CHAPTER IV
THE FOKKERPLANCK EQUATION

4.1 Introduction (6)

In this chapter, we will emphasize the essential stochastic
nature of the phenomenon and seek a description in terms of the
probability distributions of position and/or velocity at a later
time starting from given initial distributions.  Thus, in our
discussion of the Brownian movement of a free particle we obtain
explicitly the distribution functionsWdl* 1 ju) o € and

given initial values of 6 andu 0 ; similarly, we
determined the distributions' CUjtjXp jJUQ)jW (X ;Xc 110) andWV X0,u0)
for a harmonically bound particle describing Brownian motion. In
deriving these distributions we started with the Langevin equation
ceq.9) In the field-free case, and Eq.(63) when an external field
is present! and solved it in a manner appropriate to the problem. W
shall now consider the question whether we cannot reduce the
determination  of these distribution functions to appropriate
boundary value problems of suitably chosen partial differential
equations, of which the solution can be obtained as solutions of
boundary-value problems long familiar in the theory of diffusion or
conduction of heat (8).

It is clear that for the solutions o« the most general problem
we require the density functionWCVJUL); in other words, we should
really consider the problem in the six-dimensional phase space. But
before we proceed to establish such a general theorem it will be
instructive to consider the simplest problem of the Erownian motion
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of a free particle in the velocity space and obtain a differential
equation for Weft,!) ; this leads USto the discussion of the
Fokker-Planck equation in its most familiar form.

4.2 The derivation of Fokker-Planck equation (6,8)

(1) The Fokker-Planck equation in velocity space to describe
the Brownian motion of a free particle (6)

Let At denote an interval of time long compared to the
periods of fluctuations of the acceleration  occurring in the
Langevin equation but short compared to intervals during which the
velocity of a Brownian particle changes by appreciable amounts.
Under these circumstances we expect to derive the distribution
Wont+ziU at time -Visad a knowledge of the transition
probability ACIZ°ATr) thatlisuffers an increment A in time AM .
More particularly, we expect the relation

WcF1 +0t) = (\H&- AUT) (!-AF itX)dou) 95)

to be valid. W may remark that in expecting this integral equation
between and ( .,t) to petrue we are supposing that
the course which a Brownian particle will take depends only on the

Instantaneous values of its physical parameters and is entirely
Independent of its whole previous history. In general probability
theory, a stochastic process which has this characteristic, namely,
that what happens at a given instant of time t depends only on the

state of the system at time t is said to be a Markoff process (6,8).
But we should be careful not to conclude that  every stochastic
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process is necessarily of the Markoff type. For, it can happen that
the future course of a system is conditioned by its past history: I.
e., what happens at a given instant of time t may depend on what has
already happened during all time preceding t.

Returning to Eq.(95), for the case under discussion we have

o ¥ o = Mei-pf-UUjroGtlyV AtV C\-frier/ ) (9%)

For, according to the Langevin equation Icf. Eq.(19)D, integrate
AU= -ft:tAt+ ScAll (97)
where "BeAt) denotes the net acceleration arising from fluctuations
which a Brownian particle suffers in time At «and, since the
distribution of IS given by Eq.(21), the transition
probability (95) follows at once.
ExpandingW (U ,tM t),V V (tl-Atl,-b and "Cu-A’ ; A\i) in Eq.(95)

in the form of Taylor series, we obtain

Warh) + aWat+Q cath
. (( {Btiv\[m’a) -3 oW au; +

|
g L U 2
& -0 =D

yf rfl sal) U; 4 pk;AUfi T @ A~ IUAN+*4deAU) U)deA]
P A i<j .3
wr|t|ng
(QUt> 1 = ( Aul'Cit;Att)nii) (99.1)

<A 4> = fAAIlg (U.-aU)dcAil) (99.2)

(AVLI AUj >- 1°+ AU- G t; ATX) dedlL) (99.3)

