. ,q i q  δ

5.

q p p q

t

p q

   

 

− + −


−

ψ ψ
δ

6. for every final steering angle index i in fδ do

7. ,0i η

8.
() ()(), 1 , , 1 , ,

0

2 ,
2

k

i k m m t j m t j m

m

s

k I k N

    + +

=

+

 − + + +

  

η δ δ

 65

Figure 46 Scored Predicted Trajectory algorithm (continued)

9. ,0i ρ p

10.

()
, 1 ,

, 1

0 , 1 ,

cos cos
,

sin sin2

k
i m i m

i k m m

m i m i m

s
k I k N 

+ +

+

= +

+ 
 − +    

+ 


η η
ρ p

η η

11.
0l 

12.
0a 

13.
0c 

14.
0m 

15. for every points index j in iρ do

16.
(),argmin i j k

k

  −ρ λ

17. ,l l i j   + −ρ λ

18. ,a a i j   + −η υ

19.
(),argmin i j k

k

  −ρ μ

20. ,c c i j   + −ρ μ

21.

, 0if

otherwise

i j

m

m

r




  − 
 



ρ μ

22. endfor

23.
 i l a c m   σ

24. i i γ σ w

25. endfor

26.
()argmin i

i

  γ

27. ,f   δ

28. return γ , 

 66

2.3. High-level Autonomous Navigation Software

 The speed-independent and speed-dependent autonomous navigation software

are developed in this section. First, speed-independent software is introduced. This

software benefits the tuning process since the traveling speed can be controlled

manually. Later, speed-dependent software is presented. This software is employed as

a complete path following autonomous navigation software.

2.3.1. Speed-independent Navigation System Algorithm

 After the Scored Predicted Trajectory is developed, a speed-independent

navigation system algorithm is now ready to be established. Figure 47 describes the

workflow of the designed speed-independent autonomous navigation software.

Figure 47 Speed-independent autonomous navigation software flowchart

 67

 The developed autonomous navigation software starts by initializing several

parameters used in the algorithm. These parameters are listed below.

❖ GNSS receiver configuration

❖ Laser scanner configuration

❖ Geographical coordinate to local coordinate conversion factors

❖ Steering profile model

❖ Score predicted trajectory algorithm parameters

o Score weights, including a linear deviation, angular deviation, and collision

distance weight

o Algorithm controlled loop time interval

o Forward predicted trajectory distance

❖ Exponential gain compensation algorithm parameters

o Initial gain increment

o Gain increment base

o Saturation boundary

 A software enters the repeated controlled loop after initialized. This loop

begins with retrieving a vehicle speed by request from a vehicle cruise control system.

Then, the vehicle's geographical position is known by measuring from a GNSS

receiver. Following by scanning the obstacle using a laser scanner, then all

information needed is ready for a navigation algorithm.

 All sensed inputs obtained by the previous step is then applied to the scored

predicted trajectory algorithm. The result of this algorithm is the most suitable

command steering which may be directly used as a command signal sent to a car’s

steering control system. However, since the steering calibration is done under a static

condition. Since the character and response of the steering control system will be

different from the calibration result when used in a dynamic environment. Then, the

gain compensation is required to overcome this dynamic effect. Here, the Exponential

Gain Compensation algorithm is introduced to solve this problem. A detail of the

algorithm will be presented later in this section.

 After the gain compensation is applied to the results from the navigation

algorithm, the result of gain compensation then proceeds to the steering control

system. The software display then illustrates all predicted trajectories and their

 68

corresponding scores to the user. Eventually, the software is idly waiting for the

controlled loop time interval to be reached and prepare to be terminated by the user.

2.3.2. Exponential Gain Compensation

 Exponential Gain Compensation, as implied by the name, is the algorithm

used to determine the compensation gain for the steering command signal resulted

from the main navigation algorithm. The compensation gain is defined by the

following Equation (69).

 ()     = − + (69)

Where   is the compensated steering command signal,  is the steering command

signal compensation gain,  is the steering command signal result from a navigation

algorithm, and  is the current steering position of a vehicle.

 The compensation gain is exponentially changed for every single controlled

loop. The value of this gain is limited to a certain boundary by a user’s predefined

setting. The algorithm for Exponential Gain Compensation is described by Figure 48

below.

 After the gain compensation is obtained from the algorithm presented in

Figure 48, it is then substituted into equation to determine the final steering command

signal, i.e. the compensated steering command signal. Finally, this command signal is

then sent to the low-level steering controller. Besides, the gain transition and gain

increment that also returned from the algorithm will later be used for the next

calculation loop.

Figure 48 Exponential Gain Compensation algorithm

Input: Previous compensation gain   , previous gain increment  , previous

gain transition   , increment base  , current steering angle  , expected

steering angle  , lower saturation boundary l , and upper saturation

boundary u

Output: Compensation gain  , gain increment  , and gain transition 

 69

Figure 48 Exponential Gain Compensation algorithm (continued)

Definitions:

A previous gain transition   is defined as a transition direction of a previous

loop’s compensation gain, i.e. increase, decrease, or remain the same.   is

positive when    in a previous calculation loop, and negative when

   in a previous calculation loop, otherwise 0  = .

Expected steering angle  is the steering angle forecasted by a previous

control loop from a known control loop time interval

Function:

1.    −

2. if 0   then

3.  

4. else if 0   then

5.








6. else

7. 0 

8.    +

9. endif

10. if u  then

11. u 

12.  

13. else if l  then

14. l 

15.  

16. else

17.  

18. return  ,  , 

 70

2.3.3. Speed-dependent Autonomous Navigation Algorithm

 The previous topic deals with a speed-independent autonomous navigation

system only. However, to include the speed control to the algorithm, some

modifications may be applied to a speed-independent system. Also, the user override

mode is included in this algorithm.

 In controlling vehicle speed, the speed map is introduced. As in recording a

waypoint, the speed map can be done in the same manner, i.e. by directly record a

vehicle odometry speed corresponding to a certain recorded waypoint. A controlled

speed is then determined by the following Equation (70) and directly sent to a vehicle

cruise control system.

 c js v= (70)

Where ()argmin ij 


= −ρ p which ρ is a vehicle current position and p is a

waypoint. cs is a controlled speed, and v is a speed map corresponding to a waypoint

p .

 For the user override mode, the condition to engage this mode is determined

by the scored predicted trajectory algorithm output, i.e. the user override mode

engaged whenever the trajectory scores returned from the algorithm is all infinity.

Equation (71) states the user override mode condition and Figure 49 presents the

speed-dependent autonomous navigation software’s workflow.

 1[...] N=   γ (71)

Where γ is a trajectory score array of N trajectories returned from the scored

predicted trajectory algorithm.

 71

Figure 49 Speed-dependent autonomous navigation software flowchart

 72

3. Geographic Conversion Factor Calibration

 The GNSS receiver generally return the measured position in a geographical

angular coordinate, however, the designed software needs a real-time position in

linear cartesian coordinate. Therefore, the conversion formula must be constituted so

that the position returned from the GNSS receiver can be utilized in the developed

software. Even though, a distance between two points on a spherical surface can be

determined by the haversine formula by given 2 spherical coordinate positions.

However, to use that formula one needs to know a certain radius of the sphere. In

determining the distance between two points on the earth’s surface, given a longitude

and latitude of those points, the haversine formula can be applied along with a known

earth radius. Since the earth’s radius located at the testing ground is not known

exactly, then the conversion factor used in this research is determined by empirical

experimentation. The procedure begins with recording a longitude and latitude

position from the GNSS receiver and then brought to analyze mathematically to get a

correlation between a geographical coordinate and a linear distance on the earth’s

surface.

 In collecting data, a geographical coordinate of a certain circular path is

recorded via the GNSS receiver. As shown by dots in Figure 50, a true circular path of

radius 1.16 meters recorded from the testing ground appears to be an elliptic path

when represented by geographical coordinate. Consequently, the ellipse Equation (72)

is selected as a model for a least-square regression of the centralized circular path.

2 2 1 + = (72)

Where  is longitude in degree,  is latitude in degree,  and  are regression

analysis coefficients which are determined by Equation (73).

 ()
1

T T




− 
= 

 
A A A b (73)

Where
2 2  =

 
A and 1=b , which

2 and
2 are 1m vectors of m collected

circular path’s longitude and latitude, respectively.

By substitute circular path’s longitude and latitude into Equation (73), the regression

coefficients can be obtained as shown by Equation (74).

 73

8782319993.5

9228460728.4



=

=
 (74)

The earth’s surface actual path should follow a 1.16 meters radius circle.

Consequently, a circle equation with a 1.16 meters radius will be used as an exact

path for a meter coordinate system, as shown by Equation (75), where x and y are

position of points in a circular path.

2 2 21.16x y+ = (75)

Assuming that the longitude to meter and latitude to meter conversion factor is

constant everywhere for a testing ground, which is considered to be an infinitesimal

area compare to the earth’s surface, the longitude and latitude to meter conversion

factor can be defined by Equation (76) and Equation (77), where xf and yf are longitude

to meter and latitude to meter conversion factor, respectively.

 xx f = (76)

 yy f = (77)

By substitute Equation (76) and Equation (77) into Equation (75) and comparing the

resulted equation with Equation (72), we can state the correlation between conversion

factors and regression coefficients as Equation (78) and Equation (79).

 10861 5.1 7.3 346 24xf = = (78)

 1.16 111456.76004yf = = (79)

Note that xf and yf are in meters per longitudinal degrees and meters per latitudinal

degrees, respectively.

 74

Figure 50 Recorded circular path and ellipse least square regression

 75

CHAPTER V

SYSTEM EVALUATION EXPERIMENT

1. Experiment Setup

 The experiment takes place after the prototype navigation software is

completely developed. Figure 51 depicts the Graphical User Interface (GUI) of this

software showing inside are the waypoint, current GNSS position, detected obstacle

scan, and the predicted trajectories. Predicted trajectories are displayed in different

colors corresponding to their scores determined by the scored predicted trajectory

algorithm. The enlarged predicted trajectories display is shown in Figure 52.

Figure 51 Prototype navigation software’s graphical user interface

Figure 52 Enlarged predicted trajectories display

 76

 Before performing the experiment using a real vehicle, the algorithm is tested

using the developed simulator software. This simulator is designed base on the

assumption that the car will exactly follow the selected predicted trajectory. The result

of testing the algorithm with a simulator code is the approximated controlled loop

time interval, which is found playing an important role in autonomous path following

characteristics, and the algorithm score weights.

 The test vehicle is equipped with a 2D laser scanner and the GNSS receiver.

As shown in Figure 53, 2 receiver antennas are installed along the longitudinal

direction of the car. The primary antenna is installed at the same horizontal position as

the rear axle, providing the position according to the assumption used in developing

the scored predicted trajectory algorithm. The secondary antenna is installed 1 meter

apart from the primary antenna toward the front of the car.

Figure 53 Test vehicle with the 2D laser scanner and the GNSS receiver installed

 The route by which the test autonomous vehicle supposed to follow, i.e. the

waypoint, is generated by manually drive and record the GNSS position along the

desired path. In this experiment, the test route is set to be a close loop track located in

Chulalongkorn University campus as shown in Figure 54. Furthermore, the heading

angle along the desired route corresponding to the waypoint is also recorded. Note

that the test experiment was performed by nighttime to avoid the undesired situation

from daytime traffics inside the campus. The parameters resulted from tuning during

 77

the experiment compared to the result from simulator tuning are shown in Table 4.

Note that the dimensions of parameters in Table 4 are the same as introduced in

previous sections.

Figure 54 Test track located in Chulalongkorn University

 The experiment is divided into 2 sections, the first section is the evaluation test

of the autonomous path following navigation system only, and the second deals with

the obstacle avoidance system only. The first section on the path following evaluation

is conducted first to determine the suitable tuned score weights which are prerequisite

parameters for the obstacle avoidance evaluation section.

2. Autonomous Path Following Navigation Evaluation

 Since the test track is a close loop route, then the starting point can be

arbitrarily chosen. From the starting point, the test vehicle will be autonomously

navigated along the recorded waypoint without any intervention from the

experimenter, however, still sit in a car ready to take over whenever encounter an

emergency situation. The experiment is performed at 2 speeds, i.e. 10 and 15

kilometers per hour. The parameters used by the algorithm in the software are also

shown in Table 4.

 78

Table 4 Parameters in the designed autonomous software

Parameter class Parameter name
Value

Experiment Simulator

Device parameters

longitude conversion factor 108657.3243 -

latitude conversion factor 111456.7600 -

inverse effective wheelbase 4.98E-05 -

steering position center -0.43 -

Exponential gain

compensation

algorithm parameters

initial gain increment 0.005 -

increment base 1.1 -

Scored predicted

trajectory algorithm

parameters

linear deviation score weight 1.5 1.5

angular deviation score weight 0.1 0.5

collision distance score weight -0.1 -0.1

controlled loop time interval 0.2 0.2

predicted trajectory length 10 10

 The actual paths recorded from the test car which autonomously navigated at

the speed of 10 and 15 kilometers per hour with the corresponding waypoint are

shown by Figure 55 and Figure 56, respectively. The autonomous navigation heading

angle compares to the waypoint heading angle of the 10 and 15 kilometers per hour

are shown in Figure 57 and Figure 58. A linear deviation is defined as a distance to

the closest point on the waypoint from the test vehicle's actual position. The

histogram of the linear deviation of the 10 and 15 kilometers per hour track are

illustrated by Figure 59 and Figure 60. Also, an angular deviation is defined as a

difference between the test car actual heading and navigation heading of the point on

the waypoints closest to the car actual position. The mathematical representation of

linear and angular deviations are described by Equation (80) and Equation (81),

respectively.

 ()minl


= −
i w

ρ i (80)

 a h = − (81)

 79

Where l and a denote the linear and angular deviation, respectively. w is the

waypoint and ρ is the test vehicle's actual position. h is the actual heading and

j = where ()argmin i
i

j = −ρ w .

 Considering Figure 55 to Figure 58, the developed autonomous system can

perfectly navigate the car tracking almost exactly every point on the test waypoints.

However, the actual heading is lightly fluctuating around the waypoint’s heading

angle. This small fluctuation implies that the real scenario, while the autonomous

system is engaged, is somehow jerky and may be uncomfortable for the passenger in

the test vehicle. According to Figure 59 and Figure 60, arithmetic means of recorded

linear deviation of 10 and 15 kilometers per hour track are 0.13 and 0.20 meters.

These linear deviations are considered to be relatively small compare to the operation

scale, i.e. the typical lane width which is about 3.6 meters. By using this figure, then

the linear deviation is merely 3.61 and 5.56 percent of a typical lane width for 10 and

15 kilometers per hour track, respectively. Also, according to Figure 61 and Figure

62, 95 percent of the angular deviation sample falls between -2.65 and 1.85 degrees in

10 kilometers per hour track and between -4.02 and 4.04 degrees in 15 kilometers per

hour track, which are acceptable to be used in the objective application.

 Moreover, the navigation speed also affects the tracking characteristics. In 15

kilometers per hour track, the standard deviation of the linear deviation is 0.12 meters,

which is 1.68 times of one from the 10 kilometers per hour track which is 0.07 meters.

Also, a linear deviation increase at higher traveling speed, from 1.13 degrees in 10

kilometers per hour track to 2.02 degrees in 15 kilometers per hour track. The original

cause of this is the gradual increase of the vehicle dynamics effect. At high speed, the

vehicle model developed in the previous section based on a vehicle kinematic model

which is utilized in the scored predicted trajectory is not accurate and will completely

fail over a certain speed.

 80

Figure 55 Autonomous path following trace at 10 kilometers per hour

Figure 56 Autonomous path following trace at 15 kilometers per hour

 81

Figure 57 Autonomous path following heading angle at 10 kilometers per hour

Figure 58 Autonomous path following heading angle at 15 kilometers per hour

 82

Figure 59 Linear deviation histogram of 10 kilometers per hour track

Figure 60 Linear deviation histogram of 15 kilometers per hour track

 83

Figure 61 Angular deviation histogram of 10 kilometers per hour track

Figure 62 Angular deviation histogram of 15 kilometers per hour track

 84

3. Obstacle Avoidance Evaluation

 In this section, the path-following autonomous system is engaged by using the

tuned parameters resulting from the previous experiment. Initially, the obstacle is

placed in the middle of the waypoint, hinder the test vehicle from tracing such

waypoint. Then, the test vehicle is launched, and autonomously follows the waypoint

towards the obstacle.

