CHAPTER 111

THE MCDERN THECRY

W have known from the preceding chapter that Brownian
motion are concerned with the perpetual irregular motions exhibited
by small grains or particles of colloidal size immersed in a fluid,
which motions are the phenomenon of molecular agitation on a reduced
scale by particles very large on the molecular scale-so large as
to be readily visible in an ultramicroscope. The perpetual motions
of the particles are maintained by fluctuations in the collisions
with the molecules of the surrounding fluid. Under normal
conditions, in a liquid, a Brownian particle will suffer about
102Collisions per second and this is so frequent that we cannot
really speak of separate collisions, since each collision can be
thought of as producing a kink in the path of the particle,so we
cannot hope to follow the path in any detail-indeed, to our senses
the details of the path are impossibly fine.

The modern theory of the Brownian motion discussed is
about Langevin equation, Fokker-Planck equation and Ford-Kac-Mazur
model.

3.1,Langevin Equation

3.1.1 The derivation of Langevin equation (8)
W shall treat the problem of Brownian motion in one
dimension.  Consider a particle of mass mwhose center-of-mass
coordinate at time t is designated by x(t) and whose corresponding



7

velocity is ix/dt . This particle is immersed in a liquid
at the absolute temperature T. It would be a hopelessly —complex
task ( collision rate on the particle is too high) to describe-in
detail the interaction of the center-of-mass coordinate x with
all the many degrees of freedom (i.e., those describing the motion of
the molecules in the surrounding liquid). But these degrees of
freedom can be regarded as a heat reservoir at some temperature T,
and their interaction with x can be lumped into some net force k (t)
effective in determining the time dependence of x. In addition, the
particle may also interact with some external systems, such as
gravity or electromagnetic fields, through a force denoted by K{t).
The velocity  of the particle may, in general, be appreciably
different from its mean value in equilibrium.

Focusing attention on the center-of-mass coordinate X,
Newton’s second law of motion can then be written in the form

inch = Kect) + Aft! (1,

Here very little is known about the force A (t) which describes the
interaction of x with the many degrees of freedom of the system.

Basically, A (t) depends on the positions of many atoms which

are in constant motion. Thus a'(t) is some rapidly fluctuating
function of the time t and varies in a highly irregular fashion.

Indeed, one cannot specify the precise functional dependence of a'
on t. So, one has to formulate the problem in statistical terms,

One must, therefore, envisage an ensemble of many’ similarly prepared
systems, each of them consisting of a particle and the surrounding

medium. - For each of these the force A (t) is some random function of
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t (see Fig.l). One can then attempt to make statistical statements
about this ensemble,

Thé rate at which a' (t) varies can be characterized by
"correlation time"Ywhich is roughly the mean time between two
successive maxima (or minima) of the fluctuating function A/(t).
This timeYis quite small on a macroscopic scale. (It is roughly of
the order of a mean intermolecular separation divided by a mean
molecular velocity, e.g., about 10 13 sec, if A*(t) describes
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Fig.l  Ensemble of systems illustrating the behavior of the
fluctuating force A(t) acting on a stationary particle.



Interactions with molecules of the surrounding liquid.) Furthermore,
If one contemplates a situation where the particle is imagined
clamped so as to be stationary, there is no preferred direction in
space; then a'(t) must be as often positive as negative so that the
ensemble average A*(t) vanishes.

Equation (1) holds for each member of the ensemble, and our aim
IS to deduce from it statistical statements about . Since A (t) IS
a rapidly fluctuating function of time, it follows byEg. (I)that
also fluctuates in time. But, superimposed upon these fluctuations,
the time dependence of  may also exhibit a more slowly varying
trend.  For example, one can focus attention on the ensemble average
> of the velocity, which is a much more slowly varying function of
the time than itself, and write

where ' denotes the part of which fluctuates rapidly (although
less rapidly than A'(t), since the mass mis appreciable) and whose
mean value vanishes. The slowly varying part is of crucial
importance (even if it is small) because it is of primary
significance in determining the behavior of the particle over long
periods of time. To investigate its time dependence, let us
integrate Eq.(I) over some time interval T  which is small on a
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macroscopic scale, but large in the sense that . Then one gets

T G
synjuct+T)- udb?r = KCEIT +§ Al At (3)

t

where we have assumed that the external force Kis varying slowly
enough that it changes by a negligible amount during a time /yl.
The last integral in Eq.(3)ought to be very small since A*(t)changes
sign many times in the time'll Hence one might expect that any
slowly varying part of  should be due only to the external force
K 1.e., one might be tempted to write