-CO
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we have therefore At+OcADbl- -1 A . <Aup +al 1YY <auld>
3t N N
JAX A U (W
ARV 9 1, t c>Uv 3U-L
+E eW JL"(AUVAU A +xx 4> +X A </\UAU.>

TfU IX
KIAV %
where he remainder %erm involves the averages of the quantities

Aun TAIMAUj  and AUMAU-AUA, (iM Tk -1,27
Therefore, Eq(100) can be written as wiat+0(ih

=13 ( <AUir+ :2( <07>) +T ULCYKAUiAUhhw!'
A A AN

+ 0 «Aula N 4>
which is the Fokker-Planck equation in its most general form.
For the transition probability (9B) and from Eq(99), we get

<AU-> =-fivL OUAUj>-0 ) )<AUl) = At+0tit]) 1102
Hence, Eq.(IO1) reduces to

IYM t+0[At2 - jpjiview u) + YYhal 4 OCAt) (103)

for the limit At~0 we have

=P -y woy A%

We shall now show that the distribution function w<at-vto
obtained in Eq.(38) is the fundamental solution of the Fokker-Planck
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Eq.(104) in the sense that this is the solution which tends to the
function

Scu- - ,10) Scu.2-"«2lt) ku.3-u?0) (105)
as 0. Toprove this, we first note that but for the Laplacian
term, Eq.(104) is a linear partial differential equation of the
first order. Hence, it is natural to expect that the general
solution of Eq.(104) will be connected with that of the associated
first-order equation

| 21 - "0 (106)

The general solution of this first-order equation (106) involves the
three first integrals of

dup A/ 200 0 (107)
The required first integrals are
/ 0 = COfl3ta.ni <108)

Accordingly, for solving Eq.(lfél) Ve introduce a vector  defined by
e (109

s
Equation (104) now becomes 2A 2
Jat - S(IW = (110)
Introducing the variable
t =W i (111)
W have from Eqgs.(1l0) and (111)
2 (itl 1 2 2
Al L EE + £* o+ £ f (112)
V d t

The solution of this equation can be obtained using the
following  lemma
Lerma |, If ®(t) is an arbitrary function of time, the solution of
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the partial differential equation 2

"iJh=  <j(hvyr (113)
where C =j0 at timet =0 is
X [ C '|?'7»:D((/Cb|t) 114)
[4] P 0
Applying this lemma to Eq.(112) we have the solution
x | - T fxp
_ R 15)0 S
Then according to Eq.(II) we have
(- 1= 1 A\ 1| (116)
” Ny - b RN My L ]

which agrees with.the result in Eq.(38)
(2) The generalization of the Fokker-Planck equation( )

e shall now consider the general problem of a particle
describing  Brownian motion and under the influence of an external
field of force.

Let At again denote an interval of time which is
compared to the periods of fluctuations of the accelerationtel)
occurring in the Langevin Eq. (63) but short compared to the
intervals in - which any of the physical parameters change
appreciably. Then, the increments Air andAitin position and velocity
which the particle suffers during Atare

Af-Uit » aU= -(six-K)al +"§(£*s) a1
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where K denotes the acceleration per unit mass caused hy the
external field of force and"8cAV)the net acceleration arising from
fluctuations which the particle suffers in time . The
distribution of$(Ah)is again given by Eq.(21)

Assuming as before that the Brownian movement can be idealized
as a Markoff process the probability distribution A in
phase space at time can be derived from the distribution
YI(x)x"jat the earlier time t by means of the integral equation

FAI) = A C f - «ATATX) 1118

According to the Eqs. (117)
I Af Al = A% ScAi-u,At) ScAU~uzat)SCA :- 3Al)
? A (129)
where the &’s denote Dirac’s delta functions andljAlfj’ - )the transition
probability in the velocity space. With this form for the transition
probability in the phase space the integration over Af in Eq (118)
IS immediately performed and we get

Wer 2t +al)= (vief-UAt ‘Aui) ctotAl,it- aU )Aft)i £ATE)
5 } ' (120)

Alternatively, we can write
We?2-ntAh;U  +41 =0 (V3 rAIISI)\ c?ft -Alteat) d (At) (121)
Expanding the functions in the foregoing equation in the form of

Taylor series and proceeding as in our derivation of the
Fokker-Planck equation, we obtain Ccf. Eq.(98)l

| \C2QAZ02
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X ;o t+ 0 ( )- -/I 2. <A 7 122)
1] <AL sL <AU]AU"+OkAU"AU"

This is the analog in the phase space of the Fokker-Planck equation
in the velocity space.

