
CHAPTER I I I

THE MODERN THEORY

We have known from the preceding chapter th a t Brownian 
motion are concerned with the perpetual irregular motions exhibited 
by small grains or p a rtic le s  of colloidal size immersed in a flu id , 
which motions are the phenomenon of molecular ag ita tion  on a reduced 
scale by partic les  very large on the molecular scale-so large as 
to  be readily v is ib le  in an ultramicroscope. The perpetual motions 
of the partic les  are maintained by fluctuations in the collisions 
with the molecules of the surrounding flu id . Under normal 
conditions, in a liquid, a Brownian p a rtic le  w ill suffer about 
102C o llis io n s  per second and th is  is  so frequent th a t we cannot 
really  speak of separate co llision s, since each co llision  can be 
thought of as producing a kink in the path of the p a rtic le ,so  we 
cannot hope to  follow the path in any detail-indeed, to  our senses 
the d e ta ils  of the path are impossibly fine.

The modern theory of the Brownian motion discussed is  
about Langevin equation, Fokker-Planck equation and Ford-Kac-Mazur 
model.

3 .1 ,Langevin Equation

3.1.1
We

dimension.
coordinate

The derivation of Langevin equation (8)
shall tre a t  the problem of Brownian motion in one
Consider a p a rtic le  of mass m whose center-of-mass
at time t  is  designated by x(t) and whose corresponding
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velocity is  น ร i x / d t  . This p artic le  is immersed in a liquid 
a t the absolute temperature T. I t  would be a hopelessly complex 
task  ( co llision  ra te  on the p a rtic le  is  too high) to  describe-in 
d e ta il the in teraction  of the center-of-mass coordinate X with 
a l l  the many degrees of freedom ( i .e . ,  those describing the motion of 
the molecules in the surrounding liquid). But these degrees of 
freedom can be regarded as a heat reservoir a t some temperature T, 
and th e ir  in teraction  with X can be lumped into some net force k (t) 
e ffec tiv e  in determining the time dependence of X. In addition, the 
p a rtic le  may also in teract with some external systems, such as 
gravity or electromagnetic fie ld s , through a force denoted by K(t). 
The velocity  น of the p a rtic le  may, in general, be appreciably 
d iffe ren t from i t s  mean value in equilibrium.

Focusing a tten tion  on the center-of-mass coordinate X, 
Newton’s second law of motion can then be written in the form

i n c h  =  K c t )  +  A f t !  ( 1 ,

Here very l i t t l e  is  known about the force A (t) which describes the 
in teraction  of X with the many degrees of freedom of the system. 
Basically, A (t) depends on the positions of many atoms which 
are in constant motion. Thus a ' (t) is  some rapidly fluctuating 
function of the time t  and varies in a highly irregular fashion. 
Indeed, one cannot specify the precise functional dependence of a ' 
on t .  So, one has to  formulate the problem in s ta t i s t ic a l  terms. 
One must, therefore, envisage an ensemble of many’ sim ilarly prepared 
systems, each of them consisting of a partic le  and the surrounding 
medium. For each of these the force A (t) is some random function of
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t  (see F ig .l). One can then attempt to  make s ta t i s t ic a l  statements 
about th is  ensemble.

Thé rate at which a ' (t) varies can be characterized by
"correlation time"Ywhich is  roughly the mean time between two
successive maxima (or minima) of the fluctuating function A/ ( t) .

*This tim eY is quite small on a macroscopic scale. ( I t  is  roughly of 
the order of a mean intermolecular separation divided by a mean 
molecular velocity, e .g ., about 10 13 sec, i f  A*(t) describes

F ig .l  Ensemble of systems illu s tra tin g  the behavior of the 
fluctuating force A^(t) acting on a stationary p a rtic le .
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in teractions with molecules of the surrounding liqu id .) Furthermore, 
i f  one contemplates a s itu a tio n  where the p a rtic le  is  imagined 
clamped so as to  be sta tionary , there is  no preferred direction in 
space; then a ' ( t )  must be as often positive as negative so th a t the 
ensemble average A*(t) vanishes.

