PREPARATION AND CHARACTERIZATION OF CHITOSAN-COATED CALCIUM ALGINATE FILM

Ms. Jeerada Mahutthon

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science
The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with
The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2003

ISBN 974-17-2320-2

Thesis Title: Preparation and Characterization of Chitosan-Coated Calcium

Alginate Film

By: Jeerada Mahutthon

Program: Polymer Science

Thesis Advisors: Asst. Prof. Ratana Rujiravanit

Prof. Alexander M. Jamieson

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Brunyakint.

College Director

(Assoc. Prof. Kanchana Bunyakiat)

Thesis Committee:

(Asst. Prof. Ratana Rujiravanit)

Ratana Rijummit

(Prof. Alexander M. Jamieson)

(Assoc. Prof. Nantaya Yanumet)

Nantaya Janumet.

(Assoc. Prof. Suwabun Chirachanchai)

Somabun Chiachaucho

ABSTRACT

4472003063 : POLYMER SCIENCE PROGRAM

Jeerada Mahutthon: Preparation and Characterization of Chitosan-

Coated Calcium Alginate Film

Thesis Advisors: Asst. Prof. Ratana Rujiravanit and Prof. Alexander

M. Jamieson, 95 pp. ISBN 974-17-2320-2

Keywords : Alginate/ Chitosan/ Calcium alginate/ Chitosan-coated calcium

alginate film

The effects of cross-linking with calcium ion and chitosan coating on mechanical properties, swelling behavior and drug release characteristics of alginate films were studied. FTIR spectra of chitosan-coated calcium alginate films showed the characteristic peaks of chitosan indicating that chitosan was successfully coated on calcium alginate film. The chitosan coating on calcium alginate film was also confirmed by ninhydrin staining. Chitosan-coated calcium alginate films showed better tensile strength and Young's modulus than alginate and noncoated calcium alginate films due to the electrostatic interaction at the interface between alginate and chitosan. Both noncoated calcium alginate and chitosan-coated calcium alginate films possessed pH-sensitive swelling characteristics and chitosan-coated calcium alginate films showed higher degrees of swelling than the noncoated films. Drug release studies of the films were carried out at 37 °C at simulated physiological pHs, i.e. pH 2, pH 5.5, and pH 7.2, using salicylic acid and theophylline as model drugs. The amounts of model drugs released from chitosan-coated calcium alginate films were lower than those from the noncoated films and drug release at pH 5.5 gave higher equilibrium drug releasing amounts than at pH 2.0 for both model drugs.

บทคัดย่อ

จีรคา มหัตธนะ การเตรียมและการศึกษาคุณสมบัติของแผ่นฟิล์มแคลเซียมแอลจิเนตที่ เคลือบผิวค้วยใกโตซาน (Preparation and Characterization of Chitosan-Coated Calcium Alginate Film) อ.ที่ปรึกษา: ผศ.คร. รัตนา รุจิรวนิช และ ศ. อเลกซานเดอร์ เอ็ม เจมิสัน 95หน้า ISBN 974-17-2320-2

งานวิจัยนี้ศึกษาผลของการเชื่อมโยงให้เกิดโครงร่างตาข่ายด้วยอิออนของแคลเซียมและ การเคลือบผิวคั่วยใคโตซานต่อคุณสมบัติเชิงกล พฤติกรรมการบวมตัวและลักษณะการปลดปล่อย ตัวขาของแผ่นฟิล์มแอลจิเนต ผลการวิเคราะห์สเปกตรัมของรังสีอินฟราเรค (FTIR)และการ ทคสอบค้วยสารละลายนินไฮคริน พบว่าไคโตซานได้ถูกเคลือบบนแผ่นฟิล์มแคลเซียมแอลจิเนต จากการศึกษาคุณสมบัติเชิงกลพบว่าแผ่นฟิล์มที่ได้จากการเคลือบไคโตซานบนแผ่นฟิล์มแคลเซียม แอลจิเนตมีความทนทานต่อแรงคึงและค่ายังโมคูลัสคีกว่าแผ่นฟิล์มที่ไม่ได้เคลือบไคโตซาน เนื่อง จากมีแรงดึงคูคทางไฟฟ้าสถิตเกิดขึ้นระหว่างพื้นผิวของแอลจิเนตและไคโตซาน จากการศึกษา พฤติกรรมการบวมตัวพบว่า แผ่นฟิล์มแคลเซียมแอลจิเนตและฟิล์มที่ได้จากการเคลือบไคโตซาน บนแคลเซียมแอลจิเนตมีลักษณะการบวมตัวต่อการเปลี่ยนแปลงของความเป็นกรด-ค่างและแผ่น ฟิล์มที่ได้จากการเคลือบไคโตซานบนแผ่นฟิล์มแคลเซียมแอลจิเนตมีค่าการบวมตัวสูงกว่าแผ่น ฟิล์มที่ไม่ได้เคลือบไคโตซาน ในการศึกษาการปลคปล่อยตัวยาจากแผ่นฟิล์มทำที่อุณหภูมิ 37 องศาเซลเซียสในสารละลายบัฟเฟอร์ที่มีความเป็นกรค-ค่างเท่ากับ 2 5.5 และ 7.2 ในการศึกษานี้ ใช้กรคซาลิไซลิกและที่โอฟิลีนเป็นยาต้นแบบ จากการศึกษาพบว่าการปลดปล่อยตัวยาจากแผ่น ฟิล์มที่ได้จากการเคลือบไคโตซานบนแผ่นฟิล์มแคลเซียมแอลจิเนตมีค่าการปลดปล่อยตัวยาน้อย กว่าแผ่นฟิล์มที่ไม่ได้เคลือบ นอกจากนี้เมื่อเปรียบเทียบค่าการปลดปล่อยตัวยาที่ทำในสารละลาย บัฟเฟอร์ที่มีความเป็นกรค-ค่างเท่ากับ 5.5 มีค่าการปลคปล่อยตัวยาสูงกว่าในสารละลายบัฟเฟอร์ที่ มีความเป็นกรค-ค่างเท่ากับ 2