For the case (117) ,the transition probability — (2."/u)

is given by Ccf. Eq. ()L

y<X;AU)= __’2_.61{ IALH(@A Kmtl/u%zﬁc}
(4Tq AtY"> (123)
And with this expression for the transition probability we have
<Auy-M u.LK T :; rafit- tul+ 0o ueée)] <AUILAUj>= 0 cAt2)
! ® (124)
Accordingly Eq.(122) simplifies to
| SIM+ft. a X a a ik ((/ KOVi)
\'n a 7 | It0U| A (125)
s ALHD )

and passing to the limit At=0 and after some minor rearranging of
the terms

AN AR I W= (hk

This equation represents the generalization of the Fokker-Planck
Eq.(104) to the phase space.

4.3  The solution for the field free case (6)
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When no external field is present Eq.(126) becomes

AW+ U, = $p/ ¢+ - + /I Mt (127)

To solve this equation we again note that the equation

_bejfﬂt o %YM\?W = %@W-‘- (ﬁl%mda\N (128)
derived from (127) by ignoring the Laplacian term is a linear
homogeneous first-order partial differential equation.

Accordingly, the general solution of Eq. (128) can be expressed in
terms of any six independent integrals of

Aﬁ/dt = ~@ﬁ' dhrlit = > (129)

J

Two vector integrals of Eq. (129) are

o 0 =
N L=l 4 T*ul(5 =12 (330)

Introduce the new variables
21 = AV )X = f 2= (x,Y i) -YH-nlp 1311

Then, for this transformation of the variables we have
A - Nl o+ (852 7

(132)
C}W&KW - X* +o
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av) + + 1JfW

Substituting Eq.(132) in Eq.(127) we obtain
20t 2. P"

b ¢ ?—
_ w2 ST Y W}
o =gt 4] TIPSR LTy

introduce the variable
X = Vi A <134,

Equation (133) reduces to

foofit
j ix fy X+

or, written out expliciitly

/\(T>X £ "3V +L X ] 4 t "
— ANod oo ‘hycty

2T T B X X
Noxo2 V |2 TX 2V]

To solve this equation we first prove the following lemma:
Lemma Il Let~cfeand”cbhhe two arbitrary functions of time. The

solution of the differential equation

A= (Xet) LX <137,

"H A L AT >x

when & - X -0 at t=0 is



. . (138)
eXp +2\iML o+ kX Aj

= YA Il k,= - tefj-ttidt = t) A
a= V(DA ) gtefitien g g gp a0

and A d bl - kz (140)

To prove this lemma we substitute for % according to Eqg. (138)

in Eq. (137) we find | +rodjlio 42 + X dkj 4
2(f>%a] 20,k 1eX 4 h* X 2= A) -t-doty( k*xk-~x |

Kil+A K} - 1) FETI(KFEZ+ 2k 1A x + kjX - k,) = 0

where
x=aA b k| =kIA M b- |a (142)
2
Equating the coefficients of f  a and X in (141), we obtain
2
dfil\/At= -2Ca{$ + k,")2 3 dk\/at= +h,))
(143)
d Jdt=-2 (A(f+ 1.))ck $+b1))
da/dt = 2A fAi$ 2.y 2k , + bl]*2) (144)
From Eq. (142) cU 8t-a (dA]/di)da, (d/L/dt) (145)

we have according to Eqs.(l4.3), (144), and(145)
doldt = ~zaa s «k ;2 b on(re sno- Ak LD, M)

= 2lAca,b] - k1)~
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From EqsS.(120) and (145), We have

(147)
Similarly we can prove that
nofelt =272 swax = 2 b (14)
From Eqs.(147) and(ies) , integrate ; Hence
a = ; =2( jE2ctt (148

0 0 0
The lemma is then proved.