Equation (1) holds fo r each member of the ensemble, and our aim 
is  to  deduce from i t  s ta t i s t i c a l  statements about น. Since A' (t) is  
a rapidly fluctuating  function of time, i t  follows byEq. ( l ) th a tน 
also fluctuates in time. But, superimposed upon these fluctuations, 
the time dependence of น may also exhibit a more slowly varying 
trend. For example, one can focus attention on the ensemble average 
นิ’ of the velocity , which is  a much more slowly varying function of 
the time than น i t s e l f ,  and write

\ L  ~  h e  +  'น. ( 2 )

where น' denotes the part of น which fluctuates rapidly (although 
less rapidly than A '( t) , since the mass m is appreciable) and whose 
mean value vanishes. The slowly varying part น is  of crucial 
importance (even i f  i t  is  small) because i t  is  of primary 
significance in determining the behavior of the p a rtic le  over long 
periods of time. To investigate i ts  time dependence, le t us 
in tegrate Eq.(l) over some time interval T  which is  small on a
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macroscopic scale, but large in the sense th a t .

• y n j u c t + T ) -  u d b ^

Then one gets

(3)

where we have assumed th a t the external force K is  varying slowly 
enough th a t i t  changes by a negligible amount during a time /y/.
The la s t in tegral in Eq.(3)ought to  be very small since A*(t)changes 
sign many times in the time'll Hence one might expect tha t any 
slowly varying part of น should be due only to  the external force 
K, i . e . ,  one might be tempted to  write

( 4 )

But th is  order of approximation is  too crude to  describe the 
physical s itu a tio n . Indeed, the interaction with the environment 
expressed by A/ (t) must be such tha t i t  tends to  restore the 
p a rtic le  to  the equilibrium situ a tio n . Suppose tha t the external 
force K ะ 0. The interaction  expressed by k'  must then be such that, 
if  'นะ/= o  a t some in i t i a l  time, i t  causes น to  approach
gradually i t s  ultim ate equilibrium value น = 0. But (4) fa i ls  to  
predict th is  kind of trend of น toward i t s  equilibrium value. The 
reason is  th a t we were too careless in trea tin g  the effects of k' in 
Eq.(3). We did not consider th a t the interaction force k'  must 
ac tually  be affected by the motion of the p a rtic le  in such a way 

tha t A i t s e l f  contains a slowly varying partA tending to  restore the 
p a rtic le  to  equilibrium. Hence we shall w rite, analogously to  Eq.(2)

a " =  Â  +  f \ (5)
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where A is  the rapidly fluctuating  part of k'  whose average value 
vanishes. The slowly varying part ~k' must be some function of น 
such th a t A; (นิ)=0 in equilibrium when ’ น ิ  = 0. If  น is  not 
too large, k ' (น) can be expanded in a power series  in น whose f i r s t  
nonvanishing term must then be linear in น. Thus k' must have the 
general form

( 6 )

Where (b is  some positive constant (called the " fric tio n  constant")
and the minus sign indicates ex p lic itly  th a t the force k acts
in such a d irection th a t i t  tends to  reduce น to  
increases. Our present arguments do not permit US 

statements about the actual magnitude of (b . We 
surmise tha t (h must in some way be expressible in 
i ts e l f ,  since the fr ic tio n a l restoring force is  also 
interactions described by A7( t) .

In the general case the slowly varying part of

zero as time 
to  make any 

can, however, 
terms of k 1 

caused by the

Eq. (1) becomes then

ใโท4นุ๊ (7)
o i t  1

If one includes the rapidly fluctuating parts น 1 and A ofEq.(2)and 
E q.(5), Eq. (1) can be w ritten

m d u  -  K - A U  - + A c t ' )  ( 8 )
d t  \

where we have put^U»|J,Uwith negligible erro r (since the rapidly 
fluctuating contribution A u7 can be neglected compared to  the
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predominant fluctuating  term A (t). Equation (8) is  called the 
"Langevin Equation" I t  d if fe rs  from equation (1) by decomposing the 
force A/( t ) in to  a slowly varying part-pUand into a fluctuating part 
A (t) which is  "purely random," i . e . ,  such th a t i t s  mean value always 
vanishes irrespective  of the  velocity or position of the p a rtic le .
The Langevin equation (8) describes the behavior of the p a rtic le  at 
a l l  la te r  times i f  i t s  i n i t i a l  conditions are specified.

