TRIBOLOGICAL PROPERTIES OF PFMA-PMMA COPOLYMER THIN FILMS

Ms. Yindee Tongkhundam

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2003

ISBN 974-17-2348-2

Thesis Title: Tribological Properties PFMA-PMMA Copolymer Thin Films

By: Yindee Tongkhundam

Program: Polymer Science

Thesis Advisors: Assoc. Prof. Anuvat Sirivat

Prof. Witold Brostow

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Assoc. Prof. Anuvat Sirivat)

(Prof. Witold Brostow)

Wisfold Brotov

(Asst. Prof. Pitt Supaphol)

(Asst. Prof. Ratana Rujiravanit)

Ratana Rujnavanit

ABSTRACT

4472028063 : POLYMER SCIENCE PROGRAM

Yindee Tongkhundam: Tribological Properties PFMA-PMMA

Copolymer Thin Films.

Thesis Advisers: Assoc. Prof. Anuvat Sirivat and Prof. Witold

Brostow, 99 pp. ISBN 974-03-1628-7

Keywords : Poly(perfluoroalkylethyl methacrylate-methyl methacrylate)

copolymer/ Friction coefficient/ Wear

The science and engineering of friction and wear involving polymer surfaces are not well understood. From various types of polymeric materials available, we investigated tribological properties of films made from copolymers of perfluoroalkylethyl methacrylate and methyl methacrylate monomers. 5wt% copolymer solutions were spun cast onto 1mm thick PMMA sheet substrates. The effects of monomer ratio and processing method on tribological properties were studied from contact angle measurements, and TE79 multi-axis tribology measurements. We found that there was an optimum ratio of FMA to MMA, in the range of (1-5)×10⁻³, to attain a minimum kinetic friction coefficient. The results obtained are discussed in terms of proposed friction and wear mechanisms.

บทคัดย่อ

ยินดี ทองขุนคำ: สมบัติทางไตรบอลอจี้ของโคพอลิเมอร์เมทธิล เมทธาไครเลตเปอร์ฟลู ออโรอัลคิลเอทธิล เมทธาไครเลต(Tribological Properties PFMA-PMMA Copolymer Thin Films) อ.ที่ปรึกษา: รศ. คร. อนุวัฒน์ ศิริวัฒน์ และ ศ. คร. วิทโทว บรอสทาว 99 หน้า ISBN 974-03-1610-7

เนื่องด้วยในภาวะปัจจุบัน ความรู้ความเข้าใจในเชิงวิทยาสาสตร์และวิสวกรรมเกี่ยวกับ สมบัติความเสียดทานและการสึกหรอของพอลิเมอร์ยังมีการศึกษากันน้อยมากเมื่อเทียบกับโลหะ และเซรามิกซ์ ในการศึกษาครั้งนี้เป็นการมุ่งศึกษาโคพอลิเมอร์ของเมทธิล เมทธะไครเลตและ เปอร์ฟลูออโรอัลคิลเอทธิล เมทธะไครเลต เพื่อนำไปใช้เป็นฟิล์มลดความเสียดทาน ซึ้นงานที่ใช้ใน การทดสอบเป็นฟิล์มของสารละลายพอลิเมอร์ข้างด้นที่ความเข้มข้น 5% โดยน้ำหนักในตัวทำ ละลายโทลูอีนฉาบบนแผ่นพอลิเมทธิล เมทธะไครเลตที่มีความหนา 1 มิลลิเมตร โดยวิธีการฉาบ ด้วยเทคนิคการหมุนด้วยความเร็วสูง สมบัติที่ศึกษาได้แก่ มุมสัมผัส พลังงานผิว สัมประสิทธิ์ความ เสียดทาน และสมบัติการสึกหรอ โดยใช้เครื่องทดสอบสมบัติการสึกหรอ จากการศึกษาพบว่าสัด ส่วนของเปอร์ฟลูออโรอัลคิลเอทธิล เมทธะไครเลตต่อเมทธิล เมทธะไครเลต ที่เหมาะสมที่แสดง ค่าสัมประสิทธิ์ความเสียดทานต่ำสุดอยู่ในช่วง (1-5)×10⁻³ นอกจากนี้การอภิปรายเพื่อหาเหตุผล อธิบายการเกิดการเสียดทานและการสึกหรอประกอบเอกสารอ้างอิงได้นำมากล่าวไว้ ณ ที่นี้ด้วย