In order to apply the foregoing lemma to Eq.(1ss) we first
notice that the equation is separable into the pairs of variables

(ksy 1 7)) and Expressing therefore the solution in the
Y Y EY Y Ve g (150)
we see that each of the functions X and X] satisfies
- /\
- (151)

Hence, from lemma [1, the solution of Eq. (1s5) with the boundary
condition

. f=1fo f-fo , at t=10 <

IS

7 =1 tXopj-" 7-f0L* 2kef'-fc).(? -Pe)+y f--Fol'l24<
“1 3AN2- V 1

where a = 2P Aoalil
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=2~ AJLA flirt = Adb (£~ -0 (154)

k- =27 f A JptAt =%2 A 2Cje.r-0

f-20¢A -H o , -20 220 -1 Ip (155)

In EQq. (1s5) Vo and' o are the position and velocity of the
Brownian particle at time t =o. Therefore

W #up -20)4b 12 -2 1) 188,

We will verify that the foregoing solution for VI obtained
the fundamental solution of EQ. (i27) agrees with what we
ob ained through a discussion of the Langevin equation:With  and

defined as in Eg ;ﬁ_ %Srom&afm I |H

Accordingly, from Eq (is7), we bt oA w2 K(P -r0y.07
A IF-PJ = Ai f ijf+2 k /| ( R.L4(L/6)fSi2) + bi?2+ (I/tol 12

dhere | PUOFIMIL - 2 7ML T R K ) [153)
159)
With &, b and h as given by EgS.(1s¢) we find that
-l At AL, -1 At 2
A (2Mt-j+ 40(it- ;6 = ¢
Therefore Fe-H ™ -Ub-bh/rAl2 (161)

Thus the solution (1se) can be expressed alternatively in the form
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1 fFiti-zHM-?+ -H2) | (162)
&\ f6-hV [z7* A
Comparing EqS(1s0) and (ve2) with EqS(s7) 1 (s1)? (s2) we see that
the verification is complete.

. The solution for the case of a harmonically bound particle (s)

The method of solution is illustrated by considering the
case of a one-dimensional oscillator describing Brownian motion,
Equation. (125) then reduces to

o - uxW:W+AW+i'E([63)
0t ' A D

Introduce as variables two first integrals of the associated
subsidiary system:

dhcldt =,A - t= A 0oX (164)
From two independent first integrals of Eqs(ies) , we obtain
(Xj|t,- b 21) cvia - CX M- ')€Xpr 11) (165)

whereJU| andJL2have the same meanings as in EqS.(e7) and (ss).
Accordingly we set

beox™ ) xpCyLi) Y) = exjuriqjaticyjLtiy (160

t o« x re-clr [ Lti|k
167)
+ xrpC-2 ]'t)_UH}
oni

Introducing the transformation it
, (16¢)
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we finally obtain from Eqs(is7) and (1es)
H A oL [ .~ = o)
: 12
This equation is of the same form as Eq(is7) in lemma [l Hence
the solution of this equation which tends to

X 7 A foiciz- 0+ 2o 7| <
where
0= pc-211) S ofeXpt-2, \b o\ (171.1)
b = 27 njdX Pl i) <Me = drmp iEXBE-2M abh)  (171.2)
=- 1<t Liraitldt=-10 11-xxj>(-d ,-t, 21)!
Further, fromEg.(1¢) U SIS
Aoz ATgMXG- Ul o A 100 = % OME2 - K o (172)

where Xo and‘ o denote the position and velocity of the particle
at time il =o. From Eqs.(1es) and (170), we can verify that

Ja *xpj-[a(f-Cpr-nlaCC *© ( - 0)* - }liral

obtained as the solution of Eq.(iss) which is in agreement with the
distributions obtained through a discussion of the Langevin equation,
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