 Figure 63 shows the recorded position of the obstacle using a GNSS receiver.

The recorded data scatter around a certain area as shown in the figure. However, such

an area is relatively small compared to the application scale, i.e. about 4 centimeters

in a horizontal direction and 2 centimeters in a vertical direction. The centroid of

recorded data is employed to represents the position of the obstacle. Moreover, the

obstacle shape is considered to be a circle with a diameter of 0.4 meters.

 The experiment is conducted twice, both using the vehicle speed of 15

kilometers per hour. The trace record of 2 experiments is shown in Figure 64 and

Figure 65. It can be seen from these figures that in the beginning, the test car was

tracing the waypoint moving from the right side of the figure toward the left. Then,

the test car detected the obstacle and avoided the impending collision by refusing to

follow the waypoint and steered itself toward its left. Thereafter, when the obstacle

disappears or does not obstruct the car from tracing the waypoint, the test car then

autonomously converged to the waypoint again as shown in by the left portion of

these figures.

 Figure 66 and Figure 67 depict the linear deviation from the waypoints of both

experiments. These figures affirm that the collision avoidance algorithm does work

properly. Considering both figures, the test vehicle initially tracing the waypoint by

keeping the linear deviation to the waypoint to be about 0.15 and 0.2 meters in the

first and second experiment, respectively. Subsequently, at about 10 meters away

from the starting point, the linear deviation starts increasing imply that the developed

autonomous navigation algorithm realizes the impending collision and starts ignoring

to follow the waypoint. Eventually, the test car merges with the waypoint again

around 35 meters away from the beginning.

 Figure 68 and Figure 69 show a displacement to the obstacle of the first and

second experiment, respectively. The shortest displacement to the obstacle of the first

 85

and second experiment are 1.19 and 1.22 meters. Figure 70 and Figure 71, obtained

by combining Figure 66 and Figure 67 with the corresponding Figure 68 and Figure

69, shows the plot of linear deviation against displacement to the obstacle of the first

and second experiment, respectively. According to these figures, the obstacle

avoidance algorithm actives when the obstacle is about 10 meters away from the test

vehicle, and the linear deviation increases the same time the displacement to obstacle

decrease.

Figure 63 Recorded obstacle position

 86

Figure 64 Autonomous path following with obstacle avoidance result (1st experiment)

Figure 65 Autonomous path following with obstacle avoidance result (2nd

experiment)

 87

Figure 66 Linear deviation resulted from obstacle avoidance (1st experiment)

Figure 67 Linear deviation resulted from obstacle avoidance (2nd experiment)

 88

Figure 68 Displacement to obstacle at any instance (1st experiment)

Figure 69 Displacement to obstacle at any instance (2nd experiment)

 89

Figure 70 Linear deviation versus displacement to obstacle (1st experiment)

Figure 71 Linear deviation versus displacement to obstacle (2nd experiment)

 90

4. Discussion

 In low-speed application, the path following algorithm with the obstacle

avoidance function, i.e. the scored predicted trajectory, gives a satisfactory result.

However, unwanted jerky driving still presents when the higher speed is attempted,

lead to an uncomfortable ride for the passenger. This problem can be solved by

introducing the more sophisticated vehicle model, including all involved dynamics

systems, to the algorithm so that the more accurate predicted trajectory can be

determined. Still, only the exponential gain compensation deals with a steering system

model deviation due to changes in the operating speed. Then, the applicable range of

this system is limited by the deviation in a vehicle model since no model correction is

applied in this part of the system. Also, in determining the possible trajectories, the

speed is assumed constant at one certain speed, i.e. current measured speed. If

different speeds are included in the algorithm, then more plausible trajectories can be

determined, inducing more possibility to encounter the more suitable trajectory.

 The angular deviation score weight plays an important role in controlling the

traveling direction. By setting this weight to be zero, the traveling direction defined

by the waypoint heading angle is disregarded, the car then can trace the waypoint in

either same or oppose the prescribed direction. However, setting the angular deviation

score weight too high cab results in a constant offset distance to the waypoint or even

leaving the waypoint since the predicted trajectory with a high angular deviation score

will overcome the trajectory with a high linear deviation score which leads the car

back to the waypoint. A suitable angular deviation score weight will ensure the

waypoint tracing smoothness, thus increase ride quality.

 According to Figure 70 and Figure 71, the obstacle avoidance function seems

to overshadow the waypoint tracing algorithm at about 10 meters away to the

obstacle. This 10-meter distance relates to the predicted trajectory length that is set to

be 10 meters in the experiment. This distance can be reduced such that a reasonable

forward-collision distance can be achieved. Moreover, the least displacements to the

obstacle of the first and second experiment, which are 1.19 and 1.22 meters,

respectively, imply that the algorithm operate properly since the critical obstacle

distance, described in the previous section, is set to be 1.0 meters and the obstacle

used in this experiment has a width of 0.2 meters.

 91

 This autonomous navigation algorithm can be improved by revising some

parts of the algorithm. For example, in the obstacle avoidance part, it has been pointed

out that the algorithm suddenly changes its priority whenever the predicted trajectory

length is reached. Here, if the continuous function is applied to the critical obstacle

distance scoring procedure to obtain the suitable forward-collision distance.

Furthermore, the linear deviation variant function can be introduced to the angular

deviation scoring process to eliminate the constant offset from a waypoint and prevent

the car from leaving the waypoint.

 92

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

1. Conclusions

 The three main objectives have been done in this research. The first objective

is to develop a low-level control system, including the steering control system and the

speed control system. Second, the high-level controller software for the autonomous

path-following navigation system using the Global Navigation Satellite System

(GNSS) was developed. The third objective that has been accomplished is the

development of the obstacle avoidance software.

 First of all, the ultra-small electric vehicle, i.e. the Toyota COMS, has been

modified for a speed control system and a steering control system. In the speed

control modification, the existed braking system was modified by introducing a

designed brake actuator module to the original brake line in series. This modified

brake system allows both driver and autonomous system to apply pressure to a vehicle

brake line. Also, the accelerator pedal has been modified allowing the autonomous

system to control the vehicle acceleration whenever required. The steering control

system was also installed in this low-level modification. At the moment, the modified

vehicle was ready to be autonomously navigated using the high-level navigation

software. Then, the high-level autonomous navigation using GNSS was developed

base on the kinematic model of the vehicle. The developed algorithm for path

following navigation has been named the Scored Predicted Trajectory and

implemented in the high-level software. The algorithm deals with both waypoint

tracing and obstacle avoidance tasks at the same time, thus satisfies both the second

and the third objective stated above. Furthermore, to cope with a model change

impacted by vehicle speed, the Exponential Gain Compensation algorithm is

developed and implemented to the high-level software. Eventually, the evaluation

experiment was performed. The test site was located in Chulalongkorn University

campus. The test track was set to be one the close-loop road inside the campus. The

experiment on path-following performance evaluation was conducted by launching

the test car, by which the developed software was deployed, to the test track. The

 93

result shows satisfactory performance with an average linear deviation from the

waypoint of 0.07 meters when the speed is 10 kilometers per hour and 0.12 meters

when the speed is 15 kilometers per hour. The desirable angular deviation of about 3

degrees in 10 kilometers per hour test and about 4 degrees in 15 kilometers per hour

test resulted from this experiment as well. The experiment on obstacle avoidance was

performed later. In the experiment, the obstacle was placed in the middle of the

waypoint. Then, the test car was launched and autonomously navigated toward the

obstacle. The result shows that the test vehicle deals with the obstacle that blocks the

waypoint by performing a steering evasive maneuver, as expected, keeping a

minimum distance of 1.2 meters away from the obstacle which is the exact value

configured in the navigation software.

 From all mentioned above, the concept of using GNSS, with the Real-Time

Kinematic (RTK) technique, as a sole localization system for the autonomous vehicle

was proved that can work perfectly, even some portions of the route are covered by

trees or surrounded by buildings. However, the obstacle sensing device, which is a 2D

laser scanner in this research, still vital to the collision avoidance system.

2. Recommendations

 The vehicle model used in the algorithm is the key to high-speed application

performance. Thus, deploying a more sophisticated vehicle model will extend the

application range to a higher speed than 15 kilometers per hour. Also, some parts of

the developed high-level software can be accelerated by applying the parallel

computing technique. For instance, the exponential gain compensation which can be

accelerated by the parallel computing technique will give a fast response to a change

in vehicle speed when a high sample rate is utilized.

 Besides, this research employs an expensive 2D laser scanner. However, since

the developed system is intended to be used in a low-speed application, then an

expensive laser scanner can be replaced by a lower class one, therefore, increasing the

potential to be commercialized for use in the controlled environment, e.g. a low-

density residential area, factory, university campus, etc.

REFER ENCES

REFERENCES

1. SAE, Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle

Automated Driving Systems. 2014, SAE.

2. Tom M. Gasser, D.W., BASt-study: Definitions of Automation and Legal Issues

in Germany. 2012.

3. Forum, i., Automation in Road Transport. 2013.

4. Rajamani, R., Vehicle Dynamics and Control. 2012, New York: Springer.

5. Hayashi, R., et al., Autonomous collision avoidance system by combined control

of steering and braking using geometrically optimised vehicular trajectory.

Vehicle System Dynamics, 2012. 50(sup1): p. 151-168.

6. Larbwisuthisaroj, S., The Vehicle Steering and Braking Guidance using Vehicle

Dynamics Approach for Forward Collision Warning System. Atrans Symposium

on Transportation for a Better Life: Safe and Smart City, 2016.

7. Madhavan, R. and H.F. Durrant-Whyte, Natural landmark-based autonomous

vehicle navigation. Robotics and Autonomous Systems, 2004. 46(2): p. 79-95.

8. Bais, A., R. Sablatnig, and J. Gu. Single landmark based self-localization of

mobile robots. in The 3rd Canadian Conference on Computer and Robot Vision

(CRV'06). 2006.

9. Kartashov, D., A. Huletski, and K. Krinkin. Fast artificial landmark detection

for indoor mobile robots. in 2015 Federated Conference on Computer Science

and Information Systems (FedCSIS). 2015.

10. Salahuddin, M.A., et al. An efficient artificial landmark-based system for indoor

and outdoor identification and localization. in 2011 7th International Wireless

Communications and Mobile Computing Conference. 2011.

11. Yang, G., G. Anderson, and E. Tunstel. A RFID Landmark Navigation Auxiliary

System. in 2006 World Automation Congress. 2006.

12. Yosuke, S., et al. Machine learning approach to self-localization of mobile

robots using RFID tag. in 2007 IEEE/ASME international conference on

advanced intelligent mechatronics. 2007.

13. Collins, B.H.-W.L., Global Positioning System. 5th ed. 2001, Wien, New York:

Springer-Verlag Wien GmbH.

14. Zhu, N., et al., GNSS Position Integrity in Urban Environments: A Review of

Literature. IEEE Transactions on Intelligent Transportation Systems, 2018: p. 1-

17.

15. Jackson, J., B. Davis, and D. Gebre-Egziabher. A performance assessment of

low-cost RTK GNSS receivers. in 2018 IEEE/ION Position, Location and

Navigation Symposium (PLANS). 2018.

16. Ashley W. Stroupe, K.S., and Tucker Balch. Constraint-Based Landmark

Localization. in RoboCup 2002: Robot Soccer World Cup VI. 2002. Springer-

Verlag Berlin Heidelberg New York.

17. Pakdaman, M., M.M. Sanaatiyan, and M.R. Ghahroudi. A line follower robot

from design to implementation: Technical issues and problems. in 2010 The 2nd

International Conference on Computer and Automation Engineering (ICCAE).

2010.

18. Bajestani, S.E.M. and A. Vosoughinia. Technical report of building a line

follower robot. in 2010 International Conference on Electronics and Information

 95

Engineering. 2010.

19. Arabi, A.A., et al. Autonomous Rover Navigation Using GPS Based Path

Planning. in 2017 Asia Modelling Symposium (AMS). 2017.

20. Engin, M. and D. Engin. Path planning of line follower robot. in 2012 5th

European DSP Education and Research Conference (EDERC). 2012.

21. Fox, D., W. Burgard, and S. Thrun, The dynamic window approach to collision

avoidance. IEEE Robotics & Automation Magazine, 1997. 4(1): p. 23-33.

22. Awange, J., Environmental Monitoring using GNSS. 2012.

23. POS LVX DUAL GNSS-INERTIAL SOLUTION FOR HIGH-ACCURACY

POSITIONING AND ORIENTATION ON AUTONOMOUS GROUND

VEHICLES. 2018, Applanix, A Trimble Company.

24. LMS5xx LASER MEASUREMENT SENSORS 2015, SICK AG.

25. LEGION Y530 (15) LAPTOP GAMING, REFINED. 2018, Lenovo.

26. COMS P.COM/B.COM SERVICE MANUAL. 2017, TOYOTA AUTO BODY.

27. Mediceo introduces ultra-compact mobility at a new logistics base. 2013 [cited

2020; Available from: https://www.logi-today.com/69770.

https://www.logi-today.com/69770

APPENDICES

 97

APPENDIX A

NAVIGATION SENSORS

POS LVX dual GNSS-inertial solution for high-accuracy positioning and

orientation on autonomous ground vehicles[23]

Figure 72 POS LVX dual GNSS-inertial[23]

Technical Specifications

❖ Advanced Applanix IN-Fusion™ GNSS-Inertial integration technology

❖ Solid-state MEMS inertial sensors with Applanix SmartCal™ compensation

technology

❖ Advanced Trimble GNSS survey technology

❖ Position antenna based on 336 Channels Maxwell 7 chip:

o GPS: L1 C/A, L2E, L2C, L5

o BeiDou B1, B2, B31

o GLONASS: L1 C/A, L2 C/A, L3 CDMA2

o Galileo3: E1, E5A, E5B, E5AltBOC, E62

o IRNSS L5

o QZSS: L1 C/A, L1 SAIF, L1C, L2C, L5, LEX

o SBAS: L1 C/A, L5

o MSS L-Band: OmniSTAR, Trimble RTX

❖ Vector Antenna based on second 336 Channel Maxwell 7 chip:

o GPS: L1 C/A, L2E, L2C, L5

o BeiDou B1, B2, B31

 98

o GLONASS: L1 C/A, L2 C/A, L3 CDMA2

o Galileo3: E1, E5A, E5B, E5AltBOC, E62

o IRNSS L5

o QZSS: L1 C/A, L1 SAIF, L1C, L2C, L5, LEX

❖ High precision multiple correlator for GNSS pseudorange measurements

❖ Advanced RF Spectrum Monitoring and Analysis

❖ Unfiltered, unsmoothed pseudorange measurements data for low noise, low

multipath error, low time domain correlation and high dynamic response

❖ Very low noise GNSS carrier phase measurements with <1 mm precision in a

1 Hz bandwidth • Proven Trimble low elevation tracking technology

❖ 100 Hz real-time position and orientation output

❖ IMU data rate 200 Hz

❖ Navigation output format: ASCII (NMEA-0183), Binary (Trimble GSOF)

❖ Supported Reference input: – CMR, CMR+, sCMRx, RTCM 2.1, 2.2, 2.3, 3.0,

3.1, 3.2 • Support for POSPac MMS post-processing software (sold

separately)

❖ No export permit required

❖ Supports Fault Detection & Exclusion (FDE), Receiver Autonomous Integrity

Monitoring (RAIM)

Performance Specification

Table 5 Performance without GNSS outages

Performance SPS DGPS RTK

Position (m)
1.5 H 0.1 H 0.02 H

3.0 V 0.5 V 0.05 V

Roll & pitch (deg) 0.04 0.03 0.03

True heading (deg) 0.12 0.09 0.09

 99

Table 6 Performance with 1 km or 1 minute GNSS outages

Performance SPS DGPS RTK

Position (m)
2.0 H 2.0 H 1.0 H

5.0 V 3.0 V 2.0 V

Roll & pitch (deg) 0.09 0.09 0.09

True heading (deg) 0.35 0.35 0.30

LMS511 Laser measurement sensor[24]

