CHAPTER V

FORD-KAC-MAZUR MCDEL

51 Introduction

In the previous sections we dealt with the analysis of
average displacement and velocity for Brownian particle, which
analysis satisfies mathematicians, but not physicists (s)* that at
present physicists try to derive the behavior of the particle from
the law of dynamics only, and coupled harmonic oscillators is one of
the models which are mathematically tractable and exhibit salient
features.

In 1964, Ford, Kac, Mazur studied the motion of a particle
of mass equal to the bath particle and found that the particle
attains Brownian motion when the interaction is a very special long
range type with a limiting frequency. To obtain the result they
used a simple mechanical model, a chain of coupled harmonic
oscillators. With this model they got a deeper understanding of some
phenomena associated  with Brownian motion. This model is later
called " Ford-Kac-Mazur model(:0)".

They used this model to carry through the program one
would like to achieve with more realistic interactions. This program
goes as follows.

(1) Solve the equations of motion of the system consisting
of a Brownian particle coupled to heat bath. The solution consists
of expressions for the coordinates and momenta at time t in terms of
the initial coordinates and momenta,

(2) Assume the initial coordinates and momenta of the heat
bath to be distributed as the canonical distribution.
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(s) Show that the coordinate and momentum of the Brownian
particle, as functions of time, will represent stochastic processes,
whose statistically properties arise from the initial distribution
of the heat bath. The processes are the kind from standard theories,
This is an ambitious program, so it can be carried out
only for the simplest models.

They o what the results of this program should he,
since, Brownian motion Is a throughly studied experimentally and
theoretically. They expect to show the following results.

(1) The approach to equilibrium, that the  momentum
distribution of the Brownian particle should approach Maxwellian
distribution (8,11),

(2) The description of this approach to equilibrium should
be contracted, such that it should involve only a small number of the
variables describing the system. The other way of saying is that
there should be a reduced description of the stochastic process to
be Markoff process.

e can be more explicit about what they mean by a
contracted description of Brownian motion; they mean Langevin
equation of motion.

For a Brownian particle of mass m acted upon by an
external force F(x) this equation Is

p - - NIV + Ec-t)+ Foo (174)

where P =mX is the momentum of the particle, f the friction
constant, and E(t) is the random force due to heat bath. This random
force 1s a purely random gaussian process and has the properties(e)

CEtti ECt+TV) = f-jkTecStl-in ;T =t+t
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where T Is the temperature of the heat bath and k is
Boltzmann’s constant,

The Langevin equation Is a contracted description in the
sence that

(1) The heat bath is described by only two parameters, f
and T

(2) Only the second derivative of the position x of the
Brownian particle appeal's.

52 The model (1o)

(1) Dynamics of a system of coupled oscillators(:z)

Consider a system of (2N + 1) coupled oscillators; the
Hamiltonian of the system s A

H=12Z2N fv + i | <l. A vfc *

where q) and Pj ; are the canonical coordinate and momentum of the
J-th oscillator,

The mass of each oscillator is equal to unity. The
interactions of the oscillators are characterized by the (N + 1) X
(N + 1) symmetric matrix A, whose elements are AJk,  Assumed that
this matrix Ahas no negative eigenvalues. The canonical equations
of motion will be written in matrix notations as follows(:2)

5{5: P> ' 176)
where p and " are (:N'+ 1) rowed column matrices whose elements are
Pj Ad Vy
The formal solution ofEq.(i76) IS

+ A 2>in chzi) pYd) (177)
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yd) - s oo t pd)
<178)

W now assume that at t = o the system is in equilibrium
at temperature T, therefore gj<o) and Pj<o) are distributed
according to the canonical distribution (s).

