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APPENDIX |

THE GENERAL PROBLEM OF RANDOM FLIGHTS; MARKOFF S METHOD (6)

In the general problem of random flights, the position R of

the particle after N displacements is given by

t-|U (A-1)
where the Ct~ N)denote the different displacements. Further,
the probability that the . displacement lies between and
is given by

\ (A-2)

We require the probability A N that the position of the

particle after Ndisplacements lies in the interval R 1it JR

................ £ ] »)
be N, n-dimensional vectors, the components of each of these vectors
being functions of coordinates:
A= 9N ML) NIV I ' <A-4)
The probability that the occur in the range
: | * * 1
oty vy A > D
is given by

Further, let ACVp'-'-4V/\V_'5n
1F1-"1p:i:i | (A-7)

The problem is: Wihmat is the! probability that

10 f) 0/\1 y 10 (A-8)
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where ~ 0is some preassigned value for g
If e denote the required probability by
W (| N-o--dl A= (~0)d fo (A-9)

WNC ai0 “ - j 1Y M vi

where the integration is effected over only those parts of the

N,s-dimensional configuration space (" J

which the inequalities (A-8) are satisfied.

Introducel a factor.z \ . .AM')having the following properties:
(Ao . MN)= 1 whenver ¢S-id ¢)” <5 tid(j) (A-1L:

= 0 otherwise
Then,

o

Consider the' integrals
— 1 I vn.c<i( Pk (I if, t-6-- ) vi)<A-1S)

<5* is the discontinuous integral of Dirichlet and has the property

<h o= whenever - Cp* < A
0 otherwise (A-14)
Now, let
According to Eq. (A-14) k rn Na 4 £
Al= > whenever -16

=0 otherwise
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Consequently _
| f (A-17'
*-1
has the required properties cA-l1)

Substituting for”™\ from Eqs. (A-13) and (A-17) in Eq. (A-12)

we obtain

(§ )c@)o nng gg( g{ " a@ )d%}% T 2in (‘z?f S’—O}
ari[£, Z: A% AN U

Y

o.ﬁ 4
= jdisL Mo J -§0)A1n1)d

where

A-19)

The case of greatest interest is when all the functions I'f) are

identical. Equation.(A-19) then becomes

) (A-20)

V75T
According to Eq.(A-18) v ? > its thke n-dimensional

Fourier-transform of the probability function \Vic § >0
(A- 18) and(A-19), the probabllltyW ct)dR

According to Eqs.(A-I),
that the position 7K of the particle wiII be found in tl}l1e
interval(p- drafter N displacements is given by
- N3
where 0b
An(]) = TT ( (r-) ex.(?(>£e°r-)d?- <A-22)



In Eq.(A-22) 'T-C*p governs the probability of occurrence of a
displacement Vé on the j-th occasion. The explicit form whichY|/_|taAhes
will naturally depend on the assumptions made concerning the (ft)'

A case of interest arises when rT; is the Gaussian distribution off*V?
»

« . xpC-TliyVvi n) (A-23)
¢ 03 ip i
where X: denotes the mean square displacement to be expected on the
a
j-th occasion. While Xj may differ from one displacement to another
we assume that all the displacements occur in random directions.

Forof the form.(A-23) our expression for becomes

S L A g

where stand for
(A-25)
From equation (A-24) and (A-25), A h(?) liecoroes
Ajty -ixy[-N<jrci?rli] (A-26)
Substituting forr Afchin Eq. (A-21) we obtain
WER)L 7 r~ N 142147 A ] A27)
A X dpjdcad?
The integrations in (A-27) are performed and we find
(it> = 1 (A-28)

N L



APPENDIX 1

MULTIVARIATE GAUSSIAN DISTRIBUTIONS (6)

We considered the case of the problem of random flights in
which the N displacements which the particle suffers are all
governed by Gaussian dirtributions but with different variances. We
shall now consider a generalization of this problem which has
important applications to the theory of Brownian motion.

Let

s W/ N,
"?-—AZ}.\I};&\” > ? =Z-?;;, ¢}r (A-29)

where the ,? an‘d the (>) are two arbitrary sets nof N real numbers
each, ana \K/here furtlher r is a stochastic variable the probability
distribution of which is governed by
T =0/ exp(-1372 ) (A-30)
whey_e; ﬂ is a congstant. We require the probablitilyW(?E',;f) Aﬁdgthaﬁ
D ?g

shall lie, respectively, in the ranges

an'd ¢ + . We have from Appendix |
(A-31)
where 0 =amd n;é are two auxiliary vectors and
N >iTU) LT [L 1) i «A-311

XjtipC-|-?21721%) ch>
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To evaluate we need the value of the typical integral
J (A-33)

We have

J=4 [y XZL&('V'ty]1# 'di-

=N N b5 tEpty {2]
Hence
\ i A ke A2 (D +did-2
(A-35)
+r?2 0 f o+ ['7]

=Ap[- p Ifr+zR G-2+QKi2)/2]

where

Substituting for A C7j<?)from Eq. (A-36) inY)/CA  tEq (A-3D3 we obtain

0y { A ]A371
XCJIM T+¥1LItff2 {ld g
To evaluate the integrals occurring in the foregoing formula, we

first perform a translation of the coordinate system according to

Nitd 1siCoife CILzd) AY

where c¢cC£and h i are so chosen that

AT +E(¥i = CRe<1¥Qn = -1 (13123) A3
With this transformation of the variables we have
Pfl +2RfCA+CKIL +2U2t-q<h, ) = A-40)

1o+ ox(- 111
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"Pli+IR M +(V)i + c

Hence

x1/zC P Q

¢ f

1) -

fl-

E*p[-(P$*-2.R ."MiJ. +Q 'la) <A 41)

f2)]FA[-fP A R AL+ A )] Ldri.

From this equation we readily find that

W CAf)-[1/91C PQ -A]Ap[-(P|$L1-iflf.f JIEQ -$]%-42>
Which gives the required probability distribution.



APPENDIX 111

* CORRELATIONS IN A SYSTEM OF COUPLED CLASSICAL OSCILLATORS (10)

We will consider first the correlations of the initial
coordinates

values of the and momenta, whose the

assumed
distribution

is canonical, i.e

D fAorfco)) = (z.1/7N+' (<AetA ;

(A-43)
F}(/):H{U‘Rrr +  NOAk 0]

is distribution, we obtain

"p.Co)pkoa)>

A FE T OAD)Y)

1]
o

(A -44)
<A AT n

From the pair correlations

for the time dependent coordinates and

momenta obtained in Eq (5) of section-3.3 and (A-44), we have

for
the

momentum correlation

<pEfe) P.tt+'0) - E J [IA
*US'VmAE+EI]

t+ llcwaHlIl. llcoo/2ct+ T)II_A<'pj& )pri('e)> |

From Eq (A-45), using the formula for the cosine of the differences
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H
of two values A 2i,and Ae}Ct+/Y)and substituting the correlations of

the initial values of the coordinats and momenta from Eq (A - 44),

Np-ct)y Prct+ TN - -t-T il GcoA "t 11\ (A-46)

In a similar way, we get
<<y,C't) P*rct+'T)) - -4 t|la tin Aly Il | ik-m
' : A = 4 t lla'ecmad'TIl|.1 (A-48)
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