CHAPTER Il
PROBLEM SOLVING METHOD

3.1 Differential Equation

Differential equations selected to study in this work are in the class of
“Poisson’s Equation”, which has a general form of

Vu-kVu +f - qu=0, (3.1)

and its related transient form of
VukVii+f=g2-. (3.2)

These kinds of equation cover many problems, especially, in the engineering
modeling. For example, in chemical engineering field, they will be used to deal with
the problems of heat conduction, mass diffusion analysis, etc. Here, practical three
types of boundary condition were supplemented. Those are as follow:

L Dirichlet Boundary Condition. The surface covering this boundary
type is represented as SI, with a constant dependent variable on this surface.

= (specific). (3.3)

2. Neumann Boundary Condition. The surface covering this boundary
type is represented as S2. On this surface, flux normal to surface is zero. That is

o =0 (34)

3 Mixed Boundary Condition. This type is known as S3 ty
boundary, which has a general form of



kaﬁ tau = (3. (3.5)

3.2 Finite Element Analysis of Poisson’s Equation

321  Galerkin Residual Equation
From governing equation in 3.1, the corresponding finite element
equation was developed. Supposed the basis function as

Sy 39

For linear triangular elements, all basis functions would be zero except those
corresponding to three vertices p, ¢ and r and would be reduced to

V=YoVh +Yq\ +Yr\t- (3-7)
In the first step, Galerkin statement was applied to Poisson’s equation,

i v -KVU+ 1 - gu)dv =0. (3.9)
v

Then, apply Green’s theorem (Shown in Appendix A) to the first term
gives,

[, *kVudV = - JKVY] -Vudv + vk dS. (39)
: v

Back substitution hence,

JKVYi -VudV +[YigudV= jYifdV +JVik~dS (3.10)
v
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Incorporating the trial function (Equation 3.6) yields,
KWYi o] (VY ))VV+IYiZ]YjvjaV = jVifdv + Mk” ds (3-11)

The surface integral (last term in Equation 3.11) depends on what type
of boundary that surface cover, and have value of following individually
L SI - type, since points i=1 2, 3, ..., have been arranged not
coincide with SI boundary. So that, ¥ = 0 on SI and surface
integral is therefore zero.

2. S2 - type, since kK— equal to zero, thus, its integral equal to zero.
3. S3-type, inserting (3.5) into surface integral term gives

Vi P-alyjVj ds-
So, amore general form of Equation 3.11 can be written as
JYE 1) (uyi ViV +0gYi7 y iV + JotYinYjvjds
- JVfaV + JPYjdS, (3.12)
v 33

which is ready to cooperate S3 type boundary condition. Equation 3.12 can be
represented in a matrix form of Av = b, where each element of coefficient matrix A
and vector b are defined as

i ~ KV VYAV + JgYIYidV + jay jjds, (31

bj = JyjfdV + JpYidS-"a,jVj , (3.14)



3.2.2 Linear Triangular Elements and Basis Functions
Starting with rectangular coordinate; consider triangular element
shown in Figure 3.1

(x1,y1)

(X2,¥2) (x3,y3)

Figure 3.1 Triangular element

Inside the triangle element, a dependent variable Vis assumed to be a
linear function of position. Analogy to Equation 3.7, it is a linear combination of
three nodal values Vi, 2and \5as

vaathx+cy=YV. + YA2+ydv3, (3.15)

where basis functions Yi, Y2and Y3vary linearly with position as,
Wi =— (3 +5j¢ +Cj) (316)

where Ais the area of element given by the determinant;

A:-llI >><<} 342 fta{+a2+aj (3.17)
193 y3

Nine coefficients, @, 1, (i=1 2, 3) can be deduced by requiring
that each basis function ¥ is one at node i and zero at other two nodes. After some
manipulations, the results are;
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al :XZ)/3- X3/2 a2= X3/, -Xiy3 a3 = xiy2-x i
bi =y2—y3 2=y3—y1 b3=yi-y2 (3.18)
d=x3- x2 Q= Xi-x3 C3= x2-Xi

Figure 3.2 Three basis functions with each Y =1 at node i, declining linearly to zero
at other two nodes.

Table 3.1 shows integration formulas involving linear basis functions.

The results for integration over a triangular element are derived from the general
formula;

_yiy)y3dA= 0 ?!:1' !+ ) 2A (3.19)

To solve the equation regional integrals, summation of the
contributions from the individual elements must be obtained.

[gYiYjdV=" geY'YjdAe, (3.20)



where = number of element and superscript e denote values associated with
element e. After coefficient matrix A and vector b was built, simultaneous linear
equation will be solved. The surface flux next will be determined.

Table 3.1 Integration formulas involving linear basis functions, for triangular
elements and line boundary segments.