3.1.2 The theory of the Brownian motion of a free  partic le .

Consider the Brownian motion of a free p a rtic le  (no fie ld  
of force) the Langevin equation fo r th is  case is

d a / d t  *= - p u t  A c t )  (9 )
According to  th is  equation, the  influence of the surrounding medium 
on the motion of the p a r t ic le  can be s p l i t  up into two parts: 
f i r s t ,  a systematic part -  lb  representing a dynamical fric tio n  
experienced by the p a r tic le  and second, a fluctuating  part A c t )  

which is  ch a rac te ris tic  of the  Brownian motion.
Regarding the f r ic t io n a l  term - p H  i t  is  assumed that th is  is 

governed by Stokes’ law. Hence
| 3  r ^ f l  C L Y j / m  ( 1 0 )

As for the fluctuating  part A d,)the following principal assumptions 
are made ะ

( i  ) A cb  is  independent of \ t
(น ) A r t )  varies extremely rapidly compared to  the variations of 'น. 
The second assumption implies th a t time in terval Atl 

ex ist such th a t during A t  the variations in LL are expected to  
be very small while during the same in terval A d i  may undergo
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several fluctuations. A lternatively, we may say th a t though น.ct) and 
Vl^j-Àpare expected to  d if fe r  by a negligible amount, no correlation 

between A d i  and ex is ts .

preceding. But "Solving" a stochastic d iffe ren tia l equation (6) is  not 
the same as solving any ordinary d iffe ren tia l equation. For 
one thing, Eq (9) involves the function A c t )  which has only 
s ta t i s t ic a l ly  defined properties. Consequently, "solving" the 
Langevin Eq (9) has to  be understood in the sense of specifying a 
probability  d is tribu tion  พ (นA t J โt o ) .

circumstances of the problem require tha t we demand ofW that i t  tend 
to  a Maxwellian d is tribu tion  for the temperature T of the 
surrounding flu id , independently of น 0 as t —>00 ะ

certa in  s ta t i s t ic a l  requirements. According to  the Langevin 
equation we have r า - -1-"L -

The problem is  to  solve the stochastic d iffe ren tia l

Consequently, the s ta t i s t ic a l  properties of
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—* -
น - '  น 0  I (14)

must be the same as

ฯ 3 1  f l  ( 4
. X (15)

จ

As t ‘-^ 00 the quantity (14) tends tout, ; hence the d istribu tion  ofie quantity (14) tends to u t  ; henc

iîïW tt I  L  I  / f . (16)

must be the Maxwellian d is trib u tio n
(  Yh / a T K j f ^ XXP ( - vn ไ ( 17)

One of our principal assumptions concerning M l  is  tha t i t  varies 
extremely rapidly compared to  any other quantities which enter into 
our discussion. Further, the fluctuating acceleration experienced by 
the p a rtic les  is  s ta t i s t ic a l  in character in the sense th a t the 
p a rtic les  having the same in i t i a l  coordinates and/or velocities 
w ill suffer accelerations which w ill d iffe r from p a rtic le  to
p a rtic le  both in magnitude and in th e ir  dependence on time. However, 
on account of the rap id ity  of these flu tuations, we can always 

divide an in terval of time which is  long enough for any of the 
physical parameters like the position or the velocity of a Brownian 
p a rtic le  to  change appreciably, into a very large number of
subintervals of duration A t  such that during each of these
subintervals we can tre a t  a l l  functions of time except A c t)  which
enter in our formulae as constants. Thus, the quantity on the right 
- hand side of Eq (13) can be w ritten as

- ( b \  .
■ L z  - t -  \  A ( ^ )  <18>

> Y l
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Let

B e a t !  5= f t + V ( เ ฝ เ
t

(19)

B (û t) represents the net acceleration which the p a rtic le  may 
suffer on a given occasion during ù X  . Equation(13) becomes

- f t t  y
î w t ) ( 2 0 )i t - U o i ;

We require tha t as t  00 the quantity on the right-hand side tends
to  the Maxwellian d is trib u tio n . พ7e now assert th a t th is  requires the 
probability  of occurrence of d ifferen t values for be
governed by the d is trib u tio n  function

[  ft’c a b l  = 1 พ  (  -  I M V n û t ) ( 2 1 )

where
^  =  P ' K T / vyv ( 2 2 )

To prove th is  assertion we have to  show that Wcu.;t '^ \ î  0) derived on 
the basis of Eqs (20) and (21) does in fact tend to  the Maxwellian 
d istribu tion  as t  —>
The expression fo r Al [ BCAt)] is  valid only for times A t large 
compared to  the average period^of a single fluctuation of Act). Now, 
the period of fluctuation  of A ct) is  clearly of the order of the 
time between successive co llis io n s  between the Brownian p a rtic le  aid 
the molecules of the surrounding flu id ; in a liquid th is  is