RELT o

(179)

where ™ Yk"pand detA is the determinant of X. There is a difficulty
n(179), since det Ao If X has zero eigenvalues . We therefore
assume that X has no zero eigenvalues. The expectation value of any
function F(q(o), plo) Is given by

<E> % (1 e ot v

X F y (o ))"pC»)) Y (6)) (180)

Now, what are the properties of the stochastic variables qj(t)
and Pj(t) from Eq.(i77) under the canonical distribution,

First of all, it is clear that the process s gaussian(s),
since the distribution (179) 1S gaussian. That the process s

stationary, then it follows from the Liouville theorem of mechanics(:2)

p(yd ).7d)) 2 D(y(0);y CD) sy
That, the statistical properties of a stationary gaussian process
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are completely described by the pair correlation functions(e). From
Appendix 111, we obtain

<PTh Bjd+T>> = I '3) A 182.1,
<<ub Pgct+T)) = - k't Til A (182.2)
< N d+T)>-- -fer lla'COAVZT I ~ <182-3’

where A is the matrix A and Al is the j-th rowed and k-th
columned ¢lement of the matrix A

Note that the position correlation. (1s2.5) Involves the inverse of A
which does not exist If -« has zero eigenvalugs
For a single oscillator, with index o, the momentum autocorrelation

pod Jpod+T)>= -fcT "o <183,

This is the autocorrelation of a stationary gaussian process in ong
variable, and it is well known that such a process is Markoffian if
and only if the autocorrelation (s) is an exponential, i.e,
< oet)pod +T)) = -ex-pe-fITH)  (1ee)
where £ is a positive constant. The question we turn to next is
that of finding an interaction matrix A for which Eq. (1e3)assumes the
form Eq. (15¢)

(1) The interaction matrix (10
In this model we assume the <N « 1) oscillators are
identical and arranged in a chain with cyclic boundary conditions,
This means that the interaction matrix Ais a symmetric cyclic
matrix. The elements of such a matrix can be written in the form

Ayr- 1 1 -expi 1 aT, "feCwtv0 (185)
o ma N ST
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With this formula we can readily demonstrate that F(A) is a function
of the matrix A then

If(A) 1 = —1_ X, Ff kcvnae)l (186)
W fA+ L k=-N Vo 2-N+ 1 3

Consider next the limit NOG the infinite chain. |f we assume that
is slowly varying function ofz s then Eq. (1s5) becomes

K | fl -10t-nJ)0
Ayym ~ Z]H )I de> —_
- T o
(e>) Codait-Vila (187)
where (188)
+0elj.f
The relation (1ss)  becomes in this limit (N-> < ) o)
189
IF(A)ir = & 1 ECAW) ce>( .0 ©

-1
W now turn to the problem posed at the end of the last section;
that of finding an interaction matrix A for which

Slorrol o AR

Using the result (ies) we see that for a finite matrix

ikc*A 2IIL00 = 2N_+_|z |.'CNOCAi | (191)
For any choice of (, this is a quasiperiodic function and cannot be
of the form Eq. (IS0) . However, in the limit of large N, we can use EqQ. (1e9)
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which gives.
L lifte £2t100 = jL j  lealljlre)]2n <19
This becomes an integral equation for f(s ). The solution is

i(6) = -2+ .C&I2) (193)

But, when Eq. (1e3)is inserted in equation (:s7) for the matrix element,
the expression diverges. Therefore, we have to employ a second
limiting process, defining

TR T (1)

le|< If

Where (195)

031 = -1 0L/
is 2 high-frequency cutoff in the spectrum of eigenfrequencies which
ensures that the matrix element (.s7) are finite. This frequency
cutoff corresponds to a "microscopic interaction time" " which
IS assumed to be very small compared to the "macroscopic relaxation
time" f-1. Therefore the result (iso) holds only in the limit { -
or alternatively we can say that, for ™ the result (is0) holds
for times long compared with G,*
From EQ. (152), we make the change of veriable @= " *, and use the
result of the interaction matrix elements given in Eq. (1e7) with f(s)
Jiweh 1A EQ. (1o4) With GL )-, we find

a0 AMtI00 - 1jcu GPetol g
&'+ (196)
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For Gl =700 , the right-nhand side of Eq. (196) (25) becomes §®anrd
therefore, the gaussian process pet) becomes also Markoffian,

[l The Langevin equation (10

Wik have shown in the preceding section that this model leads
to a gaussian Markoffian stochastic process (6,8) for the collection of
coupled oscillators, we are next investigate whether it leads to the
Langevin equation for the motion of a single particle coupled to a
heat bath consisting of such oscillators.