ACKNOWLEDGEMENTS

The author is grateful for the partial funding of the thesis work provided by Rajamangala Institute of Technology Nakorn Si Thammarat Campus. This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium). The author would like to express the grateful appreciation to the author's advisors, Assoc. Prof. Anuvat Sirivat and Prof. Witold Brostow for their intensive suggestions, invaluable guidance, and vital help throughout this research work.

The author wishes to thank Dr. Toemsak Srikhirin and Mr. Pairote Jaideaw, Mahidol University for kindly providing the spin coating apparatus, invaluable suggestions, and discussions throughout this research work.

National Metal and Materials Technology Center (MTEC) and Metallurgy and Materials Science Research Institute, Chulalongkorn University are also gratefully acknowledged by the author for GPC, ¹HNMR, and friction coefficient determination, respectively.

The author would like to sincerely thank all the staff of the Petroleum and Petrochemical College, Chulalongkorn University for their assistance in helping the author to use the research facilities.

Finally, the author sincerely thanks to her family and friends for their love, understanding, and encouragement during the studying and work period of this thesis.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	ix
	List of Figures	xi
СНАРТ	ER	
I	INTRODUCTION	1
	1.1 General Aspects	1
	1.2 Theoretical Background	3
	1.2.1 Polymer Tribology	3
	1.2.2 The Relationship between Structure and	
	Tribological Properties of Polymer Materials	5
	1.2.2.1 Molecules	5
	1.2.2.2 Morphology	8
	1.2.2.3 Bulk Physical Properties	9
	1.2.3 Mechanism of Friction	11
	1.2.3.1 General Considerations	11
	1.2.3.2 Real Area of Contact	13
	1.2.3.3 Adhesion Component of Friction	14
	1.2.3.4 Defomation Component of Friction	14
	1.2.4 Mechanism of Wear	16
	1.2.4.1 General Consideration	17
	1.2.4.2 Surface Fatigue and Delamination	
	Wear Mechanisms	17

СНАРТЕ	CHAPTER	
II	LITERATURE REVIEW	19
	2.1 Syntheses of Fluorine Contained Polymer and	
	Polymethyl Methacrylate Copolymer	19
	2.2 The Properties Studying of Fluorine Contained	
	Polymer and Polymethyl Methacrylate Copolymer	20
III	EXPERIMENTAL	22
	3.1 Materials	22
	3.2 Methodology	22
	3.2.1 Statistical Polymerization	22
	3.2.2 Testing and Characterization	24
IV	TRIBOLOGICAL PPOPERTIES PFMA-PMMA	
	COPOLYMER THIN FILMS	29
	Abstract	29
	Introduction	30
	Experimental	31
	Results and Discussion	35
	Conclusions	38
	Acknowledgements	39
	References	40
	Captions of Figures	44

CHAPTER		PAGE	
V	CONCLUSIO	ONS AND RECOMMENDATIONS	51
	REFERENC	ES	53
	APPENDICI	ES	58
	Appendix A	Viscosity Average Molecular Weight	
		(M _v) of a 1 mm Thick PMMA Sheet	
		Substrate.	58
	Appendix B	Characterization of Ligand	59
	Appendix C	Chemicals Amounts Used for Polymerization	61
	Appendix D	Molecular Characteristic of PFMA-co-	
		PMMA By Using Gel Permeation	
		Chromatography.	62
	Appendix E	¹ H-NMR Spectra of PFMA-co-PMMA	
		Copolymer.	67
	Appendix F	The Effect of FMA/MMA Mole Ratio in	
		PFMA-co-PMMA Copolymer on Wettability	
		and Surface Tension.	73
	Appendix G	EDA Data and %FMA Calculation	83
	Appendix H	The Effect of FMA/MMA Mole Ratio in	
		PFMA-co-PMMA Copolymer on	
		Kinetic Friction Coefficient By Using	
		TE-79 Multi-Axis Tribometer.	85
	Appendix I	The Effect of FMA/MMA Mole Ratio in	
		PFMA-co-PMMA Copolymer on	
		Kinetic Friction Coefficient by Using	
		Davenport Friction Testing Apparatus.	94