ACKNOWLEDGEMENTS

The author would like to thank the Petroleum and Petrochemical College, Chulalongkorn University, where the author has gained her knowledge and enriched her skill in polymer science. The author would also like to acknowledge Surapon Food Company for their support in supplying shrimp shells, the raw material used throughout this work. Also, the author would like to thank KPT Cooperation (Thailand) for kindly supplied NaOH solution utilized for the preparation of chitosan.

The author would like to express grateful appreciation to her advisors, Asst. Prof. Ratana Rujiravanit and Prof. Alexander M. Jamieson for their invaluable suggestion and criticism.

The author would also like to acknowledge Prof. Seichi Tokura for his helpful suggestion.

This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

The author is also indebted to her family and friends for their encouragement and understanding during her studies and thesis work.

TABLE OF CONTENTS

			PAGE
	Title Pag	ge	i
	Abstract	(in English)	iii
	Abstract	(in Thai)	iv
	Acknow	ledgements	v
	Table of	Contents	vi
	List of T	ables	ix
	List of F	igures	xii
СНАРТЕ	ER		
I	INTRO	DUCTION	1
II	LITERA	ATURE REVIEW	3
	2.1 Algi	inate Based Material for Drug Delivery Studies	3
	2.2 Chit	tosan Based Material for Drug Delivery Studies	6
	2.3 Con	trolled Drug Delivery Systems	10
	2.4 Chit	osan-Coated Calcium Alginate Based	
	Mat	erial for Drug Delivery Studies	15
Ш	EXPER	IMENTAL	17
	3.1 Mat	erials	17
	3.2 Equ	ipment	17
	3.3 Met	hodology	18
	3.3.	Preparation of Chitin and Chitosan	18
		3.3.1.1 Preparation of Chitin	18
		3.3.1.2 Preparation of Chitosan	19
	3.3.2	2 Characterization of Chitosan	19
		3.3.2.1 Degree of Deacetylation	19
		3.3.2.2 Viscosity-Average Molecular	
		Weight	20

СНАРТЕ	₹		PAGE
	3.3.3	Characterization of Sodium Alginate	21
	3.3.4	Preparation of Chitosan-Coated Calcium	
		alginate Films	21
		3.3.4.1 Preparation of Alginate Solution	21
		3.3.4.2 Preparation of Chitosan Solution	21
		3.3.4.3 Preparation of Alginate Films	22
		3.3.4.4 Preparation of Model Drug-	
		Loaded Alginate Films	22
		3.3.4.5 Preparation of Calcium Alginate	
		Films	22
		3.3.4.6 Preparation of Chitosan-Coated	
		Calcium Alginate Films	22
	3.3.5	Characterization and Testing of Films	23
		3.3.5.1 Fourier Transform Infrared	
		Spectra	23
		3.3.5.2 Ninhydrin Staining	23
		3.3.5.3 Mechanical Testing	23
		3.3.5.4 Swelling Behavior	
		Determination	23
		3.3.5.5 Drug Loading Determination	24
		3.3.5.6 Drug Release Studies	24
IV	RESULT	S AND DISCUSSION	25
1 1		ration of Chitosan	25
	•	acterization of Chitosan	26
	_	Structural Characterization	26
		Degree of Deacetylation	27
		Viscosity-Average Molecular Weight	27