Area Integrals Line Integrals
Integral Value Integral Value
JyflA ha JYidL b
JyfdA | a JridL | |
MYjdA Hza JyjjdL %I
JyfcliA T A gyf(.jL |4|
| JyfyjdA T A JyfyjdL 7 L
JYIY] YkdA %U a

3.2.3 Solution of Poisson’s Equation in Cylindrical Coordinates

For axisymmetric cylindrical coordinates, dv and ds are equal to 2t

rdrdz, and 27trdL respectively. The elements of coefficient matrix and vector b
change to,

dr dr dz dz

\
rdrdz +JgyiYjrdrdz + Jexyjddl, (320
/ v 3

bj = |yifrdrdz+ Jpy.rdL - al\ (32)
v 3 J-l

To evaluate new integrals, consider r as a combination of three vertex
values (i, rpand rq)
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= Yiri+Ypip+Y(rg (3-23)
Consider a representative term in §j

1= { gYiYjrdrdz= £ gYiYjfrih +Yprp + Yqrg)dAe (3.24)
Suppose 1 *j = p, The Integration in Equation 3.24 will be

_ 11,3
I=06% 301 + 30 + 601 shEgts ()

in which r:(ﬂ+rp+rq)/3 Is the radius of the element centroid. If i = j, Equation
324 becomes

=iga s jea W A (3.20)

Table 32 shows multiplying factors for obtaining element
contributions in r/z coordinates from those in x/y coordinates.

Table 3.2 Multiplying factors for obtaining element contributions in r/z coordinates
from those in x/y coordinates.

Integral Factor
I KV 1-Vyjrdrdz r
{1gyjjrdrdz i(r1+j+ 3
{3vivjfdL 1= +)
N
Ny frdrdz i(ri+3)

1 PYifdL YHe+2r)



324 Initial Value Problem
In the previous section, the Poisson’s equation was treated whose
finite element formulation was,

Av=(k tGv =, (3.27)

Matrix K includes the contributions from the conductive (VkVu) and
the mixed (3 type houndary conditions. Matrix G contains the variable part (- gu)
of the source term. Vector b incorporates terms derived from both the constant part
(f) of the source term and a surface integral arising from application of Green
formula

Here, related form of time-dependent problem will be considered. The
equation will be in the form of,

V-kVu+f=gp. (3.28)

By analogy to Equation 3.27, the finite element solution of Equation
3.28 should be in the form of,

Kv+G Apb (329)

where K, G and b are as already formulated, and Vis now a time-dependent vector of
nodal solution. Now, the finite difference method is cooperated to Solve stich
equation. Here, superscript  denotes values at time t and  + 1 mean values at time
t+ At and Crank-Nicolson method is applied,

Kk p j +0k A 2)=i(b. +b.) (330)
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Define new terms,

R=FG+K, =36k (331)

System of linear equations can be obtained as,
Rvnd =Svn+"(hn+hnt), (3.32)
and new solution at time t + At is,
v =R-'Svn+"R-'(bn+hnt) (3.33)

3.3 Programming Strategy

331 Program Description
Corresponding to the finite element equation created in 3.2, a new
application program named “FEM™ was built via Visual Basic 6.0 (based upon the
program by Wilkes, 1995). The developed program consists of six work forms, and
two more separated modules, and 46 subprograms (or event procedures). All forms,
modules, and subprograms are shown in Table 3.3. However, details of interface and
source code for each form or module are shown in appendix B through c.



Table 3.3 All forms, modules, and subprograms in “FEM”

Form or Module Subprogram or procedure

FrmAbout Event Procedure

» Form_Load()

* CmdOKClickO
FrmFemwork Subprogram

* DatalnputO

»  DataShow()

* Draw_mesh()

Event Procedure

o CmdBack_Click()

o CmdForm_Load()

o CmdSolve_Click()
FrmInput Event Procedure

*  CmdBrowse_Click()

o OptCreate_click()

o Optlmport_click()

*  CmdOK Click()
FrmMain Subprogram

» LoadNewWork()

Event Procedure

* MDIForm_Load()

* MDIForm_Unload()

* MnuEditCopy Click()

* MnuEditCutClickO

*  MnuEditPaste_Click()

*  MnuFileExit_Click()

*  MnuFileNew Click()



Form or Module

FrmResult

FrmSetPara

Calculation
(Module)

Subprogram or procedure
MnuAboutAbout_Click()
ThToolBar_ButtonClick()

Subprogram

DrawBoundaryO
DrawContUO
DrawMeshO
PrepareData()
ReportData0
ShowSolQ

Event Procedure

CmdClear_Click()
CmdContUClickO
CmdMeshClickO
CmdSetPara_Click()
CmdSimul_Click()
Form_Load()
TmeClocl_Tmier()

Event Procedure

CmdDefault_Click()
CmdOKClickQ

Subprogram

Asembl()
Fluxes()
Gelh()
Geom()
MainProgO

18
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Form or Module Subprogram or procedure
o MatrixO
o« NewVal()
* PrtSol0
Complementation Subprogram
(Module) « MainQ