CURRICULUM VITAE

99

LIST OF TABLES

TABL	E	PAGE
	CHAPTER I	
1.1	Tribological characteristic in relation to material types	5
1.2	Structure of the polymer molecules used for most of the	
	experiment	6
1.3	Melting point, glass transition temperature, heat	
	conductivity, surface energy of several materials	11
1.4	Energy -based overview of friction phenomena	12
	CHAPTER IV	
1.	Molecular characteristics of random copolymers used in	
	this study	45
	APPENDICES	
C1	Typical recipe for this work	61
C2	Chemical amounts used of polymerization.	61
E1	Calculation of FMA/MMA mole ratio by using ¹ H-NMR.	72
F1	The effect of %FMA in PFMA-co-PMMA copolymer on	
	advancing contact angle by using water as the probe	73
F2	The effect of %FMA in PFMA-co-PMMA copolymer on	
	receding contact angle by using water as the probe	73
F3	The effect of %FMA in PFMA-co-PMMA copolymer on	
	advancing contact angle by using ethylene glycol as the	
	probe	74
F4	The effect of %FMA in PFMA-co-PMMA copolymer on	
	receding contact angle by using ethylene glycol as the	
	probe	74

F5	The effect of %FMA in PFMA-co-PMMA copolymer on	
	advancing contact angle by using diiodomethane as the	
	probe	75
F6	The effect of %FMA in PFMA-co-PMMA copolymer on	
	receding contact angle by using diiodomethane as the	
	probe	75
F7	Surface energy components calculation results: data series 1	77
F8	Surface energy components calculation results: data series 2	78
F9	Surface energy components calculation results: data series 3	79
F10	Surface energy components calculation results: data series 4	80
F11	Surface energy components calculation results: data series 5	81
G1	EDS data	83
G2	%FMA calculation	84
I1	Effect of %Mole FMA on friction characteristic of	
	PFMA-co-PMMA thin film coating deposited on 1 mm	
	thick PMMA sheet by using Davenport Friction Testing	
	Apparatus: 1 st pass	95
I3	Effect of %Mole FMA on friction characteristic of	
	PFMA-co-PMMA thin film coating deposited on 1 mm	
	thick PMMA sheet by using Davenport Friction Testing	
	Apparatus: 2 nd pass	96
I4	Effect of %Mole FMA on friction characteristic of	
	PFMA-co-PMMA thin film coating deposited on 1 mm	
	thick PMMA sheet by using Davenport Friction Testing	
	Apparatus: 5 th pass	97
I5	Effect of %Mole FMA on friction characteristic of	
	PFMA-co-PMMA thin film coating deposited on 1 mm	
	thick PMMA sheet by using Davenport Friction Testing	
	Apparatus: 10 th pass	98

LIST OF FIGURES

FIGURE		PAGE
	CHAPTER I	
1.1	Comparison of ranges of wear resistance of metallic	
	ceramics and polymeric materials.	5
1.2	Example of molecular arrangement.	7
1.3	Influence of different types of intermolecular bonding on	
	surface energy and cohesion.	8
1.4	Isotactic and atactic configuration of propylene molecules	8
1.5	Temperature dependence of mechanical properties: (top)	
	shear modulus of several thermoplastics; (bottom) typical	
	stress strain curves of PP.	10
1.6	Characteristic of adhesion model of friction.	15
1.7	Characteristic of deformation model of friction.	16
	CHAPTER II	
2.1	Schematic illustration of friction test by using Davenport	
	Friction Testing Apparatus.	27
2.2	Schematic illustration of friction test by using TE 79 Multi	
	– axis Tribometer.	27
	CHAPTER IV	
1	FTIR spectra of PFMA-PMMA copolymers (a) FMA_0	
	(b) FMA_01 (c) FMA_1 (d) FMA_10 (e) FMA_20.	46
2	¹ H-NMR spectra of PFMA-PMMA copolymers (a)	
	FMA_0 (b) FMA_01 (c) FMA_1 (d) FMA_10 (e)	
	FMA_20.	47
3	Variation of surface tension components and total value	
	using van Oss-Good Method for the surface of PFMA-	
	PMMA copolymers thin film cast on 1 mm thick PMMA	
	sheet, as a function of %mole FMA.	48