”‘%% (4

But this order of approximation is too crude to describe the
physical situation. Indeed, the interaction with the environment
expressed by A/(t) must be such that it tends to restore the
particle to the equilibrium situation. Suppose that the external
force K 0. The interaction expressed by k' must then be such that,
if ' /=0  at some initial time, it causes to approach
gradually its ultimate equilibrium value  =0. But (4) fails to
predict this kind of trend of  toward its equilibrium value. The
reason is that we were too careless in treating the effects of k' in
Eq.(3). W did not consider that the interaction force k' must
actually be affected by the motion of the particle in such a way
that Aitself contains a slowly varying partA tending to restore the
particle to equilibrium. Hence we shall write, analogously to Eq.(2)

a" = A + f\ 5)
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where  A'is the rapidly fluctuating part of k' whose average value
vanishes. The slowly varying part ~ must be some function of
such that A:( )=0 in equilibrium when. =0. If is not
too large, k'( ) can be expanded in a power series in  whose first
nonvanishing term must then be linear in . Thus k" must have the
general form
/

A )
Where (b is some positive constant (called the "friction constant")
and the minus sign indicates explicitly that the force k acts
in such a direction that it tends to reduce to zero as time
increases. Our present arguments do not permit ws to make any
statements about the actual magnitude of (b . & can, however,
surmise that (h must in some way be expressible in terms of k1

itself, since the frictional restoring force is also caused by the
interactions described by A7(t).

In the general case the slowly varying part of Eq. (1) becomes then

o4it 1 ()

If one includes the rapidly fluctuating parts 1and AofEq.(2)and
eq.(5), EQ. (1) can be written

mdu - K-AU -+Act") (8)
dt \

where we have put*U»[J,Uwith negligible error (since the rapidly
fluctuating contribution  Au7can be neglected compared to the
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predominant fluctuating term A(t). Equation (8) is called the
"Langevin Equation” It differs from equation (1) by decomposing the
force A/(t) into a slowly varying part-pUand into a fluctuating part
A(t) which is "purely random," i.e., such that its mean value always
vanishes irrespective of the velocity or position of the particle.
The Langevin equation (8) describes the behavior of the particle at
all later times if its initial conditions are specified.

3.1.2 The theory of the Brownian motion of a free particle.

Consider the Brownian motion of a free particle (no field
of force) the Langevin equation for this case is
da/dt *= -put Act) (9)
According to this equation, the influence of the surrounding medium
on the motion of the particle can be split up into two parts:
first, a systematic part - Ib representing a dynamical friction
experienced by the particle and second, a fluctuating part act)
which is characteristic of the Brownian motion.
Regarding the frictional term - pH it is assumed that this is
governed by Stokes™ law. Hence
13rAflcLyjim (10)
As for the fluctuating part Ad,)the following principal assumptions
are made
(1) Acbis independent of \t
() art) varies extremely rapidly compared to the variations of ' .
The second assumption implies that time interval Afl
exist such that during At the variations in LL are expected to
be very small while during the same interval a 4 i may undergo



13

several fluctuations. Alternatively, we may say that though .ct) and
VInj-Apare expected to differ by a negligible amount, no correlation
between Adi and exists,

The problem is to solve the stochastic differential
equation (9) subject to the restrictions on A'C{) stated
preceding. But "Solving" a stochastic differential equation (6) is not
the same as solving any ordinary differential equation. For
ong thing, Eq (9) involves the function Act) which has only
statistically — defined properties.  Consequently, “solving"  the
Langevin Eq (9) has to be understood in the sense of specifying a
probability distribution (At to).
\N(ﬁ)t;ﬁt)which governs the probability of occurrence of the
velocity'l-,c at time t given that.ﬂ =Uo at t = 0. Of this function
W(ﬁ){')ﬁ) we require that, as t— 0,
W(ﬁ)t -)Yio\sé(ux— ux,ovécu‘j-ug,038(ul— Uz'o) (11)
where the é’s are Dirac’s éfunct,ions(s). Further, the physical
circumstances of the problem require that we demand ofWthat it tend
to a Maxwellian distribution for the temperature T of the

surrounding fluid, independently of 0 as t =00
'5/1 __’l?'/ {( )
W@)’Lﬁo\—%(_ﬁvj\ﬁ) exp (-m[W]7/2RT