Figure 73 LMS511 Laser measurement sensor[24]

Table 7 LMS511 laser measurement sensor technical specifications

Specification Detail

Field of application Outdoor

Version Mid-Range

Variant Lite

Resolution power Standard Resolution

Light source Infrared (905 nm)

Laser class 1 (IEC 60825-1:2014) EN 60825-1:2014

Field of view 190 °

Scanning frequency 25 Hz / 35 Hz / 50 Hz / 75 Hz

Angular resolution 0.25°, 0.5°, 1°

 100

Table 7 LMS511 laser measurement sensor technical specifications (continued)

Specification Detail

Heating Yes

Operating range 80 m

Max. range with 10 % reflectivity 40 m

Spot size 11.9 mrad

Amount of evaluated echoes 2

Table 8 LMS511 laser measurement sensor performance specification

Performance Detail

Fog correction Yes

Response time ≥ 13 ms

Detectable object shape: Almost any

Systematic error

± 25 mm (1 m ... 10 m)

± 35 mm (10 m ... 20 m)

± 50 mm (20 m ... 30 m)

Statistical error

± 14 mm (20 m ... 30 m)

± 6 mm (1 m ... 10 m)

± 8 mm (10 m ... 20 m)

Integrated application Field evaluation

Number of field sets 4 fields

Simultaneous processing cases 4

 101

APPENDIX B

PROCESSING UNIT

Lenovo Legion Y530‑15ICH[25]

Figure 74 Lenovo Legion Y530‑15ICH[25]

Table 9 Lenovo Legion Y530‑15ICH technical specification

Specification Detail

Manufacturer Lenovo

Model Legion Y530‑15ICH

Central Processing Unit (CPU) Intel(R) Core(TM) i5-8300H 2.30GHz

Random-Access Memory (RAM) 20.0 GB

Operating System Windows 10 Home 64bit

 102

APPENDIX C

CAR SPECIFICATION

Toyota COMS ZAD-TAK30-DS[26]

Figure 75 Toyota COMS ZAD-TAK30-DS[27]

Table 10 Toyota COMS ZAD-TAK30-DS general specification

Specification Detail

Manufacturer Toyota

Model ZAD-TAK30-DS

Curb weight (kg) 420

Gross vehicle weight (kg) 475

Fuel type Electricity

Driving range (km) 50

Minimum turning radius (m) 3.2

Maximum payload (kg) 30

Maximum passengers 1

Total length (mm) 2395

Total width (mm) 1095

Total height (mm) 1495

 103

Table 10 Toyota COMS ZAD-TAK30-DS general specification (continued)

Specification Detail

Wheelbase (mm) 1530

Track width (mm) 930 (front), 920 (rear)

Tire 145/70R12 69Q (S)

Traction battery 6 Lead-acid batteries 12V 52Ah

Auxiliary battery 1 Lead-acid battery 12V 17Ah

Charging times (hr) 6

AC charging voltage (V) 100

AC charging current (A) 9.5

Table 11 Toyota COMS ZAD-TAK30-DS motor specification

Specification Detail

Type Permanent magnet synchronous motor

Typical voltage (V) 72

Typical power (kW) 0.59

Controller Transistor inverter

Maximum power (kW) 5.0 / 1200 ~ 1400 rpm

Maximum torque (Nm) below 40 / 1200 rpm

Table 12 Toyota COMS ZAD-TAK30-DS steering mechanism specification

Specification Detail

Steering wheel diameter (mm) 350

Gear system Rack and pinion

Steering angle
38° (inner)

36° (outer)

Lock mechanism Steering wheel lock

 104

Table 13 Toyota COMS ZAD-TAK30-DS braking mechanism specification

Specification Detail

type
hydraulic drum (front)

hydraulic drum (rear)

Master cylinder inner diameter (mm) 17.4

Wheel cylinder inner diameter (mm)
17.4 (front)

17.4 (rear)

Brake fluid grade DOT3

 105

APPENDIX D

DEVELOPED MASTER CYLINDER

Figure 76 Master cylinder assembly view

 106

APPENDIX E

LOW-LEVEL CONTROLLER CIRCUIT

Figure 77 Low-level controller circuit diagram

 107

Figure 77 Low-level controller circuit diagram (continued)

 108

Figure 78 Low-level controller printed circuit board component outline

 109

Figure 79 Low-level controller printed circuit board top layer

 110

Figure 80 Low-level controller printed circuit board bottom layer

 111

APPENDIX F

SOURCE CODE

Table 14 Electronic system controller source code (Arduino IDE)

Line Code Line Code
1 const byte REL_PIN[14] = {4, 33,

32, 14, 25, 26, 27, 15, 13, 5, 18,

19, 21, 22};

104 else if (input_buffer[2] == 2) {

2 const byte SEL_PIN = 23; 105 digitalWrite(REL_PIN[3], HIGH);

3

106 digitalWrite(REL_PIN[4], HIGH);

4 const byte DESCRIPTION_MSG[9] =

{71, 82, 83, 87, 67, 84, 82, 2,

44};

107 digitalWrite(REL_PIN[5], LOW);

5 const byte INVALID_MSG[9] = {71,

82, 73, 78, 86, 76, 68, 2, 22};

108 }

6

109 else if (input_buffer[2] == 3) {

7 byte SYSTEM_STATUS[10] = {0, 0, 0,

0, 0, 0, 0, 0, 0, 0};

110 digitalWrite(REL_PIN[3], LOW);

8

111 digitalWrite(REL_PIN[4], LOW);

9 void setup() { 112 digitalWrite(REL_PIN[5], LOW);

10 pinMode(SEL_PIN, OUTPUT); 113 }

11 for (int i = 0; i < 14;

i++)pinMode(REL_PIN[i], OUTPUT);

114 }

12

115 else if (input_buffer[1] == 3) {

13 digitalWrite(SEL_PIN, HIGH); 116 if (input_buffer[2] == 0) {

14 for (int i = 0; i < 14;

i++)digitalWrite(REL_PIN[i], HIGH);

117 digitalWrite(REL_PIN[6], HIGH);

15

118 }

16 Serial.begin(57600); 119 else if (input_buffer[2] == 1) {

17 Serial.setTimeout(5); 120 digitalWrite(REL_PIN[6], LOW);

18 } 121 }

19

122 }

20 void loop() { 123 else if (input_buffer[1] == 4) {

21 byte input_buffer[5]; 124 if (input_buffer[2] == 0) {

22 byte output_buffer[6]; 125 digitalWrite(REL_PIN[7], HIGH);

23 byte status_buffer[14]; 126 digitalWrite(REL_PIN[8], HIGH);

24 short input_checksum; 127 }

25 short output_checksum; 128 else if (input_buffer[2] == 1) {

26 short status_checksum; 129 digitalWrite(REL_PIN[7], LOW);

27 short receive_checksum; 130 digitalWrite(REL_PIN[8], HIGH);

28

131 }

29 Serial.readStringUntil('G'); 132 else if (input_buffer[2] == 2) {

30 if (Serial.available()) { 133 digitalWrite(REL_PIN[7], LOW);

31 Serial.readBytes(input_buffer, 8); 134 digitalWrite(REL_PIN[8], LOW);

32 input_checksum = 71 +

input_buffer[0] + input_buffer[1] +

input_buffer[2] + input_buffer[3] +

input_buffer[4] + input_buffer[5];

135 }

33 receive_checksum = (input_buffer[6]

<< 8) | input_buffer[7];

136 }

 112

34 if (input_checksum ==

receive_checksum) {

137 else if (input_buffer[1] == 5) {

35 if (input_buffer[0] == 73) { 138 if (input_buffer[2] == 0) {

36 if (input_buffer[1] == 0) { 139 digitalWrite(REL_PIN[9], HIGH);

37 Serial.write(DESCRIPTION_MSG, 9); 140 }

38 } 141 else if (input_buffer[2] == 1) {

39 else { 142 digitalWrite(REL_PIN[9], LOW);

40 Serial.write(INVALID_MSG, 9); 143 }

41 } 144 }

42 } 145 else if (input_buffer[1] == 6) {

43 if (input_buffer[0] == 82) { 146 if (input_buffer[2] == 0) {

44 if (input_buffer[1] == 10) { 147 digitalWrite(REL_PIN[10], HIGH);

45 status_buffer[0] = 71; 148 }

46 status_buffer[1] = 83; 149 else if (input_buffer[2] == 1) {

47 status_checksum = 154; 150 digitalWrite(REL_PIN[10], LOW);

48 for (int i = 0; i < 10; i++) { 151 }

49 status_buffer[i + 2] =

SYSTEM_STATUS[i];

152 }

50 status_checksum +=

SYSTEM_STATUS[i];

153 else if (input_buffer[1] == 7) {

51 } 154 if (input_buffer[2] == 0) {

52 status_buffer[12] =

highByte(status_checksum);

155 digitalWrite(REL_PIN[11], HIGH);

53 status_buffer[13] =

lowByte(status_checksum);

156 }

54 Serial.write(status_buffer, 14); 157 else if (input_buffer[2] == 1) {

55 } 158 digitalWrite(REL_PIN[11], LOW);

56 else if (input_buffer[1] < 10) { 159 }

57 output_buffer[0] = 71; 160 }

58 output_buffer[1] = 82; 161 else if (input_buffer[1] == 8) {

59 output_buffer[2] = input_buffer[1]; 162 if (input_buffer[2] == 0) {

60 output_buffer[3] =

SYSTEM_STATUS[input_buffer[1]];

163 digitalWrite(REL_PIN[12], HIGH);

61 output_checksum = 153 +

output_buffer[2] +

output_buffer[3];

164 digitalWrite(REL_PIN[13], HIGH);

62 output_buffer[4] =

highByte(output_checksum);

165 }

63 output_buffer[5] =

lowByte(output_checksum);

166 else if (input_buffer[2] == 1) {

64 Serial.write(output_buffer, 6); 167 digitalWrite(REL_PIN[12], LOW);

65 } 168 digitalWrite(REL_PIN[13], HIGH);

66 else { 169 }

67 Serial.write(INVALID_MSG, 9); 170 else if (input_buffer[2] == 2) {

68 } 171 digitalWrite(REL_PIN[12], HIGH);

69 } 172 digitalWrite(REL_PIN[13], LOW);

70 else if (input_buffer[0] == 65) { 173 }

71 if (input_buffer[1] == 0) { 174 else if (input_buffer[2] == 3) {

72 if (input_buffer[2] == 0) { 175 digitalWrite(REL_PIN[12], LOW);

73 digitalWrite(REL_PIN[0], HIGH); 176 digitalWrite(REL_PIN[13], LOW);

74 } 177 }

 113

75 else if (input_buffer[2] == 1) { 178 }

76 digitalWrite(REL_PIN[0], LOW); 179 else if (input_buffer[1] == 9) {

77 } 180 for (int i = 0; i < 14;

i++)digitalWrite(REL_PIN[i], HIGH);

78 } 181 for (int i = 0; i < 10;

i++)SYSTEM_STATUS[i] = 0;

79 else if (input_buffer[1] == 1) { 182 if (input_buffer[2] == 0) {

80 if (input_buffer[2] == 0) { 183 digitalWrite(SEL_PIN, HIGH);

81 digitalWrite(REL_PIN[1], HIGH); 184 }

82 digitalWrite(REL_PIN[2], HIGH); 185 else if (input_buffer[2] == 1) {

83 } 186 digitalWrite(SEL_PIN, LOW);

84 else if (input_buffer[2] == 1) { 187 }

85 digitalWrite(REL_PIN[1], LOW); 188 }

86 digitalWrite(REL_PIN[2], HIGH); 189 if (input_buffer[1] < 10) {

87 } 190 SYSTEM_STATUS[input_buffer[1]] =

input_buffer[2];

88 else if (input_buffer[2] == 2) { 191 output_buffer[0] = 71;

89 digitalWrite(REL_PIN[1], HIGH); 192 for (int i = 0; i < 5; i++)

output_buffer[i + 1] =

input_buffer[i];

90 digitalWrite(REL_PIN[2], LOW); 193 Serial.write(output_buffer, 6);

91 } 194 }

92 } 195 else {

93 else if (input_buffer[1] == 2) { 196 Serial.write(INVALID_MSG, 9);

94 if (input_buffer[2] == 0) { 197 }

95 digitalWrite(REL_PIN[3], HIGH); 198 }

96 digitalWrite(REL_PIN[4], HIGH); 199 else {

97 digitalWrite(REL_PIN[5], HIGH); 200 Serial.write(INVALID_MSG, 9);

98 } 201 }

99 else if (input_buffer[2] == 1) { 202 }

100 digitalWrite(REL_PIN[3], HIGH); 203 else {

101 digitalWrite(REL_PIN[4], LOW); 204 Serial.write(INVALID_MSG, 9);

102 digitalWrite(REL_PIN[5], HIGH); 205 }

103 } 206 }

207 }

Table 15 Steering control system controller source code (Arduino IDE)

Line Code Line Code

1 #include "EEPROM.h" 134 #include "EEPROM.h"

2 #include <Wire.h> 135 #include <Wire.h>

3 #include <Adafruit_ADS1015.h> 136 #include <Adafruit_ADS1015.h>

4

137

5 Adafruit_ADS1115 ENCODER(0x48); 138 Adafruit_ADS1115 ENCODER(0x48);

6

139

7 const byte MTR_PWM = 26; 140 const byte MTR_PWM = 26;

8 const byte MTR_IN2 = 25; 141 const byte MTR_IN2 = 25;

 114

9 const byte MTR_IN1 = 33; 142 const byte MTR_IN1 = 33;

10 const byte MTR_PWM_CHN = 0; 143 const byte MTR_PWM_CHN = 0;

11

144

12 const byte DESCRIPTION_MSG[9] =

{71, 82, 83, 67, 67, 84, 82, 2,

24};

145 const byte DESCRIPTION_MSG[9] =

{71, 82, 83, 67, 67, 84, 82, 2,

24};

13 const byte INVALID_MSG[9] = {71,

82, 73, 78, 86, 76, 68, 2, 22};

146 const byte INVALID_MSG[9] = {71,

82, 73, 78, 86, 76, 68, 2, 22};

14

147

15 //{KP, KI, KD, INITIAL_STEERING,

MINIMUM_STEERING_OUTPUT,

MAXIMUM_STEERING_OUTPUT,

CONTROLLED_LOOP_INTERVAL}

148 //{KP, KI, KD, INITIAL_STEERING,

MINIMUM_STEERING_OUTPUT,

MAXIMUM_STEERING_OUTPUT,

CONTROLLED_LOOP_INTERVAL}

16 const byte EEPROM_ADDR[7] = {0, 4,

8, 12, 16, 20, 24};

149 const byte EEPROM_ADDR[7] = {0, 4,

8, 12, 16, 20, 24};

17

150

18 //{REFERENCE_STEERING, MODE, KP,

KI, KD, INITIAL_STEERING,

MINIMUM_STEERING_OUTPUT,

MAXIMUM_STEERING_OUTPUT,

CONTROLLED_LOOP_INTERVAL,

DIAGNOSTIC_STREAM_MODE,

SENSE_STEERING, DEVIATION,

FORMER_DEVIATION,

COMMULATIVE_DEVIATION,

DIFFERENT_DEVIATION, OUTPUT}

151 //{REFERENCE_STEERING, MODE, KP,

KI, KD, INITIAL_STEERING,

MINIMUM_STEERING_OUTPUT,

MAXIMUM_STEERING_OUTPUT,

CONTROLLED_LOOP_INTERVAL,

DIAGNOSTIC_STREAM_MODE,

SENSE_STEERING, DEVIATION,

FORMER_DEVIATION,

COMMULATIVE_DEVIATION,

DIFFERENT_DEVIATION, OUTPUT}

19 long PARAMETERS[16] = {0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0};

152 long PARAMETERS[16] = {0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0};

20 byte DIAG_OUTPUT_BUFFER[68]; 153 byte DIAG_OUTPUT_BUFFER[68];

21

154

22 //{DECREASE_STEERING,

INCREASE_STEERING}

155 //{DECREASE_STEERING,

INCREASE_STEERING}

23 byte DIRECTION_CONTROL_DECREASE =

1;