FIGUI	IGURE	
4	The effect of [FMA]/[MMA] mole ratio on dynamic of	
	the scratch friction by using TE-79 Multi-axis Tribometer.	49
5	Photograph of scratch tracks as observe after one(left) and	
	ten(right) scratches by using TE-79 Multi-axis Tribology	
	Machine (a)FMA_0, (b) FMA_005, (c) FMA_01, (d)	
	FMA_02, (e) FMA_05, (f) FMA_07, (g) FMA_1, (h)	
	FMA_10, and (i) FMA_20.	50
	APPENDICES	
A1	Huggins plot of η_{inh} and η_{red} against concentration of	
	dilute solution of PMMA in toluene.	58
B1	Mass spectrum of N-npentyl-2-pyridylmethanimine.	59
B2	FTIR spectrum of N- ⁿ pentyl-2-pyridylmethanimine.	60
D1	Raw data of molecular weight characteristic determination	
	of 0_FMA.	62
D2	Raw data of molecular weight characteristic determination	
	of 01_FMA.	63
D3	Raw data of molecular weight characteristic determination	
	of 1_FMA.	64
D4	Raw data of molecular weight characteristic determination	
	of 10_FMA.	65
D5	Raw data of molecular weight characteristic determination	
	of 20_FMA.	66
E1	¹ H-NMR spectrum of 0_FMA.	67
E2	¹ H-NMR spectrum of 01_FMA.	68
E3	¹ H-NMR spectrum of 1_FMA.	69
E4	¹ H-NMR spectrum of 10_FMA	70
E5	¹ H-NMR spectrum of 20_FMA.	71
F1	The effect of %FMA in PFMA-co-PMMA copolymer on	
	contact angle spectrum of 20 FMA	76

FIGUE	IGURE	
Н1	Friction characteristic of PFMA-co-PMMA (@ FMA_0)	
	thin film coating deposited on 1 mm thick PMMA sheet.	85
H2	Friction characteristic of PFMA-co-PMMA (@	
	FMA_005) thin film coating deposited on 1 mm thick	
	PMMA sheet.	86
Н3	Friction characteristic of PFMA-co-PMMA (@ FMA_01)	
	thin film coating deposited on 1 mm thick PMMA sheet.	87
H4	Friction characteristic of PFMA-co-PMMA (@ FMA_02)	
	thin film coating deposited on 1 mm thick PMMA sheet.	88
H5	Friction characteristic of PFMA-co-PMMA (@ FMA_05)	
	thin film coating deposited on 1 mm thick PMMA sheet.	89
H6	Friction characteristic of PFMA-co-PMMA (@ FMA_07)	
	thin film coating deposited on 1 mm thick PMMA sheet.	90
H7	Friction characteristic of PFMA-co-PMMA (@ FMA_1)	
	thin film coating deposited on 1 mm thick PMMA sheet.	91
H8	Friction characteristic of PFMA-co-PMMA (@ FMA_10)	
	thin film coating deposited on 1 mm thick PMMA sheet.	92
H9	Friction characteristic of PFMA-co-PMMA (@ FMA_20)	
	thin film coating deposited on 1 mm thick PMMA sheet.	93
I1	Effect of pass number on friction characteristic of PFMA-	
	co-PMMA thin film coating deposited on 1 mm thick	
	PMMA sheet by using Davenport Friction Testing	
	Apparatus (a)static friction coefficient (b) kinetic friction	
	coefficient.	94