—_
This demand onW(ﬁ)t')ﬂo\ conversely requires that A('L) satisfy

certain statistical requirements. According to the Langevin

equation We have wne formas solutzon ' %
N t -t (5 -
ﬂ-ﬁozﬁ - L(l g 2 A(&)Aﬁ

0
Consequently, the statistical properties of

(12)
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*

0 I (14)
must be the same as

3L fI (4 (15)
AstM00 thie quantity (14) tends tout; ; hence the distribution of

mwee e o1l f (16

must be the Maxwellian distribution

(Yh/aT K jf®XXP (-vn (17)
One of our principal assumptions concerning M 1 is that it varies
extremely rapidly compared to any other quantities which enter into
our discussion. Further, the fluctuating acceleration experienced by
the particles is statistical in character in the sense that the
particles having the same initial coordinates and/or velocities
will suffer accelerations which willdiffer from particle to
particle both in magnitude and in their dependence on time. However,
on account of the rapidity of these flutuations, we can always
divide an interval of time which is long enough for any of the
physical parameters like the position or the velocity of a Brownian
particle to change appreciably, into a very large  number of
subintervals of duration At such that during each of these
subintervals we can treat all functionsof time except Act) which
enter in our formulae as constants. Thus, the quantity on the right
- hand side of Eq (13) can be written as

-
1Lz -t-

h \
\
> Y |

A(M) <18>



15

Let

seatt & ({+V | (19)
t
B((t) represents the net acceleration which the particle may
suffer on a given occasion during uX . Equation(13) becomes

ftt

it-uol: Twot) (20)

W require that as t 00 the quantity on the right-hand side tends
to the Maxwellian distribution. 2 now assert that this requires the
probability of occurrence of different values for be
governed by the distribution function

[ ficabl = L (-IM Vaat) ¥

where
Aoz PKT vy (22)

To prove this assertion we have to show that Weu.;t"*\i0) derived on
the hasis of Eqs (20) and (21) does in fact tend to the Maxwellian
distribution as t —

The expression for A[BCAt)] is valid only for times At large
compared to the average period”of a single fluctuation of Act). Now
the period of fluctuation of Act) is clearly of the order of the
time between successive collisions between the Brownian particle aid
the molecules of the surrounding fluid; in a liquid this s

013811
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generally of the order of 10 21 sec.
W now proceed to prove our assertion concerning Eqs.(20), (21),

and (22)
W first prove the following lemma;
Levma |, Let
-{
(c= 1 " (23)

Then, the probability distribution of is given by

Wnh) = Axp (- PRLE () 2

L -
4" 2"2 JO
In order to prove this, we first divide the interval (0,t) into
a large number of subintervals of duration At . W can then write

fu | (29)

Refer to the definition of f(At) EEQ.(19) we can express R in
the form

R =L ?’i (26)
Where

beAt) = BUt) 1)

According to Eq (21) the probability distribution ofr is governed by

p =— 1 ;( |?j|hh) (28)



where we have written

(29)
A comparison of Eqs.(26) and (28) with Eqs.(A-l) and (A-23) shows
that we have reduced our present problem to the special case in the
theory of random flights. Hence from Eqs.(A-25) and (A-28)

Vdf?) - 1 e pc-il'sr A zih

(if 1 iy )4 %)
But 2 = 1 A B |
1 4 = y { -
v Ve g
al-*o 0
\\é therefore have
Vi(t) = — ) (32)

which proves the lemma.

Returning to Eq.(13) we can express the right-hand side of this
equation in the form
.I t

’ ®)

|f pek-il
- %)

\i¢ therefore apply lemma | and the definition of *Cp , Eq.(32) governs
the probability distribution of
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Since,
IA d-il - Zfl
TS R TEEE )
0
According to Eq. (22) (37)
From Eqs.(32), (36) and (37) we obtain
Vi
VI(U t =, 0 L*p - 13-\E>~[ [ 0 -*2*
um o -1 "~ u 1L (58>
Then for t =00
Wfibt 3, —= I .= \ dtxpf-nv.hil / Y
; | li-tT 10y &

which is the Maxwellian distribution. This proves the assertion we
made with the statistical properties of BeM,) implied in Eqs.(21)

and <22),Eq.(20) leads to a distributionWClijt.'lij) which tends to be

Maxwellian independent of 0 as i-~co .

e shall now.show how with the assumptions made concerning
to derive (x(X 07 0) the distribution of the dis_p;acement? of a

particle at time t given that the particle is at with a
velocity ' - at time t =0-
Since

f-Yo="fuchclLt (40)

Substituting  Eq(I3)intoEed0), therefore, gives
Yo 0 oo 1w 1 ) ()
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or
Vot o(h%oa-A) =] A () (42)

By integrating by parts of the right-hand side of q. (42), ve find that

(00 - 1) - XM({pdt +M A(C)d]}
\\é can reduce Eq.(43) to the form
00 0 - s )
by defining
R o (5)

