CHAPTER IV

MONTE CARLO METHD

The " Monte Carlo method " is a computer experiment on a
system with many degrees of freedom. Its name is related to the use of

" random numbers " to simulate statistical fluctuations in order to
generate probability distributions.

A common goal ofall ™ Monte Carlo " computer simulations
Is tostudy the microscopic ~ properties of the solutions, such as
structural and energetical properties, based on the knowledge of pair
potential functions ; e.g. to study, how a solute influences the
solvent structure or how a solute is solvated by solvent molecules
in the solution. Such structural and energetical informations are very
difficult to obtain from spectroscopic measurements in  dilute
solutions.

In this chapter the general Monte Carlo method and the
Metropolis scheme will be presented together with some important

characteristics of the simulation.

4.1 General Monte Carlo Method

Monte  Carlo calculations are based on potential functions
implementing three assumptions: i) only two body forces are considered,
1i) the potential field of the atoms is assumed spherically symmetric
and iii) linear additivity is given , i.e. the total configuration
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energy, E(v), of the system s written as a sum of pairwise inter-
action energies between the individual particles E_d(v) of the system.

EV) =1 e (V) (4.1)
i<

where V is a configurational coordinate of the particles in a system.

In order to calculate the properties of the system , a
canonical ensemble with N particles in a volume Vat a constant
temperature T must be considered, and to eliminate surface effects
periodic boundary conditions are required. The average of any quantity
of interest <F> can be written as

<> = IF(v)exp(-E(y)/KT)dv ("2

where dv is a volume element in three dimensional phase space. If the
starting configuration is generated randomly in three dimensional
space , integration over many orders of magnitude would be needed for
the integrand exp(-E(V )/KT) 1 shown in eq.(4.2). This is the main
principle of the general Monte Carlo method 1 which is however , not
practicable.
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4.2 Metropolis Monte Carlo Method

The above principle was modified by Metropolis et al. in 1953
(3). In this method, the N configurations are not randomly generated
but they are chosen with a probability, p(v ), and they are evenly
weighted with p(v). After taking a quite large number of space point M
then eq.(4.2) could be approximated by the sum

<F> = F =181 F(w )pl Jexp(-E( v JKT) (4.3)
4 pLv Jexp(-E(v )IKT)

The probability p(v) in Metropolis Monte Carlo method is a
Boltzmann factor :

p( V) = exp(-E( V)IKT) (4.4)
Then eq.(4.3) could be reduced to a simple form of

F= UM 2F 45
El 43)

where 1 is the value of the property F of the system after the i**1
move is carried out, according to the calculating procedures outlined
in the following

4.3 Calculating Procedures

Consider a system with N particles in a basic cube of
side length L with infinite cube periodicity. The calculating
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procedures that should be' carried out are the followings:

4.3.1

4.3.3

4.3.4

Select initial N configurations according to random numbers
generated by a computer.

Compute the interaction energy (E) according to eq.(4.1).
Perform a random displacement of one particle to a newposition,
such as particle i from Y to rCx"6 X ,yM6 y>zi+h g
where <&\ &\ & are the maximal allowed displacements. This
maximal displacement must be chosen with some cares ; if it is
too large , most of the moves will be forbidden, if too small,
the configuration will not change enough. In either case it
will take longer to reach equilibrium. If the particles are
moved to a new position, one at a time, and a sphere after
such a move happens to overlap with another sphere. The
particle i will be returned to its original position, and
repeat this step.

Compute the new configuration energy (E*) according toeq.(4.1)
and the change in potential energy (A E) from thestarting
position to the new displaced position , or Ae = E'-E

[f AE < 0 , the displacement would bring the system to a state
of Tlower energy, the displacement to the new configuration is
allowed, generate the new displacement according to 4.3.3.

If AE> 0 , compute exp(-A E/KT) , where K is the Boltzmann
constant and T is the temperature in Kelvin

If exp(-A E/KT)< random number,(1), where (<I<:1 return particle
| to its old position rA(x*y”,z).  Then, return to step a.s.s
If exp(-A E/KT) > 1, the move is allowed , generate the new
displacement according to step 4.s.s.
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The procedures of calculations are diagrammatically presented
in figure 4.1

STARTING CONFIGURATION

E(x)

'
X/ 77K

E(x)

AE = E(x)-E(x)

AE > 0 NO

YES

p = exp(- AE/KT)

Figure 4.1 Diagram of Monte Carlo calculating procedures.
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4.4 Characteristics of the Simulation

4.4.1 Periodic Boundary Condition

In the simulation, the "infinite " system is usually
simulated by the use of the " periodic boundary condition " = which
IS required in order to keep the constant density. This condition
leads to an infinite array of identical cubes in three dimensions, the
basic cube is surrounded by an infinite number of image cubes which
have the same configuration, as illustrated in the two dimensional
picture in figure 4.2. The surrounding cubes are designated as

" replicas " and particles inside each replica are called " ghosts
of the constant set. Each cube contains N (usually some hundreads)
particles. By the move of a particle as described above, a particle
might be moved to a position outside the basiccube, but within
the periodic boundary condition, it only means that the ghost will
enter the cube from the opposite side. Therefore, the density inside
the basic cube is maintained throughout the simulation. If a small
number of particles were confined in an isolated finite cube to the
surface of the cube, the proportion of the surface  compared to
particles inside would be much higher than in any real systems.
Therefore, this would not be a suitable description for amacroscopic
sample (so called " surface effect " ). The need of introducing the
periodic boundary condition is caused by the need to avoid this
effect.
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Figure 4.2 Two dimensional illustration of periodic
boundary condition

4.4.2 Spherical Cut-off

To obtain the correct energy of the system, assumed to be a
summation of pairwise interactions within the basic cube , some futher
approximations are made.
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The first approximation is based on the assumption that
contributions to the potential energy from particles beyond a
certain distance are insignificant. That means, the potential is
truncated after a certain distance. Usually a spherical cut-off is
introduced in order to achieve a symmetrical contribution from the
surrounding particles . and half of the sidelength of the basic cube
is normally used to be the cut-off radius of the sphere.

The second approximation is usually refered as "Ewald method"
(75). The interaction with the particles outside the basic cube is
also included. This method would probably be generally used, if it did
not imply extremely time consuming summations in the simulation.

4.4.3 Radial Distribution Functions and Their
Integration

The most common way to analyze the structure of solution is to
employ radial distribution functions (g(r)) around various atoms. The
radial distribution gives information about the configurationally
averaged deviation of the local environment of particle from the
values characteristic for the bulk. This function for the N particle
system in configuration Ry is obtained with rIr, - rj.l as

0= -

where N(r) is the average number of particles in the spherical shell
of width Ar at a radial distance r from the central particle. Based
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on the radial distribution functions , solvation shells can be derived
from the peaks pronounced over the standard level, and the first
solvation number is obtained by the integration of the function up to
the first minimum.

The average number of particles Kwithin a sphere of a given
radius can be determined by

()= plg(Byahf dr (4.7)

where - is often chosen as the radial value of the first or second

minimum in g(r).
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