156 byte DIRECTION_CONTROL_DECREASE =

1;

24 byte DIRECTION_CONTROL_INCREASE =

1;

157 byte DIRECTION_CONTROL_INCREASE =

1;

25

158

26 byte SENSOR_STREAM_STATUS = 0; 159 byte SENSOR_STREAM_STATUS = 0;

27 byte DEBUGGER_STATUS = 0; 160 byte DEBUGGER_STATUS = 0;

28

161

29 unsigned long LOOP_TIMESTAMP; 162 unsigned long LOOP_TIMESTAMP;

30

163

31 void setup() { 164 void setup() {

32 ledcSetup(MTR_PWM_CHN, 5000, 12); 165 ledcSetup(MTR_PWM_CHN, 5000, 12);

33 ledcAttachPin(MTR_PWM,

MTR_PWM_CHN);

166 ledcAttachPin(MTR_PWM,

MTR_PWM_CHN);

34 pinMode(MTR_IN2, OUTPUT); 167 pinMode(MTR_IN2, OUTPUT);

35 pinMode(MTR_IN1, OUTPUT); 168 pinMode(MTR_IN1, OUTPUT);

36 FreeSteering(); 169 FreeSteering();

37

170

38 ENCODER.begin(); 171 ENCODER.begin();

39

172

40 EEPROM.begin(32); 173 EEPROM.begin(32);

41 for (int i = 0; i < 7;

i++)PARAMETERS[i + 2] =

EEPROM.readLong(EEPROM_ADDR[i]);

174 for (int i = 0; i < 7;

i++)PARAMETERS[i + 2] =

EEPROM.readLong(EEPROM_ADDR[i]);

 115

42

175

43 Serial.begin(57600); 176 Serial.begin(57600);

44 Serial.setTimeout(5); 177 Serial.setTimeout(5);

45

178

46 PARAMETERS[0] = PARAMETERS[5]; 179 PARAMETERS[0] = PARAMETERS[5];

47 PARAMETERS[10] =

ENCODER.readADC_SingleEnded(0);

180 PARAMETERS[10] =

ENCODER.readADC_SingleEnded(0);

48 PARAMETERS[12] = PARAMETERS[0] -

PARAMETERS[10];

181 PARAMETERS[12] = PARAMETERS[0] -

PARAMETERS[10];

49

182

50 LOOP_TIMESTAMP = millis(); 183 LOOP_TIMESTAMP = millis();

51 } 184 }

52

185

53 void loop() { 186 void loop() {

54 byte input_buffer[8]; 187 byte input_buffer[8];

55 byte output_buffer[9]; 188 byte output_buffer[9];

56 short input_checksum; 189 short input_checksum;

57 short output_checksum; 190 short output_checksum;

58 short receive_checksum; 191 short receive_checksum;

59 long receive_buffer; 192 long receive_buffer;

60

193

61 PARAMETERS[10] =

ENCODER.readADC_SingleEnded(0);

//SENSED_STEERING

194 PARAMETERS[10] =

ENCODER.readADC_SingleEnded(0);

//SENSED_STEERING

62

195

63 Serial.readStringUntil('G'); 196 Serial.readStringUntil('G');

64 if (Serial.available()) { 197 if (Serial.available()) {

65 Serial.readBytes(input_buffer, 8); 198 Serial.readBytes(input_buffer, 8);

66 if (input_buffer[0] == 68 &&

input_buffer[1] == 69 &&

input_buffer[2] == 66 &&

input_buffer[3] == 85 &&

input_buffer[4] == 71 &&

input_buffer[5] == 71 &&

input_buffer[6] == 69 &&

input_buffer[7] == 82) {

199 if (input_buffer[0] == 68 &&

input_buffer[1] == 69 &&

input_buffer[2] == 66 &&

input_buffer[3] == 85 &&

input_buffer[4] == 71 &&

input_buffer[5] == 71 &&

input_buffer[6] == 69 &&

input_buffer[7] == 82) {

67 DEBUGGER_STATUS = !DEBUGGER_STATUS; 200 DEBUGGER_STATUS = !DEBUGGER_STATUS;

68 } 201 }

69 if (input_buffer[0] == 83 &&

input_buffer[1] == 69 &&

input_buffer[2] == 78 &&

input_buffer[3] == 68 &&

input_buffer[4] == 83 &&

input_buffer[5] == 84 &&

input_buffer[6] == 82 &&

input_buffer[7] == 77) {

202 if (input_buffer[0] == 83 &&

input_buffer[1] == 69 &&

input_buffer[2] == 78 &&

input_buffer[3] == 68 &&

input_buffer[4] == 83 &&

input_buffer[5] == 84 &&

input_buffer[6] == 82 &&

input_buffer[7] == 77) {

70 SENSOR_STREAM_STATUS =

!SENSOR_STREAM_STATUS;

203 SENSOR_STREAM_STATUS =

!SENSOR_STREAM_STATUS;

71 } 204 }

72 else { 205 else {

73 input_checksum = 71 +

input_buffer[0] + input_buffer[1] +

input_buffer[2] + input_buffer[3] +

input_buffer[4] + input_buffer[5];

206 input_checksum = 71 +

input_buffer[0] + input_buffer[1] +

input_buffer[2] + input_buffer[3] +

input_buffer[4] + input_buffer[5];

74 receive_checksum = (input_buffer[6]

<< 8) | input_buffer[7];

207 receive_checksum = (input_buffer[6]

<< 8) | input_buffer[7];

 116

75 if (input_checksum ==

receive_checksum) {

208 if (input_checksum ==

receive_checksum) {

76 if (input_buffer[0] == 73) { 209 if (input_buffer[0] == 73) {

77 if (input_buffer[1] == 0) { 210 if (input_buffer[1] == 0) {

78 if (SENSOR_STREAM_STATUS == 0) { 211 if (SENSOR_STREAM_STATUS == 0) {

79 Serial.write(DESCRIPTION_MSG, 9); 212 Serial.write(DESCRIPTION_MSG, 9);

80 } 213 }

81 } 214 }

82 else { 215 else {

83 if (SENSOR_STREAM_STATUS == 0) { 216 if (SENSOR_STREAM_STATUS == 0) {

84 Serial.write(INVALID_MSG, 9); 217 Serial.write(INVALID_MSG, 9);

85 } 218 }

86 } 219 }

87 } 220 }

88 else if (input_buffer[0] == 82) { 221 else if (input_buffer[0] == 82) {

89 if (input_buffer[1] == 16) { 222 if (input_buffer[1] == 16) {

90 UpdateDiagOutputBuffer(); 223 UpdateDiagOutputBuffer();

91 if (SENSOR_STREAM_STATUS == 0) { 224 if (SENSOR_STREAM_STATUS == 0) {

92 Serial.write(DIAG_OUTPUT_BUFFER,

68);

225 Serial.write(DIAG_OUTPUT_BUFFER,

68);

93 } 226 }

94 } 227 }

95 else if (input_buffer[1] < 16) { 228 else if (input_buffer[1] < 16) {

96 output_buffer[0] = 71; 229 output_buffer[0] = 71;

97 output_buffer[1] = 82; 230 output_buffer[1] = 82;

98 output_buffer[2] = input_buffer[1]; 231 output_buffer[2] = input_buffer[1];

99 output_buffer[3] =

(PARAMETERS[input_buffer[1]] >> 24)

& 255;

232 output_buffer[3] =

(PARAMETERS[input_buffer[1]] >> 24)

& 255;

100 output_buffer[4] =

(PARAMETERS[input_buffer[1]] >> 16)

& 255;

233 output_buffer[4] =

(PARAMETERS[input_buffer[1]] >> 16)

& 255;

101 output_buffer[5] =

(PARAMETERS[input_buffer[1]] >> 8)

& 255;

234 output_buffer[5] =

(PARAMETERS[input_buffer[1]] >> 8)

& 255;

102 output_buffer[6] =

PARAMETERS[input_buffer[1]] & 255;

235 output_buffer[6] =

PARAMETERS[input_buffer[1]] & 255;

103 output_checksum = 153 +

output_buffer[2] + output_buffer[3]

+ output_buffer[4] +

output_buffer[5] +

output_buffer[6];

236 output_checksum = 153 +

output_buffer[2] + output_buffer[3]

+ output_buffer[4] +

output_buffer[5] +

output_buffer[6];

104 output_buffer[7] =

highByte(output_checksum);

237 output_buffer[7] =

highByte(output_checksum);

105 output_buffer[8] =

lowByte(output_checksum);

238 output_buffer[8] =

lowByte(output_checksum);

106 if (SENSOR_STREAM_STATUS == 0) { 239 if (SENSOR_STREAM_STATUS == 0) {

107 Serial.write(output_buffer, 9); 240 Serial.write(output_buffer, 9);

108 } 241 }

109 } 242 }

110 else { 243 else {

111 if (SENSOR_STREAM_STATUS == 0) { 244 if (SENSOR_STREAM_STATUS == 0) {

112 Serial.write(INVALID_MSG, 9); 245 Serial.write(INVALID_MSG, 9);

 117

113 } 246 }

114 } 247 }

115 } 248 }

116 else if (input_buffer[0] == 65) { 249 else if (input_buffer[0] == 65) {

117 PARAMETERS[input_buffer[1]] =

(input_buffer[2] << 24) |

(input_buffer[3] << 16) |

(input_buffer[4] << 8) |

input_buffer[5];

250 PARAMETERS[input_buffer[1]] =

(input_buffer[2] << 24) |

(input_buffer[3] << 16) |

(input_buffer[4] << 8) |

input_buffer[5];

118 if (input_buffer[1] == 1) { 251 if (input_buffer[1] == 1) {

119 PARAMETERS[0] = PARAMETERS[5]; 252 PARAMETERS[0] = PARAMETERS[5];

120 PARAMETERS[12] = PARAMETERS[0] -

PARAMETERS[10];

253 PARAMETERS[12] = PARAMETERS[0] -

PARAMETERS[10];

121 PARAMETERS[13] = 0; 254 PARAMETERS[13] = 0;

122 } 255 }

123 else if (input_buffer[1] > 1 &&

input_buffer[1] < 9) {

256 else if (input_buffer[1] > 1 &&

input_buffer[1] < 9) {

124 EEPROM.writeLong(EEPROM_ADDR[input_

buffer[1] - 2],

PARAMETERS[input_buffer[1]]);

257 EEPROM.writeLong(EEPROM_ADDR[input_

buffer[1] - 2],

PARAMETERS[input_buffer[1]]);

125 EEPROM.commit(); 258 EEPROM.commit();

126 } 259 }

127 if (input_buffer[1] < 10) { 260 if (input_buffer[1] < 10) {

128 output_buffer[0] = 71; 261 output_buffer[0] = 71;

129 for (int i = 0; i < 8;

i++)output_buffer[i + 1] =

input_buffer[i];

262 for (int i = 0; i < 8;

i++)output_buffer[i + 1] =

input_buffer[i];

130 if (SENSOR_STREAM_STATUS == 0) { 263 if (SENSOR_STREAM_STATUS == 0) {

131 Serial.write(output_buffer, 9); 264 Serial.write(output_buffer, 9);

132 } 265 }

133 } 266 }

Table 16 Speed control system controller source code (Arduino IDE)

Line Code Line Code
1 #include "EEPROM.h" 176 }

2 #include <SPI.h> 177 }

3 #include "mcp_can.h" 178 else {

4

179 if (SENSOR_STREAM_STATUS == 0) {

5 const byte MTR_LMS = 14; 180 Serial.write(INVALID_MSG, 9);

6 const byte MTR_PWM = 33; 181 }

7 const byte MTR_IN2 = 25; 182 }

8 const byte MTR_IN1 = 26; 183 }

9 const byte DAC_CS = 21; 184 else {

10 const byte DAC_LDAC = 4; 185 if (SENSOR_STREAM_STATUS == 0) {

11 const byte CAN_CS = 22; 186 Serial.write(INVALID_MSG, 9);

12

187 }

13 MCP_CAN CAN(CAN_CS); 188 }

14

189 }

15 unsigned short CAN_message_ID; 190 }

 118

16 byte CAN_message_length = 0; 191

17 byte CAN_input_buffer[8]; 192 if (PARAMETERS[1] == 2) {

18

193 if (PARAMETERS[11] > 50) {

19 const byte DESCRIPTION_MSG[9] =

{71, 82, 67, 67, 67, 84, 82, 2, 8};

194 AcceleratorPedalSignalWrite(0);

20 const byte INVALID_MSG[9] = {71,

82, 73, 78, 86, 76, 68, 2, 22};

195 ForwardBrake(2048000);

21

196 }

22 //{KP, KI, KD,

IDLE_DECELERATION_OFFSET,

ACCELERATOR_SIGNAL_GAIN,

BRAKE_ACTUATOR_GAIN, INITIAL_SPEED,

CONTROLLED_LOOP_INTERVAL}

197 else {

23 const byte EEPROM_ADDR[8] = {0, 4,

8, 12, 16, 20, 24, 28};

198 LockBrake();

24

199 }

25 //{REFERENCE_SPEED, MODE, KP, KI,

KD, IDLE_DECELERATION_OFFSET,

ACCELERATOR_PEDAL_SIGNAL_GAIN,

BRAKE_ACTUATOR_GAIN, INITIAL_SPEED,

CONTROLLED_LOOP_INTERVAL,

DIAGNOSTIC_STREAM_MODE,

SENSED_SPEED, DEVIATION,

FORMER_DEVIATION,

COMMULATIVE_DEVIATION,

DIFFERENT_DEVIATION, OUTPUT}

200 }

26 long PARAMETERS[17] = {0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0};

201 else if (PARAMETERS[1] == 1) {

27 byte DIAG_OUTPUT_BUFFER[72]; 202 PARAMETERS[12] = PARAMETERS[0] -

PARAMETERS[11]; //DEVIATION

28

203 PARAMETERS[14] = PARAMETERS[14] +

PARAMETERS[12];

//COMMULATIVE_DEVIATION

29 //{t, t-1, t-2, ...} 204 PARAMETERS[15] = PARAMETERS[12] -

PARAMETERS[13];

//DIFFERENT_DEVIATION

30 short SENSED_SPEED_WINDOW[10] = {0,

0, 0, 0, 0, 0, 0, 0, 0, 0};

205 PARAMETERS[13] = PARAMETERS[12];

//UPDATE

31

206 PARAMETERS[16] =

long((PARAMETERS[2] *

PARAMETERS[12]) + (PARAMETERS[3] *

PARAMETERS[14]) / 100.0 +

(PARAMETERS[4] * PARAMETERS[15]));

32 byte DEBUGGER_STATUS = 0; 207 if (PARAMETERS[16] > 0) {

33 byte SENSOR_STREAM_STATUS = 0; 208 PARAMETERS[16] =

long(PARAMETERS[16] * PARAMETERS[6]

/ 100.0);

34 byte FIRST_LOOP_FLAG = 1; 209 }

35

210 else if (PARAMETERS[16] < 0) {

36 unsigned long LOOP_TIMESTAMP; 211 PARAMETERS[16] =

long(PARAMETERS[16] * PARAMETERS[7]

/ 100.0);

37

212 }

38 void setup() { 213 if (PARAMETERS[16] > 4095000) {

39 pinMode(MTR_LMS, INPUT_PULLUP); 214 PARAMETERS[16] = 4095000;

40 ledcSetup(0, 5000, 12); 215 PARAMETERS[14] = PARAMETERS[14] -

PARAMETERS[12];

41 ledcAttachPin(MTR_PWM, 0); 216 }

42 pinMode(MTR_IN2, OUTPUT); 217 else if (PARAMETERS[16] < -4095000)

{

43 pinMode(MTR_IN1, OUTPUT); 218 PARAMETERS[16] = -4095000;

44

219 PARAMETERS[14] = PARAMETERS[14] -

PARAMETERS[12];

 119

45 pinMode(DAC_CS, OUTPUT); 220 }

46 pinMode(DAC_LDAC, OUTPUT); 221 if (PARAMETERS[16] > 0) {

47 digitalWrite(DAC_CS, HIGH); 222 AcceleratorPedalSignalWrite(PARAMET

ERS[16]);