013811
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generally of the order of 10 21 sec.
We now proceed to  prove our assertion concerning Eqs.(20), (21), 
and (22)
We f i r s t  prove the following lemma:
Lemma I . Let

- t
( C =  [  ๆ ' พ ^ (23)

Then, the probability  d is trib u tio n  of is  given by

W n ^ )  =  L -  ^ x p  ( -  i R l  / ช ุ ? ( เ )  ,

โ41’^ l ร 2̂ ) J 0
24)

In order to  prove th is ,  we f i r s t  divide the interval (0 ,t) into 
a large number of subintervals of duration A t  . We can then writeof subintervals of duration A l

f U  I  ๆ  พ (25)

Refer to  the defin ition  of f ( A t )  EEq.(19)l we can express R in 
the form

R  = L  ? ,
i (26)

where

= ๙ช ุb e  At) = ชุ'. B u t ) (27)

According to  Eq (21) the probability  d istribu tion  o f r  is  governed by

ๆ ๙ p  = — 1 ไ; ( l ?j l  h h  ) (28)



w here  we h a v e  w r i t t e n
(29)

A comparison of Eqs.(26) and (28) with Eqs.(A-l) and (A-23) shows 
tha t we have reduced our present problem to  the special case in the 
theory of random flig h ts . Hence from Eqs.(A-25) and (A-28)

But

V d f ? )  -  1 . « p c - î l ' s r A z i h
( i f  I  i y / ร )* '4 ' ‘

. 2  _   ๆ 1 2. - r 1

30)

1 4  =  y  t  -
t e n .  z  i . \

a Ï - * o  0 ■is Ve Hi (31)

We therefore have
V i ( t )  = —  ฬ )

(32)

which proves the lemma.
Returning to  Eq.(13) we can express the right-hand side of th is  

equation in the form
■ t

j (33)

if ^ )  -
p e k  - i l

(34)
We therefore apply lemma I and the defin ition  of ไ̂ ’CÉp , Eq.(32) governs 
the probability  d is trib u tio n  of



18

Since,

[ ■ ^ )
X  l A d - i l  I ,  -  Z f l t

=  1 X  cU  = JL fi -
0

According to  Eq. (22)

(36)

(37)
From Eqs.(32), (36) and (37) we obtain

V i
VI (U  t  =  โ. ™■  1 *xp โ-พ 13-\£>~/ไ  / 0  - * 2(* ร ไ

u m o - r ^ u  1 L  ( S 8 >
Then f or t  —> 00

W f i b t  ;3 „ไ  —* /  'พ ุ- \  J tx p f- 'n v .h ïl  / (39); ’ I x lï- tT  /  1 v
which is  the Maxwellian d istribu tion . This proves the assertion we 
made with the s ta t i s t ic a l  properties of BeM,) implied in Eqs.(21) 
and <22),Eq.(20) leads to  a distributionW Clîjt.'lîj) which tends to  be 
Maxwellian independent of น 0 as i - ^ c o  .

We shall now.show how with the assumptions made concerning 
to  derive (x( Jt  0 7'น0'), the d istribu tion  of the displacement ?  of a

—3>p a rtic le  a t time t  given th a t the p a rtic le  is  at 
velocity 'น.- a t time t  = 0-

with a

Since

f - Ÿ0 = f u c b c L t
า ว

)intoEq(40), therefore, gives

f  J ,  { û „ ; p \ / ’ ( %  / พ ุ ่ ) }

(40)

Substituting Eq(l3)into Eq(40), therefore, gives
ร  ___ Vr-Y -0 (41)
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or

(42)Ÿ - r , - ( h % a - A )  =  [  ^  ^ ( ร )

By integrating by parts of the right-hand side o f  E q .  ( 4 2 ) ,  v e  find th a t

? - V0“ (i น 0 0  - I***') -  x ^ ( { p d t  + ^ l|  A ( Ç ) d |}

We can reduce Eq.(43) to  the form

T - ? 0 -( i  น’0 ( เ - ' / ไ  =  น (44)

by defining

^ ( ร )  =  f ( \ (45)

Thus lemma-I can be applied and with the defin ition  of ' บ ุ (^ ) Eq.(32) 
governs the probability  d is tribu tion  of

Since,
r - T 0 - ( î ' t t o C i - i ^ )