	CHAPTER		PAGE
	4.3 Character	rization of Alginate	29
	4.3.1 Str	uctural Characterization	29
	4.3.2 Vis	scosity-Average Molecular Weight	30
	4.4 Character	rization and Testing of Films	31
	4.4.1 FT	IR Spectra Characterization	31
	4.4.2 Nir	nhydrin Staining	32
	4.4.3 Me	chanical Properties	33
	4.	4.3.1 Tensile Strength	33
	4.	4.3.2 Young's Modulus	35
	4.	4.3.3 Elongation at Break	36
	4.4.4 Sw	elling Study	38
	4.	4.4.1 Equilibrium Water Content	38
	4.	4.4.2 Effect of pH	39
	4.4.5 Dr	ag Release Studies	42
V	CONCLUSIO	ONS	51
	REFERENC	ES	52
	APPENDICE	ES	55
	Appendix A	Determination of molecular weight	
		of chitosan and alginate	55
	Appendix B	Mechanical properties of the films	65
	Appendix C	UV spectrum of model drugs	71
	Appendix D	Calibration curve of model drugs	73
	Appendix E	Data of drug release	75
	CURRICULI	U M VITAE	95

LIST OF TABLES

TABLE	PAGE	
2.1 Environmentally sensitive polymers for drug delivery	14	
4.1 Yields of chitin produced from shrimp shell	25	
4.2 Conversion of chitosan from chitin	25	
4.3 FTIR characteristic absorption bands of chitosan	26	
4.4 Degrees of deacetylation of chitosan	27	
4.5 The viscosity-average molecular weight of chitosan	28	
4.6 FTIR characteristic absorption bands of alginate	29	
4.7 Degree of swelling and percent weight loss of drug-		
loaded films	48	
A1 Running time of solvent and chitosan solution Treat 1	55	
A2 The data of relative viscosity (η_{rel}), specific viscosity		
(η_{sp}) , reduced viscosity (η_{red})	55	
A3 Running time of solvent and chitosan solution Treat 2	57	
A4 The data of relative viscosity (η_{rel}) , specific viscosity		
59(η_{sp}), reduced viscosity (η_{red})	57	
A5 Running time of solvent and chitosan solution Treat 3	59	
A6 The data of relative viscosity (η_{rel}), specific viscosity		
(η_{sp}) , reduced viscosity (η_{red})	59	
A7 Running time of solvent and chitosan solution Treat 4	61	
A8 The data of relative viscosity (η_{rel}), specific viscosity		
(η_{sp}) , reduced viscosity (η_{red})	61	
A9 Running time of solvent and alginate solution	63	
A10The data of relative viscosity (η _{rel}), specific viscosity		
(η_{sp}) , reduced viscosity (η_{red})	63	
B1 Tensile strength of the films in dry state	65	
B2 Young's modulus of the films in dry state	66	
B3 Elongation at break of the films in dry state	67	

TABL	PAGE	
B4	Tensile strength of the films in wet state	68
B5	Young's modulus of the films in wet state	69
B6	Elongation at break of the films in wet state	70
C1	Summary of maximum wavelength (λ_{max}) of each type	
	of model drug	72
D1	The data of calibration curve of salicylic acid solution	73
D2	The data of calibration curve of theophylline solution	74
El	The release of salicylic acid from calcium alginate film	
	at pH 2.0	75
E2	The release of salicylic acid from calcium alginate film	
	at pH 5.5	77
E3	The release of salicylic acid from calcium alginate film	
	at pH 7.2	79
E4	The release of salicylic acid from chitosan coated	
	calcium alginate film at pH 2	80
E5	The release of salicylic acid from chitosan coated	
	calcium alginate film at pH 5.5	83
E6	The release of salicylic acid from chitosan coated	
	calcium alginate film at pH 7.2	84
E7	The release of theophylline from calcium alginate film	
	at pH 2	85
E8	The release of theophylline from calcium alginate film	
	at pH 5.5	87
E9	The release of theophylline from calcium alginate film	
	at pH 7.2	89
E10	The release of theophylline chitosan coated calcium	
	alginate film at pH 2	90
E11	The release of theophylline chitosan coated calcium	
	alginate film at pH 5.5	92

TABLE		
E12	The release of theophylline from chitosan coated	
	calcium alginate film at pH 7.2	94