48 digitalWrite(DAC_LDAC, HIGH); 223 if (digitalRead(MTR_LMS)) {

49

224 ReverseBrake(750000);

50 Serial.begin(57600); 225 }

51 Serial.setTimeout(5); 226 else {

52 SPI.begin(); 227 LockBrake();

53

228 }

54 ReleaseBrake(); 229 }

55 LockBrake(); 230 else if (PARAMETERS[16] >

PARAMETERS[5] && PARAMETERS[16] <=

0) {

56 AcceleratorPedalSignalWrite(0); 231 AcceleratorPedalSignalWrite(0);

57

232 if (digitalRead(MTR_LMS)) {

58 EEPROM.begin(64); 233 ReverseBrake(750000);

59 for (int i = 0; i < 8; i++)

PARAMETERS[i + 2] =

EEPROM.readLong(EEPROM_ADDR[i]);

234 }

60

235 else {

61 while (CAN_OK !=

CAN.begin(CAN_1000KBPS)) delay(10);

236 LockBrake();

62

237 }

63 LOOP_TIMESTAMP = millis(); 238 }

64 } 239 else if (PARAMETERS[16] <=

PARAMETERS[5]) {

65

240 AcceleratorPedalSignalWrite(0);

66 void loop() { 241 ForwardBrake(abs(PARAMETERS[16]));

67 byte input_buffer[8]; 242 }

68 byte output_buffer[9]; 243 }

69 short input_checksum; 244 else if (PARAMETERS[1] == 0) {

70 short output_checksum; 245 AcceleratorPedalSignalWrite(0);

71 short receive_checksum; 246 if (digitalRead(MTR_LMS)) {

72 long receive_buffer; 247 ReverseBrake(750000);

73 float sensed_speed_window_sum; 248 }

74 short sensed_speed; 249 else {

75 byte CAN_speed_detect = 0; 250 LockBrake();

76

251 }

77 while (CAN_speed_detect == 0) { 252 }

78 if (CAN_MSGAVAIL ==

CAN.checkReceive()) {

253 if (PARAMETERS[10] == 1) {

79 CAN.readMsgBuf(&CAN_message_length,

CAN_input_buffer);

254 UpdateDiagOutputBuffer();

80 CAN_message_ID = CAN.getCanId(); 255 Serial.write(DIAG_OUTPUT_BUFFER,

72);

81 if (CAN_message_ID == 2) { 256 }

82 sensed_speed = (CAN_input_buffer[2]

<< 8) | CAN_input_buffer[3];

257 if (DEBUGGER_STATUS == 1) {

83 sensed_speed_window_sum = 0.0; 258 Serial.print("DB");

84 for (int i = 9; i > 0; i--) { 259 Serial.print('\t');

85 SENSED_SPEED_WINDOW[i] = 260 for (int i = 0; i < 17; i++) {

 120

SENSED_SPEED_WINDOW[i - 1];

86 sensed_speed_window_sum +=

SENSED_SPEED_WINDOW[i];

261 Serial.print(PARAMETERS[i]);

87 } 262 Serial.print('\t');

88 SENSED_SPEED_WINDOW[0] =

sensed_speed;

263 }

89 sensed_speed_window_sum +=

SENSED_SPEED_WINDOW[0];

264 Serial.println();

90 PARAMETERS[11] =

long(sensed_speed_window_sum /

25.6);

265 }

91 CAN_speed_detect = 1; 266 if (SENSOR_STREAM_STATUS == 1) {

92 } 267 Serial.print("SS");

93 } 268 Serial.print('\t');

94 } 269 Serial.println(PARAMETERS[11]);

95

270 }

96 if (FIRST_LOOP_FLAG == 1) { 271 while (millis() - LOOP_TIMESTAMP <

PARAMETERS[9]) {

97 PARAMETERS[13] = PARAMETERS[0] -

PARAMETERS[11];

272 delayMicroseconds(10);

98 FIRST_LOOP_FLAG = 0; 273 }

99 } 274 LOOP_TIMESTAMP = millis();

100

275 }

101 Serial.readStringUntil('G'); 276

102 if (Serial.available()) { 277 void UpdateDiagOutputBuffer() {

103 Serial.readBytes(input_buffer, 8); 278 short diag_checksum;

104 if (input_buffer[0] == 68 &&

input_buffer[1] == 69 &&

input_buffer[2] == 66 &&

input_buffer[3] == 85 &&

input_buffer[4] == 71 &&

input_buffer[5] == 71 &&

input_buffer[6] == 69 &&

input_buffer[7] == 82) {

279 byte write_buffer;

105 DEBUGGER_STATUS = !DEBUGGER_STATUS; 280 DIAG_OUTPUT_BUFFER[0] = 71;

106 } 281 DIAG_OUTPUT_BUFFER[1] = 68;

107 if (input_buffer[0] == 83 &&

input_buffer[1] == 69 &&

input_buffer[2] == 78 &&

input_buffer[3] == 68 &&

input_buffer[4] == 83 &&

input_buffer[5] == 84 &&

input_buffer[6] == 82 &&

input_buffer[7] == 77) {

282 diag_checksum = 139;

108 SENSOR_STREAM_STATUS =

!SENSOR_STREAM_STATUS;

283 for (int i = 0; i < 17; i++) {

109 } 284 for (int j = 0; j < 4; j++) {

110 else { 285 write_buffer = (PARAMETERS[i] >> (j

* 8)) & 255;

111 input_checksum = 71 +

input_buffer[0] + input_buffer[1] +

input_buffer[2] + input_buffer[3] +

input_buffer[4] + input_buffer[5];

286 DIAG_OUTPUT_BUFFER[(4 * i) + j + 2]

= write_buffer;

112 receive_checksum = (input_buffer[6]

<< 8) | input_buffer[7];

287 diag_checksum += write_buffer;

113 if (input_checksum ==

receive_checksum) {

288 }

114 if (input_buffer[0] == 73) { 289 }

115 if (input_buffer[1] == 0) { 290 DIAG_OUTPUT_BUFFER[70] =

highByte(diag_checksum);

116 if (SENSOR_STREAM_STATUS == 0) { 291 DIAG_OUTPUT_BUFFER[71] =

 121

lowByte(diag_checksum);

117 Serial.write(DESCRIPTION_MSG, 9); 292 }

118 } 293

119 } 294 void

AcceleratorPedalSignalWrite(long v)

{

120 else { 295 long output_buffer;

121 if (SENSOR_STREAM_STATUS == 0) { 296 float val = (v * 0.0004776) +

655.2;

122 Serial.write(INVALID_MSG, 9); 297 unsigned short low_val =

short(val); //CHANNEL_B

123 } 298 unsigned short high_val = short(val

+ 655.2); //CHANNEL_A

124 } 299 output_buffer = 0b0111000000000000

| low_val;

125 } 300 digitalWrite(DAC_CS, LOW);

126 else if (input_buffer[0] == 82) { 301 SPI.transfer((output_buffer >> 8) &

255);

127 if (input_buffer[1] == 17) { 302 SPI.transfer(output_buffer & 255);

128 UpdateDiagOutputBuffer(); 303 digitalWrite(DAC_CS, HIGH);

129 if (SENSOR_STREAM_STATUS == 0) { 304 digitalWrite(DAC_LDAC, LOW);

130 Serial.write(DIAG_OUTPUT_BUFFER,

72);

305 delayMicroseconds(10);

131 } 306 digitalWrite(DAC_LDAC, HIGH);

132 } 307

133 else if (input_buffer[1] < 17) { 308 output_buffer = 0b1111000000000000

| high_val;

134 output_buffer[0] = 71; 309 digitalWrite(DAC_CS, LOW);

135 output_buffer[1] = 82; 310 SPI.transfer((output_buffer >> 8) &

255);

136 output_buffer[2] = input_buffer[1]; 311 SPI.transfer(output_buffer & 255);

137 output_buffer[3] =

(PARAMETERS[input_buffer[1]] >> 24)

& 255;

312 digitalWrite(DAC_CS, HIGH);

138 output_buffer[4] =

(PARAMETERS[input_buffer[1]] >> 16)

& 255;

313 digitalWrite(DAC_LDAC, LOW);

139 output_buffer[5] =

(PARAMETERS[input_buffer[1]] >> 8)

& 255;

314 delayMicroseconds(10);

140 output_buffer[6] =

PARAMETERS[input_buffer[1]] & 255;

315 digitalWrite(DAC_LDAC, HIGH);

141 output_checksum = 153 +

output_buffer[2] + output_buffer[3]

+ output_buffer[4] +

output_buffer[5] +

output_buffer[6];

316 }

142 output_buffer[7] =

highByte(output_checksum);

317

143 output_buffer[8] =

lowByte(output_checksum);

318 void ReleaseBrake() {

144 if (SENSOR_STREAM_STATUS == 0) { 319 while (digitalRead(MTR_LMS)) {

145 Serial.write(output_buffer, 9); 320 ReverseBrake(750000);

146 } 321 delay(1);

147 } 322 }

148 else { 323 LockBrake();

149 if (SENSOR_STREAM_STATUS == 0) { 324 }

150 Serial.write(INVALID_MSG, 9); 325

151 } 326 void ForwardBrake(long p) {

 122

152 } 327 unsigned short pwm = short(p /

1000.0);

153 } 328 ledcWrite(0, pwm);

154 else if (input_buffer[0] == 65) { 329 digitalWrite(MTR_IN1, LOW);

155 PARAMETERS[input_buffer[1]] =

(input_buffer[2] << 24) |

(input_buffer[3] << 16) |

(input_buffer[4] << 8) |

input_buffer[5];

330 digitalWrite(MTR_IN2, HIGH);

156 if (input_buffer[1] == 1) { 331 }

157 PARAMETERS[0] = PARAMETERS[8]; 332

158 PARAMETERS[13] = PARAMETERS[0] -

PARAMETERS[11];

333 void ReverseBrake(long p) {

159 PARAMETERS[14] = 0; 334 unsigned short pwm = short(p /

1000.0);

160 } 335 ledcWrite(0, pwm);

161 else if (input_buffer[1] > 1 &&

input_buffer[1] < 10) {

336 digitalWrite(MTR_IN1, HIGH);

162 EEPROM.writeLong(EEPROM_ADDR[input_

buffer[1] - 2],

PARAMETERS[input_buffer[1]]);

337 digitalWrite(MTR_IN2, LOW);

163 EEPROM.commit(); 338 }

164 } 339

165 if (input_buffer[1] < 11) { 340 void FreeBrake() {

166 output_buffer[0] = 71; 341 ledcWrite(0, 0);

167 for (int i = 0; i < 8;

i++)output_buffer[i + 1] =

input_buffer[i];

342 digitalWrite(MTR_IN1, LOW);

168 if (SENSOR_STREAM_STATUS == 0) { 343 digitalWrite(MTR_IN2, LOW);

169 Serial.write(output_buffer, 9); 344 }

170 } 345

171 } 346 void LockBrake() {

172 else { 347 ledcWrite(0, 4095);

173 if (SENSOR_STREAM_STATUS == 0) { 348 digitalWrite(MTR_IN1, LOW);

174 Serial.write(INVALID_MSG, 9); 349 digitalWrite(MTR_IN2, LOW);

175 } 350 }

Table 17 High-level autonomous navigation dependency source code (Python)

Line Code

1 class SystemController:

2 import serial

3

4 assign = ((b'GA\x00\x00\x00\x00\x00\x00\x88',

b'GA\x00\x01\x00\x00\x00\x00\x89'), (b'GA\x01\x00\x00\x00\x00\x00\x89',

b'GA\x01\x01\x00\x00\x00\x00\x8a', b'GA\x01\x02\x00\x00\x00\x00\x8b'),

(b'GA\x02\x00\x00\x00\x00\x00\x8a', b'GA\x02\x01\x00\x00\x00\x00\x8b',

b'GA\x02\x02\x00\x00\x00\x00\x8c', b'GA\x02\x03\x00\x00\x00\x00\x8d'),

(b'GA\x03\x00\x00\x00\x00\x00\x8b', b'GA\x03\x01\x00\x00\x00\x00\x8c'),

(b'GA\x04\x00\x00\x00\x00\x00\x8c', b'GA\x04\x01\x00\x00\x00\x00\x8d',

b'GA\x04\x02\x00\x00\x00\x00\x8e'), (b'GA\x05\x00\x00\x00\x00\x00\x8d',

b'GA\x05\x01\x00\x00\x00\x00\x8e'), (b'GA\x06\x00\x00\x00\x00\x00\x8e',

b'GA\x06\x01\x00\x00\x00\x00\x8f'), (b'GA\x07\x00\x00\x00\x00\x00\x8f',

b'GA\x07\x01\x00\x00\x00\x00\x90'), (b'GA\x08\x00\x00\x00\x00\x00\x90',

b'GA\x08\x01\x00\x00\x00\x00\x91', b'GA\x08\x02\x00\x00\x00\x00\x92',

b'GA\x08\x03\x00\x00\x00\x00\x93'), (b'GA\t\x00\x00\x00\x00\x00\x91',

b'GA\t\x01\x00\x00\x00\x00\x92'))

 123

5 request = (b'GR\x00\x00\x00\x00\x00\x00\x99',

b'GR\x01\x00\x00\x00\x00\x00\x9a', b'GR\x02\x00\x00\x00\x00\x00\x9b',

b'GR\x03\x00\x00\x00\x00\x00\x9c', b'GR\x04\x00\x00\x00\x00\x00\x9d',

b'GR\x05\x00\x00\x00\x00\x00\x9e', b'GR\x06\x00\x00\x00\x00\x00\x9f',

b'GR\x07\x00\x00\x00\x00\x00\xa0', b'GR\x08\x00\x00\x00\x00\x00\xa1',

b'GR\t\x00\x00\x00\x00\x00\xa2', b'GR\n\x00\x00\x00\x00\x00\xa3',

b'GI\x00\x00\x00\x00\x00\x00\x90')

6

7 device = None

8

9 def __init__(self, comport, baudrate):

10 self.device = self.serial.Serial(comport, baudrate)

11

12 def set(self, subsystem, state):

13 self.device.write(self.assign[subsystem][state])

14

15 def poll(self, subsystem):

16 self.device.reset_input_buffer()

17 self.device.write(subsystem)

18 if subsystem == 10:

19 recv = self.device.read(9)

20 if sum(recv[:-2]) == (recv[-2] << 8)| recv[-1]:

21 val = recv[2:-2]

22 val = (val[0] << 8) | (val[1] << 8) | (val[2] << 8) | val[3]

23 return val

24 else:

25 return -1

26 else:

27 recv = self.device.read(14)

28 if sum(recv[:-2]) == (recv[-2] << 8) | recv[-1]:

29 return list(recv[2:-2])

30 else:

31 return -1

32

33

34 class CruiseController:

35 import serial

36 import numpy

37

38 request = (b'GR\x00\x00\x00\x00\x00\x00\x99',

b'GR\x01\x00\x00\x00\x00\x00\x9a', b'GR\x02\x00\x00\x00\x00\x00\x9b',

b'GR\x03\x00\x00\x00\x00\x00\x9c', b'GR\x04\x00\x00\x00\x00\x00\x9d',

b'GR\x05\x00\x00\x00\x00\x00\x9e', b'GR\x06\x00\x00\x00\x00\x00\x9f',

b'GR\x07\x00\x00\x00\x00\x00\xa0', b'GR\x08\x00\x00\x00\x00\x00\xa1',

b'GR\t\x00\x00\x00\x00\x00\xa2', b'GR\n\x00\x00\x00\x00\x00\xa3',

b'GR\x0b\x00\x00\x00\x00\x00\xa4', b'GR\x0c\x00\x00\x00\x00\x00\xa5',

b'GR\r\x00\x00\x00\x00\x00\xa6', b'GR\x0e\x00\x00\x00\x00\x00\xa7',

b'GR\x0f\x00\x00\x00\x00\x00\xa8', b'GR\x10\x00\x00\x00\x00\x00\xa9',

b'GR\x11\x00\x00\x00\x00\x00\xaa', b'GI\x00\x00\x00\x00\x00\x00\x90')

39

 124

40 device = None

41

42 def __init__(self, comport, baudrate):