A  a  ,  , g > d - เ ไ  2  Ij บุ; ( § ) =  1  ( ( t  - -t )
(46)

1 - 4 A t  ( 4 7 )= JL  ( a A l- 3 ,  + 4 ^  -  X )
lemma I , therefore ^
__________ v n g  ) u<p U ^ v - V u o O - บ ุ 1/ บ ุ

i l f k T ( i f t t - i + 4 ^ - l 1 | r t ) I  U ^ T C i p , t - î + 4 l 8 t - i ¥  )
(4$)

we have from lemma I , therefore
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For in tervals of time long compared to  ^  , we can ignore the
exponential and the constant terms ^as compared to  2^1.. Further, as 
we sh a ll presently show, < r ? - ? 0 i > is  of order t  Ccf. Eq.(51)I ; 
hence we can also n e g l e c t l  -  j f î  ) compared to  V -V q  ๆ
Eq (48) thus reduces to

พ ( v , t f 6 . u 0) = . _ L _ 1 พ ( - เ r - v l i y ^ P t )  • C i »  ( ท  <49>

where we have introduced the " diffusion coefficien t " D defined by
t> =  - t r /v »  (* = - k r / i T a r j  (50)

In Eq.(50) we substitu ted  for ç> according to  Eq.(10).
From Eq.(49) we obtain for the mean square displacement 

along any given d irection  (say, the x-direction)
( (X -X p ')2' )  = ^ -  z D l  =ะ โ /ร  Ha))) t  (51)
This is  E instein’s r e s u l t (1) . Equation (51) has been verified  by
Perrin (6) to  lead to  consistent and sa tisfac to ry  values for the

2 .Boltzmann constant k by observation of\ (x -X e) / over wide ranges of 
T, Y} and a.

The law of d is trib u tio n  of displacements (49) has been tested  
by observation. Perrin gives the following sets of counts of the 
displacements of a grain of radius 2.1 X  10 5 cm a t 30 sec 
in tervals. Out of a number N of such observations the number of 
observed values of X  displacements between X.1 and X 2 should be

The agreement is  in sa tisfac to ry . See Table 1(6).
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Table -I  Observations and calculations of the d is tribu tion  of 
the displacements of a Brownian partic le .

Range 1 s t se t 2 nd se t Total
X X  10* cm obs. Calc. Obs. Calc. Obs. Calc.

0 - 3.4 82 91 86 84 168 175
3.4 -6.8 66 70 65 63 131 132
6.8 -10.2 46 39 31 36 77 75
10.2 -  17.0 27 23 23 21 50 44

(52)

From Eq.(48), we have
ข ,y t a i S -  ร '* • +  x ^ h )

Averaging th is  equation again and from^Iïîcj y~ we obtain

« I f - T o  I2 »  =  ^ * -

For t  CO , Eq (53) is  in agreement with our resu lt (51) while for 
t - )  0 we have

« l ? - n > | 2 »  =  l i l t 1 -  < 1 โ น 1 > 1 *
V n

So fa r we have only the law of d istributions of iX and r  
separately. But we can ask for the d istribution  W c r 1 
governing the probability  of the simultaneous occurrence of the 
velocity ht and the position"^ at time t ,  given that h l^ l^ a n d  t - 7 0



ตนฉบบ หนาขาดหาย
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and
F r  -3+ 4^  ' G- = <ÿb'(»-À2̂  )

H - ท ^  £ , ^ ' % - ^ ) - & *
(61)

(62)

3.1.3 The theory of the Brownian motion of a p a rtic le  in a f ie ld  
of force. CThe harmonically bound p a r t ic le ] (5,6)

In the presence of an external f ie ld  of force, the Langevin 
Eq.(9) is

c fô  Jdt  =  - p u  A d o + K c r p )
where is the acceleration produced by the f ie ld . The method of
solution is  i l lu s tra te d  su ffic ien tly  by a one-dimensional harmonic 
o sc illa to r  describing Brownian motion. The appropriate stochastic 
equation is

i i k = - / i U + A  ( t ) - o x
a t  1 < 6 4 )

where CaJ denotes the c ircu la r frequency of the o sc illa to r. We can 
write Eq.(64) a lte rn a tive ly  in the form

d x / d t z + ^  d x / d t  -V c e n t  «  A c t )  (65)
What we seek from th is  equation are, the probability distributions
W c * , t  • x p , u e ) ?ฬ ( ' น  J t - j X ^ a n d  พ  O C ,K  t - X ,  น ว