LIST OF FIGURES

FIGUR	Œ	PAGE
2.1	Chemical structure of alginate	4
2.2	The egg-box model for binding of divalent cation to alginates	5
2.3	Chemical structure of chitin	7
2.4	Chemical structure of chitosan	7
2.5	Drug level in the blood from (a) traditional drug	
	administration and (b) controlled delivery dosing	11
2.6	Drug delivery from a typical matrix drug delivery	
	system	12
2.7	Drug delivery from environmentally sensitive release	
	systems	13
2.8	Drug delivery from (a) bulk erosion and (b) surface	
	erosion systems	15
4.1	FTIR spectrum of chitosan	26
4.2	The plot of reduced viscosity and inherent viscosity	
	versus concentration of chitosan solution	28
4.3	FTIR spectrum of alginate	29
4.4	The plot of reduced viscosity and inherent viscosity	
	versus concentration of alginate solution	30
4.5	FTIR spectra of (a) pure alginate film (b) calcium	
	alginate film (c) chitosan-coated calcium alginate film	31
4.6	Ninhydrin test for (a) pure alginate film, (b) calcium	
	alginate film, (c) chitosan-coated calcium alginate film	
	and (d) chitosan film	32
4.7	Tensile strength in the dry state of films	34
4.8	The tensile strength in the wet state of films	34
4.9	Young's Modulus in the dry state of films	35
4.10	Young's Modulus in the wet state of films	36
4.11	Elongation at break of the films in dry state	37

FIG	FIGURE	
4.12	Elongation at break of the films in wet state	37
4.13	Equilibrium water content of calcium alginate and	
	chitosan-coated calcium alginate films	38
4.14	Swelling behavior of calcium alginate and chitosan-	
	coated calcium alginate films as a function of pH	39
4.15	Swelling behavior of calcium alginate and chitosan-	
	coated calcium alginate films at pH 2 as a function of	
	immersion time	40
4.16	Swelling behavior of calcium alginate and chitosan-	
	coated calcium alginate films at pH 5.5 as a function of	
	immersion time	41
4.17	Swelling behavior of calcium alginate and chitosan-	
	coated calcium alginate films at pH 7.2 as a function of	
	immersion time	41
4.18	Salicylic acid release profile for calcium alginate and	
	chitosan-coated calcium alginate films at pH 2.0	43
4.19	Salicylic acid release profile for calcium alginate and	
	chitosan-coated calcium alginate films at pH 5.5	43
4.20	Salicylic acid release profile for calcium alginate and	
	chitosan-coated calcium alginate films at pH 7.2	44
4.21	Theophylline release profile for calcium alginate and	
	chitosan-coated calcium alginate films at pH 2.0	44
4.22	Theophylline release profile for calcium alginate and	
	chitosan-coated calcium alginate films at pH 5.5	45
4.23	Theophylline release profile for calcium alginate and	
	chitosan-coated calcium alginate films at pH 7.2	45
4.24	Effect of pH on salicylic acid released from calcium	
	alginate and chitosan-coated calcium alginate films	47
4.25	Effect of pH on theophylline released from calcium	
	alginate and chitosan-coated calcium alginate films	47

FIGURE	
4.26 Comparison of the amounts of model drugs released	
from calcium alginate and chitosan-coated calcium	
alginate films at pH 2.0	49
4.27 Comparison of the amounts of model drugs released	
from calcium alginate and chitosan-coated calcium	
alginate films at pH 5.5	50
4.28 Chemical structure of salicylic acid	50
4.29 Chemical structure of anhydrous theophylline	50
A1 The plot of reduced viscosity (η_{sp}/c) and $\ln ((\eta_{rel})/c)$	
versus concentration of chitosan solution: • = (η_{sp}/c) and	
$= \ln \left((\eta_{rel})/c \right)$	56
A2 The plot of reduced viscosity (η_{sp}/c) and $\ln ((\eta_{rel})/c)$	
versus concentration of chitosan solution: $\bullet = (\eta_{sp}/c)$ and	
$= \ln \left((\eta_{rel})/c \right)$	58
A3 The plot of reduced viscosity (η_{sp}/c) and $\ln ((\eta_{rel})/c)$	
versus concentration of chitosan solution: $\bullet = (\eta_{sp}/c)$ and	
$= \ln \left((\eta_{rel})/c \right)$	60
A4 The plot of reduced viscosity (η_{sp}/c) and $\ln ((\eta_{rel})/c)$	
versus concentration of chitosan solution: $\bullet = (\eta_{sp}/c)$ and	
$= \ln \left((\eta_{rel})/c \right)$	62
A5 The plot of reduced viscosity (η_{sp}/c) and $\ln ((\eta_{rel})/c)$	
versus concentration of chitosan solution: $\bullet = (\eta_{sp}/c)$ and	
$= \ln \left((\eta_{rel})/c \right)$	64
C1 UV spectrum of theophylline	71
C2 UV spectrum of salicylic acid	71
D1 Calibration curve of salicylic acid solution	73
D2 Calibration curve of theophylline solution	74