43 self.device = self.serial.Serial(comport, baudrate)

44

45 def set(self, subsystem, state):

46 state = self.numpy.int32(state)

47 output_buffer = b'GA' + bytes([subsystem, (state >> 24) & 255, (state >> 16) &

255, (state >> 8) & 255, state & 255])

48 checksum = sum(output_buffer)

49 output_buffer = output_buffer + bytes([(checksum >> 8) & 255, checksum & 255])

50 self.device.write(output_buffer)

51

52 def poll(self, subsystem):

53 self.device.reset_input_buffer()

54 self.device.write(self.request[subsystem])

55 if subsystem == 17:

56 recv = self.device.read(72)

57 if sum(recv[:-2]) == (recv[-2] << 8) | recv[-1]:

58 val = self.numpy.array(recv[2:-2]).reshape((17, 4))

59 val = val[:, 0] | (val[:, 1] << 8) | (val[:, 2] << 16) | (val[:, 3] << 24)

60 val = val - (val >> 15) * (1 << 16)

61 val = val.tolist()

62 return val

63 else:

64 return -1

65 else:

66 recv = self.device.read(9)

67 if sum(recv[:-2]) == (recv[-2] << 8) | recv[-1]:

68 recv = recv[3:-2]

69 val = (recv[0] << 24) | (recv[1] << 16) | (recv[2] << 8) | recv[3]

70 val = val - (val >> 31) * (1 << 32)

71 return val

72 else:

73 return -1

74

75

76 class SteeringController:

77 import serial

78 import numpy

79

80 request = (b'GR\x00\x00\x00\x00\x00\x00\x99',

b'GR\x01\x00\x00\x00\x00\x00\x9a', b'GR\x02\x00\x00\x00\x00\x00\x9b',

b'GR\x03\x00\x00\x00\x00\x00\x9c', b'GR\x04\x00\x00\x00\x00\x00\x9d',

b'GR\x05\x00\x00\x00\x00\x00\x9e', b'GR\x06\x00\x00\x00\x00\x00\x9f',

b'GR\x07\x00\x00\x00\x00\x00\xa0', b'GR\x08\x00\x00\x00\x00\x00\xa1',

b'GR\t\x00\x00\x00\x00\x00\xa2', b'GR\n\x00\x00\x00\x00\x00\xa3',

 125

b'GR\x0b\x00\x00\x00\x00\x00\xa4', b'GR\x0c\x00\x00\x00\x00\x00\xa5',

b'GR\r\x00\x00\x00\x00\x00\xa6', b'GR\x0e\x00\x00\x00\x00\x00\xa7',

b'GR\x0f\x00\x00\x00\x00\x00\xa8', b'GR\x10\x00\x00\x00\x00\x00\xa9',

b'GI\x00\x00\x00\x00\x00\x00\x90')

81

82 device = None

83

84 def __init__(self, comport, baudrate):

85 self.device = self.serial.Serial(comport, baudrate)

86

87 def set(self, subsystem, state):

88 state = self.numpy.int32(state)

89 output_buffer = b'GA' + bytes([subsystem, (state >> 24) & 255, (state >> 16) &

255, (state >> 8) & 255, state & 255])

90 checksum = sum(output_buffer)

91 output_buffer = output_buffer + bytes([(checksum >> 8) & 255, checksum & 255])

92 self.device.write(output_buffer)

93

94 def poll(self, subsystem):

95 self.device.reset_input_buffer()

96 self.device.write(self.request[subsystem])

97 if subsystem == 16:

98 recv = self.device.read(68)

99 if sum(recv[:-2]) == (recv[-2] << 8) | recv[-1]:

100 val = self.numpy.array(recv[2:-2]).reshape((16, 4))

101 val = val[:, 0] | (val[:, 1] << 8) | (val[:, 2] << 16) | (val[:, 3] << 24)

102 val = val - (val >> 31) * (1 << 32)

103 val = val.tolist()

104 return val

105 else:

106 return -1

107 else:

108 recv = self.device.read(9)

109 if sum(recv[:-2]) == (recv[-2] << 8) | recv[-1]:

110 recv = recv[3:-2]

111 val = (recv[0] << 24) | (recv[1] << 16) | (recv[2] << 8) | recv[3]

112 val = val - (val >> 31) * (1 << 32)

113 return val

114 else:

115 return -1

116

117

118 class SteeringProfile:

119 import numpy

120 from scipy import integrate

121

 126

122 def __init__(self, filename, steering_gain, steering_offset):

123 self.filename = filename

124 self.steering_gain = steering_gain

125 self.steering_offset = steering_offset

126 with open(self.filename, 'r') as f:

127 data = [i[:-1] for i in f.readlines()]

128 data = self.numpy.array(data).astype(float)

129 self.steering_position_axis_lower_bound = data[0]

130 self.steering_position_axis_upper_bound = data[1]

131 self.steering_position_axis_resolution = int(data[2])

132 self.steering_position_axis_interval = (self.steering_position_axis_upper_bound

- self.steering_position_axis_lower_bound) /

(self.steering_position_axis_resolution - 1)

133 self.steering_position_axis =

self.numpy.linspace(self.steering_position_axis_lower_bound,

self.steering_position_axis_upper_bound,

self.steering_position_axis_resolution)

134 self.time_axis_lower_bound = data[3]

135 self.time_axis_upper_bound = data[4]

136 self.time_axis_resolution = int(data[5])

137 self.time_axis_interval = (self.time_axis_upper_bound -

self.time_axis_lower_bound) / (self.time_axis_resolution - 1)

138 self.time_axis = self.numpy.linspace(self.time_axis_lower_bound,

self.time_axis_upper_bound, self.time_axis_resolution)

139

140 self.raw_profile = data[6:].reshape((self.steering_position_axis_resolution,

self.steering_position_axis_resolution, self.time_axis_resolution))

141 self.raw_time = self.numpy.repeat(self.time_axis.reshape((1, -1)),

self.steering_position_axis_resolution ** 2,

axis=0).reshape((self.steering_position_axis_resolution,

self.steering_position_axis_resolution, self.time_axis_resolution))

142 self.profile = self.integrate.cumtrapz((self.steering_gain * self.raw_profile)

- self.steering_offset, self.raw_time, axis=2, initial=0)

143 self.time = self.raw_time[:, 0, :]

144

145 def get_profile(self, steering_position, trim=None):

146 if steering_position < self.steering_position_axis[0]:

147 adjusted_steering_profile = self.profile[0, :, :]

148 adjusted_raw_steering_profile = self.raw_profile[0, :, :]

149 adjusted_time = self.time

150 elif steering_position > self.steering_position_axis[-1]:

151 adjusted_steering_profile = self.profile[-1, :, :]

152 adjusted_raw_steering_profile = self.raw_profile[-1, :, :]

153 adjusted_time = self.time

154 else:

155 dst = self.numpy.abs(self.steering_position_axis - steering_position)

156 ind = self.numpy.argsort(dst)

157 adjusted_steering_profile = ((dst[ind[0]] * self.profile[ind[1], :, :]) +

(dst[ind[1]] * self.profile[ind[0], :, :])) /

self.steering_position_axis_interval

158 adjusted_raw_steering_profile = ((dst[ind[0]] * self.raw_profile[ind[1], :, :])

+ (dst[ind[1]] * self.raw_profile[ind[0], :, :])) /

self.steering_position_axis_interval

159 adjusted_time = self.time

 127

160 if trim is not None:

161 trim_index = self.numpy.abs(self.time_axis - trim).argmin()

162 adjusted_steering_profile = adjusted_steering_profile[:, :trim_index]

163 adjusted_raw_steering_profile = adjusted_raw_steering_profile[:, :trim_index]

164 adjusted_time = self.time[:, :trim_index]

165

166 return adjusted_steering_profile, adjusted_raw_steering_profile, adjusted_time

167

168

169 class WaypointsMap:

170 import numpy

171 from scipy.spatial import cKDTree

172

173 def __init__(self, filename, longitudinal_gain, latitudinal_gain):

174 self.filename = filename

175 self.conversion_gain = self.numpy.array([longitudinal_gain, latitudinal_gain])

176 with open(self.filename, 'r') as f:

177 data = [i[:-1].split('\t') for i in f.readlines()]

178 data = self.numpy.array(data).astype(float)

179 self.geographic_waypoints = data[:, :2]

180 self.heading = self.numpy.deg2rad(180 - ((data[:, 2] + 90) % 360))

181 self.speed = data[:, 3] / 3.6

182

183 self.geographic_origin = (self.geographic_waypoints.ptp(axis=0) / 2) +

self.geographic_waypoints.min(axis=0)

184 self.meter_waypoints = (self.geographic_waypoints - self.geographic_origin) *

self.conversion_gain

185

186 self.geographic_manager = self.cKDTree(self.geographic_waypoints)

187 self.meter_manager = self.cKDTree(self.meter_waypoints)

188

189 def to_meter(self, geographic_coordinate):

190 ret = (geographic_coordinate - self.geographic_origin) * self.conversion_gain

191 return ret

192

193 def to_mathematic_angle(self, navigation_angle):

194 ret = self.numpy.deg2rad(180 - ((navigation_angle + 90) % 360))

195 return ret

196

197 def to_geographic(self, meter_coordinate):

198 ret = (meter_coordinate / self.conversion_gain) + self.geographic_origin

199 return ret

200

201 def to_navigation_angle(self, mathematic_angle):

202 ret = 360 - ((self.numpy.rad2deg(mathematic_angle) - 90) % 360)

 128

203 return ret

204

205 def get_trimmed_geographic_waypoints(self, trim_params):

206 forward_trim = int(trim_params[2] * trim_params[1])

207 reverse_trim = trim_params[1] - forward_trim

208 trim_lower_bound = trim_params[0] - reverse_trim

209 trim_upper_bound = trim_params[0] + forward_trim

210 if trim_lower_bound < 0:

211 ret = self.numpy.row_stack((self.geographic_waypoints[trim_lower_bound:, :],

self.geographic_waypoints[: trim_upper_bound, :]))

212 elif trim_upper_bound > self.geographic_waypoints.shape[0]:

213 ret = self.numpy.row_stack((self.geographic_waypoints[trim_lower_bound:, :],

self.geographic_waypoints[: trim_upper_bound -

self.geographic_waypoints.shape[0], :]))

214 else:

215 ret = self.geographic_waypoints[trim_lower_bound: trim_upper_bound, :]

216 return ret

217

218 def get_trimmed_meter_waypoints(self, trim_params):

219 forward_trim = int(trim_params[2] * trim_params[1])

220 reverse_trim = trim_params[1] - forward_trim

221 trim_lower_bound = trim_params[0] - reverse_trim

222 trim_upper_bound = trim_params[0] + forward_trim

223 if trim_lower_bound < 0:

224 ret = self.numpy.row_stack((self.meter_waypoints[trim_lower_bound:, :],

self.meter_waypoints[: trim_upper_bound, :]))

225 elif trim_upper_bound > self.meter_waypoints.shape[0]:

226 ret = self.numpy.row_stack((self.meter_waypoints[trim_lower_bound:, :],

self.meter_waypoints[: trim_upper_bound - self.meter_waypoints.shape[0], :]))

227 else:

228 ret = self.meter_waypoints[trim_lower_bound: trim_upper_bound, :]

229 return ret

230

231 def get_trimmed_heading(self, trim_params):

232 forward_trim = int(trim_params[2] * trim_params[1])

233 reverse_trim = trim_params[1] - forward_trim

234 trim_lower_bound = trim_params[0] - reverse_trim

235 trim_upper_bound = trim_params[0] + forward_trim

236 if trim_lower_bound < 0:

237 ret = self.numpy.concatenate((self.heading[trim_lower_bound:], self.heading[:

trim_upper_bound]))

238 elif trim_upper_bound > self.meter_waypoints.shape[0]:

239 ret = self.numpy.concatenate((self.heading[trim_lower_bound:], self.heading[:

trim_upper_bound - self.heading.shape[0]]))

240 else:

241 ret = self.heading[trim_lower_bound: trim_upper_bound]

242 return ret

243

244 def get_trimmed_speed(self, trim_params):

 129

245 forward_trim = int(trim_params[2] * trim_params[1])

246 reverse_trim = trim_params[1] - forward_trim

247 trim_lower_bound = trim_params[0] - reverse_trim

248 trim_upper_bound = trim_params[0] + forward_trim

249 if trim_lower_bound < 0:

250 ret = self.numpy.concatenate((self.speed[trim_lower_bound:], self.speed[:

trim_upper_bound]))

251 elif trim_upper_bound > self.meter_waypoints.shape[0]:

252 ret = self.numpy.concatenate((self.speed[trim_lower_bound:], self.speed[:

trim_upper_bound - self.speed.shape[0]]))

253 else:

254 ret = self.speed[trim_lower_bound: trim_upper_bound]

255 return ret

256

257 def get_trimmed(self, trim_params):

258 forward_trim = int(trim_params[2] * trim_params[1])

259 reverse_trim = trim_params[1] - forward_trim

260 trim_lower_bound = trim_params[0] - reverse_trim

261 trim_upper_bound = trim_params[0] + forward_trim

262 if trim_lower_bound < 0:

263 trimmed_geographic_waypoints =

self.numpy.row_stack((self.geographic_waypoints[trim_lower_bound:, :],

self.geographic_waypoints[: trim_upper_bound, :]))

264 trimmed_meter_waypoints =

self.numpy.row_stack((self.meter_waypoints[trim_lower_bound:, :],

self.meter_waypoints[: trim_upper_bound, :]))

265 trimmed_heading = self.numpy.concatenate((self.heading[trim_lower_bound:],

self.heading[: trim_upper_bound]))

266 trimmed_speed = self.numpy.concatenate((self.speed[trim_lower_bound:],

self.speed[: trim_upper_bound]))

267 elif trim_upper_bound > self.heading.shape[0]:

268 trimmed_geographic_waypoints =

self.numpy.row_stack((self.geographic_waypoints[trim_lower_bound:, :],

self.geographic_waypoints[: trim_upper_bound -

self.geographic_waypoints.shape[0], :]))

269 trimmed_meter_waypoints =

self.numpy.row_stack((self.meter_waypoints[trim_lower_bound:, :],

self.meter_waypoints[: trim_upper_bound - self.meter_waypoints.shape[0], :]))

270 trimmed_heading = self.numpy.concatenate((self.heading[trim_lower_bound:],

self.heading[: trim_upper_bound - self.heading.shape[0]]))

271 trimmed_speed = self.numpy.concatenate((self.speed[trim_lower_bound:],

self.speed[: trim_upper_bound - self.speed.shape[0]]))

272 else:

273 trimmed_geographic_waypoints = self.geographic_waypoints[trim_lower_bound:

trim_upper_bound, :]

274 trimmed_meter_waypoints = self.meter_waypoints[trim_lower_bound:

trim_upper_bound, :]

275 trimmed_heading = self.heading[trim_lower_bound: trim_upper_bound]

276 trimmed_speed = self.speed[trim_lower_bound: trim_upper_bound]

277 return trimmed_geographic_waypoints, trimmed_meter_waypoints, trimmed_heading,

trimmed_speed

278

279

280 class Visualizer2D:

281 import cv2

282 import numpy

 130

283

284 def __init__(self, name, frame_width, frame_height, plotspace, division,

waypoints):

285 self.name = name

286 self.canvas_size = self.numpy.array([frame_width, frame_height])

287 self.canvas_origin = self.canvas_size / 2

288 self.original_canvas_origin = self.canvas_origin

289 self.blank_canvas = self.numpy.zeros((frame_height, frame_width, 3),

self.numpy.uint8)

290 self.blank_canvas[:, :] = (65, 63, 60)

291 self.division_interval = frame_width / division

292 vertical_division = frame_height // self.division_interval

293 vertical_division = self.numpy.linspace(0, frame_height,

vertical_division+1).astype(int)

294 horizontal_division = self.numpy.linspace(0, frame_width,

division+1).astype(int)

295 for i in horizontal_division[1:-1]:

296 self.cv2.line(self.blank_canvas, (i, 0), (i, frame_height), (93, 91, 89), 1)

297 for i in vertical_division:

298 self.cv2.line(self.blank_canvas, (0, i), (frame_width, i), (93, 91, 89), 1)