To obtain these d is trib u tio n s  we f i r s t  find the formal solution 
of Eq.(65) regarded as an ordinary d iffe re n tia l equation. The method 
of solution most appropriate for our present purposes is that of the 
variation  of the parameters.
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Therefore from Eq.(65)
X « a , Sx3c p c ^ i )  + a 2 x x p c ^ zt ‘) (66)

where JJ_1 and JX2 are the roots of
j x  +  ^ J X  +  o f  «  0  ( 6 7 )

We assume th a t the solution of Eq. (65) is of the form (66) where £{ I 
and £*2 are functions of time re s tr ic ted  to sa tisfy  the equation

( d f l i / i t )  + £XpCyi2t ')C fK /c U )  = 0  (69)

and

j ^ i X p C j u , b ( < W A t )  +  j x t Q X Y i ) x p L à ( K j & i )  -  A d )  ( 7 0 )

Solving Eqs.(69) and (70) we obtain

<*1 - - ± i _____  f  J ç  +  « | 0

Q2 =    7 1 (  £ X p ( - > * J ) A ( M f  + a 20 ' 71)
^ 1 - ^ 2. j 0

where 1 and are constants. Substituting Eq.(71) in Eq.
(66) we have £

X = _1_ pxpCj^b J-expc-̂ Ç) A(Ç)dç -.expert) <■:
1 1 x j"  « c p ( - ^ ) A ( £ ) c l $ |  +  « i o « p ( / i ^  +  v ^ p y ^ )
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From the foregoing equation we obtain the velocity 11 =J)C the
d t

equation we obtain the velocity น
formula u  _  _ 1„_  ^ 1 e x p e r t )  f แ ^ ) a t

^ M l ~ p 2 t  (73)
( 0 - E X p C - / 1 2 ^ )  A ( Ç )  d ç  I  + , น , « 10 +  «  6 e x p e r t )

The constants and 0 can now be determined from the
conditions th a t X = X-0 and พ' = พ'ปี a t t  = 0. We find

fl 1 0 = * -  ^ M z ~  u 0 • a 2 0 '= 4- x 0yน1- 'น-e>

Thus, we have from Eqs.(72), (73) and (74)

(74)

lave from Eqs.(72), (73) and (74)
x  +  _ L _ [ c x 0 น - น 0) - ^ 1- ■ «ป้ a c p c / น 21 ) ]  =  |  A ( $ ) i j 4 ) d ç  

p , - / V  °  <75>
and JJ-

น  + - J _ b l t x 0 น5- • น ^ pCyน1ท  - ^ ( x , , / V น 0'น x p c / l2t ) «  (6A ^ ) C
M r P i  (76)

wherez
M )  =

-  ปีz f U / M ) ] ]  ' 77-i>
M r  M l

- r — b i ^ p t / v H ) ]  < 7 7 ' 2>/t{ J “yU-2
I t  is  now seen tha t the quantities on the right-hand sides of 

Eqs.(75) and (76) are of the forms considered in lemmas I and II . 
Accordingly, we can at once write down the d is tribu tion  functions
ฬ พ ,t  1น 0) , พ c u , t  ; X,1, น ,,) and WCX;U; t  • X 0 .น ,)  in
terms of the integrals

0b ^  ; jVcfldç , (6^ ) ^ ) ^ (78)
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W i t h  ไ- p a n d  < ^ ( ^ )  d e f i n e d  a s  i n  E q s . ( 7 7 . 1 )  a n d  ( 7 7 . 2 ) ,  t h e r f o r e

(  พ ! แ  =  1 / ' น  1 - / X J « P c 2 - / ไ- น  + ฬ •1^ พ z W 2/ - ^ !  