3.3.2 Calculation Procedure
The calculation procedure consists of four steps as shown below,
3321 Input Data
This step is to read all required data for a particular problem,
consisting of general system data, element, nodal, and houndary conditions
information, from specific data file. This step is in the subprogram “InputData” in
form “frmInput”. Next step, the subprogram “MainProg” in module “Calculation” is
called. The calculation starts here.
3.3.2.2 Form Element and System Equation
This step Is to create finite element matrix for each element in
the subprogram “Geom” and “Matrix”. Then, they are assembled together to form
the system matrix and supplemented 3 boundary condition simultaneously by the
subprogram “Asembl”.
3.3.2.3 Solution
Consequently, the system equation is solved in the
subprogram “NewVal” by using Gauss Elimination Method with column pivoting in
the subprogram “Gelb”.
3.3.24 Result Exhibition
In this step, the numerical result obtained from 3.3.2.3 is
exhibited in a table in the form “frmResult”. Graphical result is also exhibited by the
choice of user, including showing meshing, constant lines of dependent variable, or
simulation (case of transient problem).
Coarse flow diagram showing all calculation steps is shown
in Figure 3.3



Form frmInput

Input all required data (InputData)

Module Calculation

\/

Start calculation (MainProg)

<

Create element equation
(Geom and Matrix)

L

Form system equation (Assembl)

L

Solve equation (Newval and Gelb)

7

Form frmResult

\/

Show meshing (DrawMesh)

Show constant line of dependent variable
(DrawContU)

Simulation (Simulate)

Figure 3.3 Coarse flow diagram of program “FEM”



3.3.3 Data Input File Format

The data file for supplement into the program is in a simple text file
format, which can easily be created by any text editors such as “notepad” or
“wordpad”. The data file requires four parts including general system data, element,
nodal and boundary condition information respectively. These are details of each
part,

Part | General System Data

This part contains problem name, coordinate system, error tolerance,
variation of K, F, and G, steady or unsteady state parameter, variation of SI and S3
type boundary condition parameters, element type, number of elements, nodes, and
boundary segments. All these data are in a ling Series starting from first column for
each line. The example is represented here. Data in line number 12-14 is optional for
transient problems. The value of individual parameter is found through Appendix c.

Example

Line data

{ TRANSIENT HEAT CONDUCTION IN SLAB
% ALL PARAM{ETERSZ

g 12345678901234567890
b COORDS = T
7 EPS =0 1000000001
8 KVAR = 0
g FVAR = 0
10 GVAR = 0
11 SSTATE = 1
12) DT = e
13 PRNTFR = 20
14)  TMAX = 100.0
15 SIVAR = 0
1§ SVAR = 0
17 ELEMS = 1
1§ NELEMS = 24
19 NNODES = 21
20 NBSEGS = 16

Part |1 Element Information

Continuously, next four lines are ignored. For each ling of element
information contains element number, element type, number of node in element,
material number of element, values of k, f, and ¢ for element, counter clockwise
node numbers for the element, respectively.
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Example
ELEMENT INFORMATION:

1 2 3 4 5
123456789012345%789012345%78901234567890123456789012345

1 11 31 25.0 0.0 0.0 1 7 2
2131 250 0.0 0.0 2 1 8
3131 250 0.0 0.0 2 8 3
4131 250 0.0 0.0 38 9
5131 250 0.0 0.0 3 9 4

Part 111 Nodal Information

Here again, the first four lines are ignored, each line next contains
node data, including nodal number, x and y (or r and z) nodal coordinates, and initial
value Uo at the node (option for unsteady state problem).

Example
NODAL INFORMATION:

1 2 3
12345’;67890%2345|67890%2345|67890[1)2345|
1 0.000 0.003 0.0000
2 0.001 0.003 0.0000
3 0.002 0.003 0.0000
4 0.003 0.003 0.0000
5 0.004 0.003 0.0000

Part IV Node Information

The same as the nodal information, the first four lines are ignored,
next line contains boundary segment number, segment type, a number of node in
segment, material number of the segment, boundary type (1,2, and 3 are type Sl, S2,
or S3), A, B, element number of which segment is part, and node numbers for the
segment. Here, “A” means 1 for SI type boundary segment, but, for S3 type
boundary segment, A and B are values of a and p, respectively.
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Example
BOUNDARY IlNFORMATION:

2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890

1 } 2 2 0.00 0.00 1 17
) 2 ) 0.00 0.00 1 713
3 ) 7 0.00 0.00 21 13 19
4 7 i 7 0.00 0.00 22 19 20
5 7 ) 0.00 0.00 24 20 21

3.34 User Instruction
The Program was designed for user with friendly interface of Visual
Basic environment. So the user can just create a data file corresponding to a specific
problem and follows the direction guide shown with the program interfaces in
Appendix B. The result will be exhibited properly. For implementation of the
program, the user may create program to build an appropriate data file by selection of
his/her own alternative.
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