299 self.scale_text_position = (int(0.9 * frame_width), int(0.98 * frame_height))

300 self.canvas = self.blank_canvas.copy()

301 self.plotspace = plotspace

302 self.waypoints = waypoints

303 self.waypoints_color = self.numpy.repeat(self.numpy.array([[255, 255, 255]]),

self.waypoints.shape[0], axis=0)

304

305 self.scale = self.plotspace * self.canvas_size / self.waypoints.ptp(axis=0)

306 self.scale = self.scale.min()

307 self.original_scale = self.scale

308

309 self.points = self.numpy.array([[0, 0]])

310 self.points_color = self.numpy.array([[0, 255, 0]])

311

312 self.update()

313

314 self.cv2.namedWindow(self.name)

315 self.cv2.setMouseCallback(self.name, self.mouse_callback)

316 self.mouse_drag_start = None

317 self.start_canvas_origin = self.canvas_origin

318 self.count = True

319

320 def update(self, text_info=None):

321 points = self.numpy.row_stack((self.waypoints, self.points))

322 color = self.numpy.row_stack((self.waypoints_color, self.points_color))

323 pixel = self.canvas_origin + ((points * self.scale) * self.numpy.array([1, -

1]))

324 self.canvas = self.blank_canvas.copy()

 131

325 for i, j in zip(pixel.astype(int), color.astype(int).tolist()):

326 self.cv2.circle(self.canvas, tuple(i), 0, j, 0)

327 scale_tex = '%.2f m/div' % (self.division_interval / self.scale)

328 self.cv2.putText(self.canvas, scale_tex, self.scale_text_position,

self.cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 0))

329 if text_info is not None:

330 text_position = self.canvas_origin + ((text_info[1] * self.scale) *

self.numpy.array([1, -1]))

331 self.cv2.putText(self.canvas, text_info[0], (int(text_position[0]),

int(text_position[1])), self.cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 0))

332 self.cv2.imshow(self.name, self.canvas)

333 return self.cv2.waitKey(5)

334

335 def reset_view(self):

336 self.canvas_origin = self.original_canvas_origin

337 self.scale = self.original_scale

338

339 def mouse_callback(self, event, x, y, flags, params):

340 if flags == 7864320:

341 self.scale *= 1.1

342 self.update()

343 elif flags == -7864320:

344 self.scale /= 1.1

345 self.update()

346 if event == 1:

347 self.mouse_drag_start = self.numpy.array([x, y])

348 self.start_canvas_origin = self.canvas_origin

349 if flags == 1:

350 self.count = not self.count

351 if self.count:

352 current = self.numpy.array([x, y])

353 self.canvas_origin = self.start_canvas_origin + (current -

self.mouse_drag_start)

354 self.update()

355

356

357 class ScoredKinematicPath2D:

358 import numpy

359 from scipy import integrate

360 from scipy.spatial import cKDTree

361

362 def __init__(self, waypoints, steering_profile, weight, collision_radius,

predicted_distance, neglect_collision=False):

363 self.waypoints = waypoints

364 self.steering_profile = steering_profile

365 self.weight = weight

366 self.collision_radius = collision_radius

367 self.predicted_distance = predicted_distance

 132

368 self.neglect_collision = neglect_collision

369

370 def update(self, position, heading, speed, steering_position, obstacle=None,

trim_params=None):

371 adjusted_steering_profile, adjusted_raw_steering_profile, adjusted_time =

self.steering_profile.get_profile(steering_position,

trim=self.predicted_distance/speed)

372 adjusted_steering_profile_resolution, adjusted_time_axis_resolution =

adjusted_steering_profile.shape

373 course = (speed * adjusted_steering_profile) + heading

374 x = (speed * self.integrate.cumtrapz(self.numpy.cos(course), adjusted_time,

axis=1, initial=0)) + position[0]

375 y = (speed * self.integrate.cumtrapz(self.numpy.sin(course), adjusted_time,

axis=1, initial=0)) + position[1]

376 xy = self.numpy.column_stack((x.reshape((-1,)), y.reshape((-1,))))

377

378 if trim_params is not None:

379 _, trimmed_waypoints, trimmed_heading, trimmed_speed =

self.waypoints.get_trimmed(trim_params)

380 trimmed_waypoints_manager = self.cKDTree(trimmed_waypoints)

381 distance_apart, closest_point_index = trimmed_waypoints_manager.query(xy)

382 required_heading = trimmed_heading[closest_point_index]

383 required_speed = trimmed_speed[closest_point_index[0]]

384 else:

385 trimmed_waypoints = None

386 distance_apart, closest_point_index = self.waypoints.meter_manager.query(xy)

387 required_heading = self.waypoints.heading[closest_point_index]

388 required_speed = self.waypoints.speed[closest_point_index[0]]

389

390 distance_apart = distance_apart.reshape((adjusted_steering_profile_resolution,

-1))

391 distance_score = distance_apart.sum(axis=1)

392 distance_score = distance_score / distance_score.max()

393

394 required_heading =

required_heading.reshape((adjusted_steering_profile_resolution, -1))

395 heading_score = required_heading - course

396 heading_score = self.numpy.abs(heading_score).sum(axis=1)

397 heading_score = heading_score / heading_score.max()

398

399 steering_smoothness_score =

self.numpy.abs(self.steering_profile.steering_position_axis -

steering_position)

400 steering_smoothness_score = steering_smoothness_score /

steering_smoothness_score.max()

401

402 emergency_brake_status = False

403

404 if obstacle is not None:

405 obstacle_manger = self.cKDTree(obstacle)

406 obstacle_distance, _ = obstacle_manger.query(xy)

407 obstacle_distance =

obstacle_distance.reshape((adjusted_steering_profile_resolution, -1))

 133

408 obstacle_score = obstacle_distance.sum(axis=1)

409 obstacle_score = obstacle_score / obstacle_score.max()

410

411 collision_score = obstacle_distance.min(axis=1)

412 if not self.neglect_collision:

413 collision_score[collision_score <= self.collision_radius] = -self.numpy.inf

414 max_collision_score = collision_score.max()

415 if max_collision_score == -self.numpy.inf:

416 emergency_brake_status = True

417 else:

418 collision_score = collision_score / max_collision_score

419 else:

420 obstacle_score = self.numpy.zeros(adjusted_steering_profile_resolution)

421 collision_score = self.numpy.zeros(adjusted_steering_profile_resolution)

422

423 raw_score = self.numpy.column_stack((distance_score, heading_score,

steering_smoothness_score, obstacle_score, collision_score))

424 weighted_score = self.weight * raw_score

425 weighted_score = weighted_score.sum(axis=1)

426

427 if emergency_brake_status:

428 xy_color = self.numpy.repeat(self.numpy.array([[0, 0, 255]]), xy.shape[0],

axis=0)

429 else:

430 rank = self.numpy.zeros((adjusted_steering_profile_resolution,))

431 rank[weighted_score.argsort()] =

self.numpy.arange(adjusted_steering_profile_resolution)

432

433 xy_color_blue = self.numpy.zeros(adjusted_steering_profile_resolution,)

434 xy_color_red = rank / adjusted_steering_profile_resolution * 255

435 xy_color_green = 255 - xy_color_red

436 xy_color = self.numpy.column_stack((xy_color_blue, xy_color_green,

xy_color_red))

437 xy_color = self.numpy.repeat(xy_color, adjusted_time_axis_resolution, axis=0)

438

439 required_steering_index = weighted_score.argmin()

440 required_steering_position =

self.steering_profile.steering_position_axis[required_steering_index]

441

442 return required_steering_position, required_steering_index, required_speed,

emergency_brake_status, xy, course, xy_color, trimmed_waypoints,

adjusted_raw_steering_profile, adjusted_steering_profile_resolution,

adjusted_time_axis_resolution

443

444

445 class PosLVX:

446 import socket

447 import threading

448

 134

449 TCPport = None

450 thread_alive = False

451 loop_thread = None

452 received_message = None

453 data = None

454 index = None

455

456 GPHDTheading = None

457 GPGGAlatitude = None

458 GPGGAlongitude = None

459 GPGGAquality = None

460 GPGGAsatellitesinuse = None

461 GPRMClatitude = None

462 GPRMClongitude = None

463 GPRMCspeedoverground = None

464 GPRMCmode = None

465 GPVTGtruetrack = None

466 GPVTGtrackmagnetic = None

467 GPVTGspeed = None

468 GPVTGmode = None

469

470 def __init__(self, ip, port):

471 self.TCPport = self.socket.socket(self.socket.AF_INET, self.socket.SOCK_STREAM)

472 self.TCPport.connect((ip, port))

473 self.loop_thread = self.threading.Thread(target=self.loop)

474

475 def loop(self):

476 while self.thread_alive:

477 self.received_message = self.TCPport.recv(1024)

478 self.data = self.received_message.decode().split('\r\n')[:-1]

479 self.data = [i.split(',') for i in self.data]

480 self.index = [i[0] for i in self.data]

481 try:

482 GNHDT = self.index.index('$GNHDT')

483 GNRMC = self.index.index('$GNRMC')

484 GNGGA = self.index.index('$GNGGA')

485 GNVTG = self.index.index('$GNVTG')

486

487 if self.data[GNHDT][1] == '':

488 self.GPHDTheading = None

489 else:

490 self.GPHDTheading = float(self.data[GNHDT][1])

491 if self.data[GNGGA][2] == '':

492 self.GPGGAlatitude = None

 135

493 else:

494 self.GPGGAlatitude = float(self.data[GNGGA][2][:2]) +

float(self.data[GNGGA][2][2:])/60

495 if self.data[GNGGA][4] == '':

496 self.GPGGAlongitude = None

497 else:

498 self.GPGGAlongitude= float(self.data[GNGGA][4][:3]) +

float(self.data[GNGGA][4][3:])/60

499 if self.data[GNGGA][6] == '':

500 self.GPGGAquality = None

501 else:

502 self.GPGGAquality = float(self.data[GNGGA][6])

503 if self.data[GNGGA][7] == '':

504 self.GPGGAsatellitesinuse = None

505 else:

506 self.GPGGAsatellitesinuse = float(self.data[GNGGA][7])

507 if self.data[GNRMC][3] == '':

508 self.GPRMClatitude = None

509 else:

510 self.GPRMClatitude = float(self.data[GNRMC][3][:2]) +

float(self.data[GNRMC][3][2:])/60

511 if self.data[GNRMC][5] == '':

512 self.GPRMClongitude = None

513 else:

514 self.GPRMClongitude = float(self.data[GNRMC][5][:3]) +

float(self.data[GNRMC][5][3:])/60

515 if self.data[GNRMC][7] == '':

516 self.GPRMCspeedoverground = None

517 else:

518 self.GPRMCspeedoverground = float(self.data[GNRMC][7])

519 self.GPRMCmode = self.data[GNRMC][12][:1]

520 if self.data[GNVTG][1] == '':

521 self.GPVTGtruetrack = None

522 else:

523 self.GPVTGtruetrack = float(self.data[GNVTG][1])

524 if self.data[GNVTG][3] == '':

525 self.GPVTGtrackmagnetic = None

526 else:

527 self.GPVTGtrackmagnetic = float(self.data[GNVTG][3])

528 if self.data[GNVTG][7] == '':

529 self.GPVTGspeed = None

530 else:

531 self.GPVTGspeed = float(self.data[GNVTG][7])

532 self.GPVTGmode = self.data[GNVTG][9][:1]

533 except:

534 print('POSLVX ERROR')

535

 136

536 def start(self):

537 self.thread_alive = True

538 self.loop_thread.start()

539

540 def kill(self):

541 self.thread_alive = False

542 del self.loop_thread

543

544

545 class LMS511:

546 import socket

547 import numpy

548

549 def __init__(self, ip, port, radius=0.0):

550 self.ip = ip

551 self.port = port

552 self.radius = radius

553 self.buffer = 2048

554 self.angle = self.numpy.deg2rad(self.numpy.linspace(-5, 185, 381))

555 self.device = None

556

557 def start(self):

558 self.device = self.socket.socket(self.socket.AF_INET, self.socket.SOCK_STREAM)

559 self.device.connect((self.ip, self.port))

560 self.device.settimeout(0.01)

561

562 def get_scan(self, heading=None, origin=None):

563 self.device.send(b'\x02sRN LMDscandata\x03')

564 raw_data = b''

565 while True:

566 try:

567 raw_data += self.device.recv(self.buffer)

568 if raw_data[-1] == 3:

569 break

570 except self.socket.timeout:

571 pass

572 raw_data = raw_data.decode().split(' ')

573 data_length = int(raw_data[raw_data.index('DIST1') + 5], 16)

574 distance = raw_data[raw_data.index('DIST1') + 6:raw_data.index('DIST1') + 6 +

data_length]

575 distance = [int(i, 16) for i in distance]

576 distance = self.numpy.array(distance) * 0.002

577 indx = (distance >= self.radius)

578 filtered_distance = distance[indx]

 137

579 filtered_angle = self.angle[indx]

580

581 x = filtered_distance * self.numpy.cos(filtered_angle)

582 y = filtered_distance * self.numpy.sin(filtered_angle)

583 ret = self.numpy.row_stack((x, y))

584

585 if heading is not None:

586 rotational_angle = heading - (self.numpy.pi / 2)

587 c = self.numpy.cos(rotational_angle)

588 s = self.numpy.sin(rotational_angle)

589 rotational_matrix = self.numpy.array([[c, -s], [s, c]])

590 ret = self.numpy.matmul(rotational_matrix, ret)

591 ret = ret.transpose()

592 if origin is not None:

593 ret = ret + origin

594

595 return ret

596

597

598 class ExponentialGainAdjustment:

599

600 def __init__(self, initial, increment, exponent, minimum, maximum):

601 self.gain = initial

602 self.increment = increment

603 self.exponent = exponent

604 self.previous_direction = 0

605 self.maximum = maximum

606 self.minimum = minimum

607

608 def update(self, direction):

609 if direction * self.previous_direction > 0:

610 self.increment = self.increment * self.exponent

611 self.gain = self.gain + (direction * self.increment)

612 elif direction * self.previous_direction < 0:

613 self.increment = self.increment / self.exponent

614 self.gain = self.gain + (direction * self.increment)

615 elif self.previous_direction == 0:

616 self.gain = self.gain + (direction * self.increment)

617 if self.gain < self.minimum:

618 self.increment = self.increment / self.exponent

619 self.gain = self.minimum

620 elif self.gain > self.maximum:

621 self.increment = self.increment / self.exponent

622 self.gain = self.maximum

 138

623 self.previous_direction = direction

624 return self.gain

Table 18 High-level autonomous navigation software source code (Python)

Line Code Line Code

1 import smrclib 127 os.mkdir(log_directory)

2 import serial.tools.list_ports 128 except FileExistsError:

3 import time 129 print('[WARNING] Output directory

already exist')

4 import numpy 130 log_filename = log_directory +

datetime.datetime.now().strftime('

\\%S%M%H%d%m%y.lg')

5 import datetime 131

6 import os 132 # NAVIGATION ROUTINE

7 import cv2 133 # system_controller.set(9, 1)

8 from scipy.spatial import cKDTree 134 system_controller.set(7, 1)

9

135 # system_controller.set(0, 1)

10

136 cruise_controller.set(1, 1)

11 # GEOGRAPHICAL PARAMETERS 137 time.sleep(0.1)

12 longitude_gain = 108657.32434

meter/degree_longitude

138 steering_controller.set(1, 1)

13 latitude_gain = 111456.76004

meter/degree_latitude

139 time.sleep(0.1)

14

140 if command_speed is not None:

15 # SENSORS PARAMETERS 141 cruise_controller.set(0,

int(command_speed * 100.0))

16 locator_distance = 0.0 #

meter

142

17 lidar_distance = 1.74 #

meter

143 initial_time = time.time()

18 collision_radius = 0.6 #

meter

144 timestamp = time.time()

19 lms511_radius = 0.001 #

meter

145 while True:

20 poslvx_ip = '192.168.1.229' 146 longitude = poslvx.GPRMClongitude

21 poslvx_port = 5017 147 latitude = poslvx.GPRMClatitude

22 lms511_ip = '192.168.1.101' 148 navigation_heading =

poslvx.GPHDTheading

23 lms511_port = 2111 149 current_steering_position =

steering_controller.poll(10)