°t _  2 / ^ < , พ น ^  [ ^ 1+ / A £) t ] - i ) - ( / ‘ l + / พ 2) /  V V l l  

น a =  V ^ r A ’î f ï f/ ' i JÜCf t 2 / * i t 5 + A - a - F ^

-  2a a 4 *  1 [ c/ 1 +A ’^  ■  ^  '  i f A l • พ ]
j^K Ç ) $ ( f  ) ( H  = Î1 /if ,M ,-/ y  j f î t p c_ju,t) -  « p ( y - 2t ) y

(79)

(80)

(81)
According to  Eq.(68). The quan tities on the left-hand sides of Eqs.(75) 
and (76) become, respectively ,

^ "'•̂ 0-®' 0 » k  i  A i. -  Xo (̂  \  2'^'O J- /Hü It I /3 ,t (82)
i i '  ^  i v

a n d

น - น ^  ^ C O û k  l  p j t  + 2 X. 0  Co +  f t U f t  J L  พ ่.  l a  1  ^ 1 1  ( 8 3 )

01
where

f i  =  ( • ( ? ’ - 4  coZ ) V î

Sim ilarly, we find
A  2( ' ' น ^ ) ! ธ ุ -  _ 4 r - - - - - ^ - J -  î r t V t n l / l f t t  + (lit + Æ,Z)
0  ^  ( 5 îT T ^ fp  ( 1 l <8 5

(84)

2
I
( 8 5 )

f  ^ I d ç = J ,  _ i f | t  - ^ 1 + ^ 2 )
and P1 ^

(  d ç  =  2  ^"ใ I ^ n n L ^ t

( 8 6 )

(87)
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I t  is  seen th a t a l l  the foregoing expressions remain f in i te  and 
rea l even when is  zero or imaginary. Thus, while a l l  the
expressions remain valid  in the "overdamped" case ( ^1 real) the 
formulae appropriate for the periodic ( imaginary) and the 
aperiodic ( Aj zero) cases can be obtained by replacing

t  f t ' / O i v i l v J  c i y u I ^ 1 ,a i n l v  ( 8 8 )

repectivel.y, by
C#)CO,! J__/ôïvuCO,! a y tA  X  /ะ>1ท2พ,! ; CO. ^ (จอ-  1Æ)Z(89)

ๅ I c ô ,  21CO1 ;  4 ' '

in the periodic case, and by

I * !  a v u i  !  
> 2

(90)

in the aperiodic case
We can immediately obtain the d istribu tion  functions for the 
quan tities on the left-hand sides of the Eqs.(75) and (76)}i.e ., 
the q u an titie s (82) and (83) according to  lemmas I and II. Thus,

We have sim ilar expressions forW (U.^!' X0 ÎXc) and\[i  CX)น  ,!  j X 0 ?น o')
(the physical meaning of these probability d istribu tions is  sim ilar
to  the meaning mentioned in section (3.1.2))

The quan tities of g rea test in te res t are the moments (6)
<*> , <น .) y a 1)  a w A  < u  > . We find

< 3 c >  -  +  f i l l i p  1! ' )  + I L L e  ^  ( 9 2 , 1 )
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ร )  “ น 0 รL ( c c û t v  b p  t  -  /> v v i k  » f t j t )  -  2 / x ^ L  X  / O i n k i ^ i :
z  ■ f l  ( 9 2 . 2 )  z

<x2> = < x f  +  ü  \  1 -  JL ^ , t  4. £  /O in k ^ i  4. \ ) \
v n ' c*> l  f l 2- ^  f i t  ( 9 2 . ร )

< IL >  -  (น ')  -V i l  [  \ - jt* ( ? - & ÀYfiti -  ç  y&ivJi'A,! + 1>) \
• v w !  v a ,2- ^  p \  ' 3

v  ” l ( 9 2 . 4 )

The foregoing expressions are the average values of the various 
quan tities a t time t  for assigned values of X andli- (namely, X fo and น.0) 
a t time t  = 0. We see th a t

< * • >  — >  0  ,

< x 2 >  - >  - k r / yvl» ( 9 3 )

By averaging the various moments over a l l  values of 'น0 and
( น อ )  a  0  ’5 X u »  = i T / w i xremembering th a t 

we obtain from Eq(92) tha t 
' ^ / 2

« X »  =  X 0 x  +  £ / > i n i i p , i )  ( 9 4 .1 )

( • ( น ) ' )  =  _  ^ • « .y .  JL ^  / u n i  1 A | t  (9 4 .2 )

( ( X 2 »  = i l  +  ^ 2 - ะ เ 1 ไ ^  (9A.3)
Y n A ) 2- '  ไน&ป้2- '  \  2.1 01 2 เ /

« น »  =• *& T 4 -  ^ 2  ( ไ ^ -  00 (9 4 .4 )

where ( i j )  and <'('พ)) stand f or j ^  1 i 0' ^^ ^ 03 ^ น 1
f ° พ ผ ไ  d l{  r  YVcu ) ป ้น 0
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