Thus lemma-1 can be applied and with the definition of - (*) Eq.(32)
governs the probability distribution of

wHULALONGIORN - UNI) (46)
s et
- (aA1|'3,+4A ] XAt) (47)

Since,

we have from lemma |, therefore A
vng Jusp UAv-VuoO- U

FKT (iftt-i+4n-11r0)l UATCip,t-1+ 418t i}¥

)
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For intervals of time long comparedto * , we can ignore the
exponential and the constant terms"as compared to 2*1.. Further, as
we shall presently show, <r?-201 > is of order t Ccf. Eq.(51)I ;
hence wecanalsoneglectl -jfi ) compared to V-Vq
Eq (48) thus reduces to

(v, tfo.uQ=._ L _ L (- r-vIiiy®Pt) «Ci» ( <49>

where we have introduced the " diffusion coefficient™ D defined by
= -trfvy (v = -krliTarj (50)
In Eq.(50) we substituted for ¢ according to Eq.(10).

From Eq.(49) e obtain for the mean square displacement
along any given direction (say, the x-direction)

((X-Xp)2) =~ - ZIEED | Ha)))t (51)

This is Einstein’s result(l). Equation (51) has been verified by
Perrin (6) to lead to consistent and satlsfactory values for the
Boltzmann constant k by observation of\(x- Xe) | over wide ranges of

T, V}and a,

The law of distribution of displacements (49) has been tested
by observation. Perrin gives the following sets of counts of the
displacements of a grain of radius 21 x 105 om at 30 sec
intervals. Out of a number N of such observations the number of
observed values of x displacements between x.1and «. should be

%4
_N\_S UP( x/4D£) dx
T2 e, (4D1) %
The agreement is in satisfactory. See Table 1(6).
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Table -1 Observations and calculations of the distribution of
the displacements of a Brownian particle.

Range 1 st set 2 nd set Total

Xx 10* om obs.  Calc.  Obs.  Calc. Obs. Calc.
0- 34 82 o % 8 168 17
34 -6.8 66 10 6 63 13 132
6.8 -10.2 1 3 3l % Il 7
102 - 17.0 21 3 3 2 50 4

From Eq.(48), we have

ytais - *ot X oh)

(52)
Averaging this equation again and from”liic] y~ We obtain

«1f-To R» =

Fort @ , Eq (53) is in agreement with our result (51) while for
t-) 0 we have

«l?-n>)2» = Tiltl - <1 I>1*
Vn

So far we have only the law of distributions ~ of IX andr
separately. But we can ask for the distribution wert
governing the probability of the simultaneous occurrence of the
velocity ht and the position"” at time t, given that hi*[*and t-7 0
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F. -3+41 ! G=gbp-A2) @
and

HrE A% -N)-&F @

3.1.3 The theory of the Brownian motion of a particle in a field
of force. CThe harmonically bound particle](5,6)

In the presence of an external field of force, the Langevin
Eq.(9) is

coddt = -p U AdotKerp)

where is the acceleration produced by the field. The method of
solution is illustrated sufficiently by a one-dimensional harmonic

oscillator describing Brownian motion. The appropriate stochastic
equation is

iik=-/iU0+A(t)-o0x
at 1 <64)

where @ denotes the circular frequency of the oscillator. W can
write Eq.(64) alternatively in the form

dx/dtz+2dx/dt Vcent « Act) (65)
What we seek from this equation are, the probability distributions
W c*,texp,ue)? (" Jt-jX™and OCK t-X,

To obtain these distributions we first find the formal solution
of Eq.(65) regarded as an ordinary differential equation. The method
of solution most appropriate for our present purposes is that of the
variation of the parameters.
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Therefore from Eq.(65)

X« a,8pchi) +a2xxpchzt) (66)
where3s_1 and sx2 are the roots of
jx o+ rIx +of« 0 (67)

We assume that the solution of Eq. (65) is of the form (66) where &1
and e=2are functions of time restricted to satisfy the equation

(dflifit) +EXpCyit)CFK/cU) =0  (69)
and
jAIXpCju,b(<W ALt) +jxtQXxYi)xplLa(kj&i)- Ad) (70)

Solving Eqs.(69) and (70) we obtain

<Kot f J¢ + «]0

W= 71  (EXp(->*NAMF +a2 7]