24

150 current_speed =

cruise_controller.poll(11)

25 # VEHICLE PHYSICAL CALIBRATION

PARAMETERS

151 if current_steering_position <

1500 or current_steering_position

> 16000:

26 steering_gain =

0.0000498013323955794

1/meter_steering_position

152 current_steering_position =

previous_steering_position

27 steering_offset =

0.431766151719804

1/meter

153 if current_speed < -6000 or

current_speed > 6000:

28

154 current_speed = previous_speed

29 # DECISION WEIGHT 155

30 distance_score_weight = 1.5

dimensionless

156 if current_speed == 0:

31 heading_score_weight = 0.01

dimensionless

157 current_speed = 0.01

32 steering_smoothness_weight = 0.0

dimensionless

158

 139

33 obstacle_score_weight = -0.1

dimensionless

159 locator_position =

waypoints.to_meter(numpy.array([lo

ngitude, latitude]))

34 collision_score_weight = -0.25

dimensionless

160 car_heading =

waypoints.to_mathematic_angle(navi

gation_heading)

35

161 car_position = locator_position +

(locator_distance *

numpy.array([numpy.cos(car_heading

), numpy.sin(car_heading)]))

36 # ALGORITHM PARAMETERS 162 lidar_position = locator_position

+ (lidar_distance *

numpy.array([numpy.cos(car_heading

), numpy.sin(car_heading)]))

37 control_loop_interval = 0.20

second

163

38 algorithm_collision_radius = 0.8

meter

164 lidarscan =

lms511.get_scan(car_heading,

lidar_position)

39 algorithm_predicted_distance =

12.0 # meter

165 lidarscan_color =

numpy.repeat(lidarscan_display_col

or, lidarscan.shape[0], axis=0)

40 trimmed_waypoints_length = 100

point

166

41 trimmed_forward_ratio = 70

percent

167 _, car_position_index =

waypoints.meter_manager.query(car_

position)

42 command_speed = 7

km/hr , None

168 if abs(car_position_index -

previous_trim_index) >

trimmed_waypoints_length and 50 <

car_position_index <

(waypoints.meter_waypoints.shape[0

] - 50):

43 waypoints_filename =

'waypoints\\SKP(MAINROUTE).wp'

.wp filepath

169 trim_index = previous_trim_index

44 steering_profile_filename =

'steering_profile\\(3S0).sp'

.sp filepath

170 else:

45

171 trim_index = car_position_index

46 # DISPLAY SETTING 172 previous_trim_index = trim_index

47 display_width = 960 #

pixel

173

48 display_height = 720 #

pixel

174 trim_params = (trim_index,

trimmed_waypoints_length,

trimmed_forward_ratio)

49 display_plotspace = 0.8 #

ratio

175 prior_command_steering,

prior_command_index,

required_speed, blocked_status,

predicted_path, predicted_heading,

predicted_path_color,

trimmed_waypoints,

raw_steering_profile,

adjust_profile_resolution,

time_resolution =

algorithm.update(car_position,

car_heading, current_speed/360.0,

current_steering_position,

obstacle=lidarscan,

trim_params=trim_params)

50 display_division = 40 #

division

176 trimmed_waypoints_color =

numpy.repeat(trimmed_waypoints_dis

play_color,

trimmed_waypoints.shape[0],

axis=0)

51 lidarscan_display_color =

numpy.array([[255, 0, 255]])

BGR colorspace

177 selected_path =

predicted_path[prior_command_index

* time_resolution:

(prior_command_index + 1) *

time_resolution, :]

52 trimmed_waypoints_display_color = 178 selected_path_color =

 140

numpy.array([[255, 0, 0]]) #

BGR colorspace

numpy.repeat(selected_path_display

_color, selected_path.shape[0],

axis=0)

53 selected_path_display_color =

numpy.array([[255, 0, 255]])

BGR colorspace

179

54

180 if compensation_status:

55 # LOG SETTING 181 gain_compensator_direction =

(expected_steering_position -

current_steering_position) *

command_steering_direction

56 log_directory = 'logdata' 182 gain_compensator_direction =

gain_compensator_direction/abs(gai

n_compensator_direction) if not

gain_compensator_direction == 0

else 0

57

183 gain_compensation =

gain_compensator.update(gain_compe

nsator_direction)

58 # COMPENSATION ALGORITHM

INITIALIZATION

184 command_steering =

gain_compensation *

(prior_command_steering -

current_steering_position) +

current_steering_position

59 gain_compensation = 0.7

dimensionless

185 else:

60 initial_gain_compensation = 1.0

dimensionless

186 command_steering = tuning_gain *

(prior_command_steering -

current_steering_position) +

current_steering_position +

tuning_offset

61 gain_compensation_increment =

0.005 # dimensionless

187

62 gain_compensation_exponent = 1.10

dimensionless

188 if command_steering > 15500:

63 minimum_gain = 0.3

dimensionless

189 command_steering = 15500

64 maximum_gain = 1.0

dimensionless

190 elif command_steering < 2500:

65 compensation_status = True 191 command_steering = 2500

66

192

67 # COMPENSATION TUNING PARAMETERS 193 steering_controller.set(0,

int(command_steering))

68 tuning_gain = 1.0 194 if cruise_control_status:

69 tuning_offset = 0.0 195 command_speed = required_speed *

360.0

70

196 cruise_controller.set(0,

int(command_speed))

71 # NAVIGATION MODE SETTING 197

72 cruise_control_status = False 198 print('[INFO]

%d\t%d\t%d\t%s\t%.3f\t' %

(command_steering,

prior_command_steering,

command_speed, blocked_status,

gain_compensation), end='')

73

199 print(expected_steering_position,

current_steering_position)

74 # VEHICLE COMMUNICATION 200

75 available_ports =

serial.tools.list_ports.comports()

201 visualizer.points =

numpy.row_stack((predicted_path,

lidarscan, trimmed_waypoints,

selected_path))

76 ports_serial_number =

[i.serial_number for i in

available_ports]

202 visualizer.points_color =

numpy.row_stack((predicted_path_co

lor, lidarscan_color,

trimmed_waypoints_color,

selected_path_color))

77 ports_name = [i.device for i in

available_ports]

203 key_received =

visualizer.update(text_info=('(%.6

 141

f, %.6f)' % (longitude, latitude),

car_position))

78 ports_table =

dict(zip(ports_serial_number,

ports_name))

204 if key_received == 114:

79 system_controller =

smrclib.SystemController(ports_tab

le['0775'], 57600)

205 visualizer.reset_view()

80 cruise_controller =

smrclib.CruiseController(ports_tab

le['0768'], 57600)

206 elif key_received == 27:

81 steering_controller =

smrclib.SteeringController(ports_t

able['0918'], 57600)

207 break

82

208

83 # SENSOR INITIALIZATION 209 previous_steering_position =

current_steering_position

84 poslvx = smrclib.PosLVX(poslvx_ip,

poslvx_port)

210 previous_speed = current_speed

85 lms511 = smrclib.LMS511(lms511_ip,

lms511_port, lms511_radius)

211 expected_steering_position =

raw_steering_profile[prior_command

_index,

expected_steering_time_index]

86 poslvx.start() 212 command_steering_direction =

command_steering -

current_steering_position

87 lms511.start() 213

88

214 while time.time() - timestamp <

control_loop_interval:

89 # NAVIGATION ALGORITHM

INITIALIZATION

215 pass

90 trimmed_forward_ratio =

trimmed_forward_ratio / 100.0

216 timestamp = time.time()

91 steering_center =

steering_offset/steering_gain

217

92 score_weight =

numpy.array([distance_score_weight

, heading_score_weight,

steering_smoothness_weight,

obstacle_score_weight,

collision_score_weight])

218 with open(log_filename, 'a') as f:

93

219 f.write('%.10f\t' % (timestamp-

initial_time))

94 waypoints =

smrclib.WaypointsMap(waypoints_fil

ename, longitude_gain,

latitude_gain)

220 f.write('%.10f\t' % longitude)

95 steering_profile =

smrclib.SteeringProfile(steering_p

rofile_filename, steering_gain,

steering_offset)

221 f.write('%.10f\t' % latitude)

96 visualizer =

smrclib.Visualizer2D('Navigator',

display_width, display_height,

display_plotspace,

display_division,

waypoints.meter_waypoints)

222 f.write('%.10f\t' %

navigation_heading)

97 algorithm =

smrclib.ScoredKinematicPath2D(wayp

oints, steering_profile,

score_weight,

algorithm_collision_radius,

algorithm_predicted_distance,

neglect_collision=True)

223 f.write('%d\t' %

current_steering_position)

98 gain_compensator =

smrclib.ExponentialGainAdjustment(

initial_gain_compensation,

gain_compensation_increment,

gain_compensation_exponent,

minimum_gain, maximum_gain)

224 f.write('%d\t' % (current_speed /

100.0))

99 expected_steering_time_index = 225 f.write('%d\t' % command_steering)

 142

numpy.abs(steering_profile.time_ax

is -

control_loop_interval).argmin()

100

226 f.write('%d\t' % command_speed)

101 longitude = poslvx.GPRMClongitude 227 f.write('%.10f\t' %

longitude_gain)

102 latitude = poslvx.GPRMClatitude 228 f.write('%.10f\t' % latitude_gain)

103 navigation_heading =

poslvx.GPHDTheading

229 f.write('%.3f\t' %

distance_score_weight)

104 locator_position =

waypoints.to_meter(numpy.array([lo

ngitude, latitude]))

230 f.write('%.3f\t' %

heading_score_weight)

105 car_heading =

waypoints.to_mathematic_angle(navi

gation_heading)

231 f.write('%.3f\t' %

obstacle_score_weight)

106 car_position = locator_position +

(locator_distance *

numpy.array([numpy.cos(car_heading

), numpy.sin(car_heading)]))

232 f.write('%.3f\n' %

collision_score_weight)

107 _, previous_trim_index =

waypoints.meter_manager.query(car_

position)

233

108

234 cv2.destroyAllWindows()

109 previous_steering_position =

steering_controller.poll(10)

235 cruise_controller.set(1, 2)

110 previous_speed =

cruise_controller.poll(11)

236 time.sleep(0.1)

111

237 system_controller.set(1, 0)

112 while not (1500 <

previous_steering_position <

16500):

238 time.sleep(0.1)

113 previous_steering_position =

steering_controller.poll(10)

239 steering_controller.set(1, 0)

114 time.sleep(0.1) 240 time.sleep(0.1)

115 while not (-6000 < previous_speed

< 6000):

241 system_controller.set(2, 0)

116 previous_speed =

cruise_controller.poll(11)

242 time.sleep(0.1)

117 time.sleep(0.1) 243 system_controller.set(0, 0)

118

244 time.sleep(0.1)

119 expected_steering_position =

previous_steering_position

245 system_controller.set(7, 0)

120 command_steering_direction = 0 246 time.sleep(0.1)

121

247 system_controller.set(9, 0)

122 brake_pedal_status = False 248 time.sleep(0.1)

123 cruise_controller_emergency_status

= False

249

124

250 while cruise_controller.poll(11) >

0:

125 # LOG INITIALIZATION 251 time.sleep(0.1)

126 try: 252 cruise_controller.set(1, 0)

VITA

VITA

NAME Kanin Kiataramgul

DATE OF BIRTH 24 February 1995

PLACE OF BIRTH Bangkok

INSTITUTIONS

ATTENDED

B.Eng. Mechanical Engineering, Chulalongkorn University

HOME ADDRESS 97/142 Kosumruamjai39, Don Mueang, Bangkok, 10210

PUBLICATION Kiataramgul, K. and N. Noomwongs. Development of forward

collision warning system using laser scanner with camera to
detect and estimate object headway distance. in The 8th TSME

International Conference on Mechanical Engineering. 2017.

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I INTRODUCTION
	1. Background and Significant of the Research Problem
	1.1. Levels of Driving Automation According to SAE
	1.1.1. 0th Level, No Automation
	1.1.2. 1st Level, Driver Assistance
	1.1.3. 2nd Level, Partial Automation
	1.1.4. 3rd Level, Conditional Automation
	1.1.5. 4th Level, High Automation
	1.1.6. 5th Level, Full Automation

	1.2. Level of Driving Automation According to BASt
	1.3. Driver Assistance Systems
	1.3.1. Cruise Control
	1.3.2. Collision Avoidance
	1.3.3. Lane Keeping Assist

	2. Objectives of Research
	3. Scope of the Research
	4. Expected Benefits

	CHAPTER II LITERATURE REVIEW
	1. Localization Techniques
	1.1. Landmark-based Localization
	1.1.1. Natural Landmark-based Localization
	1.1.2. Artificial Landmark-based Localization

	1.2. Localization Base on Global Navigation Satellite System
	1.3. Summary of Localization Technique

	2. Path Follower Autonomous
	2.1. The Dynamic Window Approach (DWA)

	CHAPTER III RELATED THEORY
	1. Global Navigation Satellite System (GNSS)[22]
	1.1. The Global Positioning System (GPS)
	1.2. Source of GNSS Measurement’s Error
	1.3. Pseudorange Equations
	1.4. Differential Global Positioning System (DGPS)
	1.5. Relative Positioning

	2. Proportional-Integral-Derivative Controller
	2.1. Proportional Controller
	2.2. Integral Controller
	2.3. Derivative Controller
	2.4. Implementation

	CHAPTER IV DEVELOPMENT OF AUTONOMOUS DRIVING SYSTEM
	1. Low-level Control System
	1.1. Power Supply System Modification
	1.2. Electronic System Modification
	1.2.1. Modified Switch Circuits
	1.2.2. Microcontroller software

	1.3. Steering Control System
	1.3.1. Mechanical Actuator System
	1.3.2. Electronics System
	1.3.3. Low-level Steering Control System
	1.3.4. Microcontroller Software
	1.3.5. Steering Units Relationship
	1.3.6. PID Controller Output Description
	1.3.7. Parameters Tuning
	1.3.8. Response Model

	1.4. Speed Control System
	1.4.1. Mechanical Actuator System
	1.4.2. Electronics System
	1.4.3. Low-level Speed Control System
	1.4.4. Microcontroller Software
	1.4.5. Parameters Tuning

	2. High-level Control System
	2.1. Vehicle Model
	2.1.1. Single-Track Kinematic Model
	2.1.2. Approximated Linear Relationship
	2.1.3. Effective Inverse Wheelbase Calibration

	2.2. Scored Predicted Trajectory
	2.2.1. Trajectory Prediction
	2.2.2. Trajectory Evaluation and Scoring
	2.2.2.1. Linear Deviation Evaluation
	2.2.2.2. Angular Deviation Evaluation
	2.2.2.3. Collision Distance Evaluation
	2.2.2.4. Overall Score Combination

	2.2.3. A Modification for Algorithm Implementation
	2.2.3.1. Vehicle Trajectory Approximation
	2.2.3.2. Discrete Linear Deviation Evaluation
	2.2.3.3. Discrete Angular Deviation Evaluation
	2.2.3.4. Discrete Collision Distance Evaluation
	2.2.3.5. Critical Obstacle Distance Evaluation
	2.2.3.6. Overall Discrete Score Combination

	2.2.4. Software Implementation

	2.3. High-level Autonomous Navigation Software
	2.3.1. Speed-independent Navigation System Algorithm
	2.3.2. Exponential Gain Compensation
	2.3.3. Speed-dependent Autonomous Navigation Algorithm

	3. Geographic Conversion Factor Calibration

	CHAPTER V SYSTEM EVALUATION EXPERIMENT
	1. Experiment Setup
	2. Autonomous Path Following Navigation Evaluation
	3. Obstacle Avoidance Evaluation
	4. Discussion

	CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS
	1. Conclusions
	2. Recommendations

	REFERENCES
	APPENDIX A NAVIGATION SENSORS
	APPENDIX B PROCESSING UNIT
	APPENDIX C CAR SPECIFICATION
	APPENDIX D DEVELOPED MASTER CYLINDER
	APPENDIX E LOW-LEVEL CONTROLLER CIRCUIT
	APPENDIX F SOURCE CODE
	VITA