e indicate from the chain of N+ 1) oscillators, the
particle with index zero, to be the Brownian particle; and the
remaining 2N oscillators represents the heat bath. The outside force
acts on this particle is denoted by

Fet) » FO<UD) (197)
If we define F(t) to be a (2N + 1) - rowed column matrix whose
elements are all zero except for the zero-th element which is F(t),
then the equation of motion for coupled "particle and heat bath" are

p ~ -~tlcM-VFct) (198)
of which the solutions are
b A 1) F&Var (199)
pet) - Mo) + ctf>(A2 pco)

b n gt CHa(Al2 ct-1:)) F ) (200)
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If we take the zeroth element of Eq. (1es)for p, and use q(t) in
EQ. (199) We get

fe = - ttpaoA
- P ai' 00 F(t) + Fct) (201)
The result (201) can be written in the form

, t /
p,- FCy = —3ckip, + ECO) A4 At’{wcb-zé%—’w}

x Homﬁvlc{-t’)[loo Fet) e
Where
P = HA /DU\A/2 l 00 = — A_ IWHCOO}"/"t“oo
e A 2E N At (203)
and

Ech) = —Zﬁ(w({) HPI R £|l +”AcmAZ£|| }%(0)
+Z {10(13 “C@A t“ —IIAVZAlYLI_C\J/"‘,” % (D) (204)

Eq.(zoz) IS the equation of motion for the Brownian particle. The
right-hand side is the net force exerted on the Brownian particle

by the heat bath. The first term represents a frictional force with
time dependent “friction coefficient™ §(t), the second term
represents a fluctuating force E(t) depending on the initial state
of the heat bath (q"0), (o)), and the third term represents a
memory effect depending on the past history of the motion of the
Brownian particle,
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From EQS (196) and (205) we find that

|AYU X t) - ' (205)
hich Is a constant
This implies that the last term on the right hand side of Eq.(202)which
IS the memory-effect term becomes, in the limit, equals to zero
(because ' (t) =3(t - 0 ) =)
With this results, Eq.(202)takes the form

po - EdtD = =10 % Ecy (206)
—v} . —=Vo -
Ect)— L Il-1A W alf2l + A codA [10. g CO0)
(207)

# LN conA2(c - Allzliin AMtHAPX 0)

Equation (206) Is the Langevin equation. Then, this model leads
to Langevin equation as expected.

IV The statistical distribution of E(t)(10)

It remains to prove that the statistical properties of E(t)(s)
becomes a purely random gaussian process in the limit '
Let att =o, the heat bath is in equilibrium at temperature T and
assume that the initial distribution is the canonical distribution
and assume that the interaction betw'een the Brownian particle
and the heat bath is invariant under translations, that. Air ° -

The latter assumption implies that ¢)0=Q so that detA-o and canonical
distribution assumed becomes improper. This difficulty can be
remedied by slightly modifying the matrix A by
A dENI (208)
where % Is positive for every finite Nand approaches zero as
—Noq s fast as one pleases,
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Therefore, =0, 1S only approximately true and the canonical
distribution is proper,

Since the distribution of go0), and pj(o)is gaussian, E(t)
IS a gaussian process. Wit the help of the results in Appendix [11
. e find that

<kbE (6> = -fa II({2+A) 00 (209)
From Eq.(200), using Eq.(1es), we find

<ECtItdo> = Wr ¢ lefi2+

f 2 1210)
= il \ dw uxJwdt-t)
| L «

Theintegral in EQ. (210) 18 the well-known expression of Dirac delta
function, so we have as expected
(Eci*EcED} = (211)

Thus E(t) s a purely random, gaussian, stochastic process (s).

It is striking that the equation of motion(zo2) becomes
Langevin equation when

(i) the friction constant 5(t) be independent of time

(1) E(t) s a purely random gaussian stochastic process.

(111) the memory effects disappear
W can see that these three properties are the intimate relation,
This model is, therefore, proved to be satistactory dynamical model
representing Brownian motion of a particle.
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