ALLA 20

where 1 and are constants. Substituting Eq.(71) in Eq,
(66) Ve have

_ _pxpCJ“bJexpc”C)A(C)dc expert) §

1 oIxj" «cp(-")A(£)cl$| + «io«p(/i™ +v Apy ")
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From the foregoing amuation we obtain the velocity 11 =])Cthe

formula v _ 1 A lexpert) f no) gt
AM I~p2t (73)
(0 -EXpC-/127) A(C) d¢ I+, ,«10 + « bexpert)
The constants  and Ocan now be determined from the
conditions that X=Xo and '= " att =0. W find
fl10=*-~ Mz~ ul+ a20=4 xly ' ® (74)

Thus, we Have from Eqs.(72), (73) and (74)

x+ L _[cx0 - 0 - ANErcoacpel 21)] =] A($)ij4)de
and p ,-1V ° £75>
-] Do 5o ApQy L M (x V0 xpell2)« (6A M) C
MrPi (76)
wZe UM )] T
MrMlI
M ) = -/t{J‘SU-Zb | Y84 ¥ il 934 <7172

It is now seen that the quantities on the right-hand sides of
Eqs.(75) and (76) are of the forms considered in lemmas | and |1,
Accordingly, we can at once write down the distribution functions

10, cut; XL ) adWCXU;t e X0, ) in

terms of the integrals

b ~ ; jefldg , ©)*)" o
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With - p and <~(") defined as in Eqs.(77.1) and (77.2), therfore

( ! =" L 0 x ) «Pc2/- + A t W2 -
| (79)
ot 9ng, AL WIAR-)-(F1+ IV VT
. (80)
a =V A~ r A Tf 7 f/"iJUCE t2/*itb+A -a - F 7

madtl o [OHAM I RADL )

jPKC) S(f)(H =1Lt M -1y jfitpcul) - «p(y-2)y (1)
According to Eq.(68). The quantities on the left-hand sides of Eqs.(75)
and (76) become, respectively,

NP O»kIAI | 2'70 - /HultiIV/3,t 8)

and
coont-pit T 2Xoco s, i de e e
01
Where
fi= (o(?2-4 coZ)Vi (84)
Similarly, we find
(" ey |rtth|/|f (it +£2)
0 A5 TT A 1 | 85)
frldg =d, flt-A1 ),
and P17

( de = 2™ 1AL At (87)
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It is seen that all the foregoing expressions remain finite and
real even when is zero or imaginary. Thus, while all the
expressions remain valid in the "overdamped” case (~1 real) the
formulae appropriate for the periodic ( imaginary) and the
aperiodic (A zero) cases can be obtained by replacing

tft/0ivilvy ciyul  ALlainly (88)

repectivel.y, by
CHCOL  J_foivuCO,! aytA X [>12 1 00~ ( - 1E)Z(8)

[c0, 21CO1 4

in the periodic case, and by
(490)

| * | avui !
> 2

in the aperiodic case

W can immediately obtain the distribution functions for the
quantities on the left-hand sides of the Eqs.(75) and (76)}i.e.,
the quantities(82) and (83) according to lemmas | and I1. Thus,

Wt x, uo) - pti2 2
T e eohgpt e Baimh o] 2o amh ot
- s & 8, 1
e 3 T PILTO .
Lw f@aJ e e L <L ) )
o |

\\é have similar expressions forW(U.A!" X0NXe) and\[i CX) ! j X0? 0)
(the physical meaning of these probability distributions is similar
to the meaning mentioned in section (3.1.2))
The quantities ofgreatest interest are the moments (6)
<*> < )yal) awA <u >, Wfind

<3c> - +fillip ') + ILLe » (92,1)
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) “ 0L (ccltvbpt - uvik »ftjt) - 2/xAL X [Oinki%i:
z I fl (92.2) 1
<> =<xf+0 \1- IMNt4E 10Ink™M 4\)\
vn'e®> | fl2- A fit (92.)
<IL> - () Vil [\-jt* (2-&AYfiti - ¢ Y&IVIIA! + D))
-vw!v v 9.2— A p\ (9I2.4) 3

The foregoing expressions are the average values of the various
quantities at time t for assigned values of X andli- (namely, XD and 0)
at time t =0. W see that

<ke> —> ()

<X2>-> -kr/ywh (93)

By averaging the various moments over all values of ' 0 and

remembering that (- )a05  Xu» = iT/wix
we obtain from Eq(92) that
N2

« X » = X0x t+ £/>iniip i) (94.1)

(¢( )) = _ Me«y. LM JunilAf (94.2)

(X2> = YinL)2-+/'\ - &12-' ' \ 2.1 01 2 /(9A.3)

€ v = XET 4 M (A 00 (94.4)
where (1)) and <(' ) stand for | ML AARA

fe dl{ rYveu) o
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