Chapter 11

LINEAR SYSTEM IDENTIFICATION BY CROSS-CORRELATION TECHNIQUE

2,1 Introduction

In the study of a linear system identification by cross-correla-
tion technique, the output response at time t may be expressed in term
of all previous inputsthrough a convolution integral equation

y(t) = fg(7)x(t-?)d? (1)

where g(t) is animpulse response of the linear system, and g(t) = 0,
1<0,

The cross-correlation function between the output, y(t), and the
input, x(t), may be written in the form

o0

4’,‘\,(7) ® IE(S)¢“(7~S)ds (2)
where is the autocorrelation function of the input signal. |If
the input signal is white noise, its autocorrelation function IS

approximately a delta function. Then the impulse response function can
be directly obtained by

gC7) = Kg&xyCO (3).

g ; : 14
However, it has two practical disadvantages

(@) Avery long correlation time is necessary to ensure that <xx(7)
approximates to a delta function,

(b) Practical difficulties can arise in transmitting an amplitude



5

modulated signal without distortion, especially where electromecha-
nical transducers are involed.

These disadvantages may be overcome by using pseudo-random binary maxi-
mum length sequences®™1 1

2.2 Pseudo-Random Binary Maximum Length Sequences

The most widely used pseudo-random noise is the binary maximum
length sequencell' 12. The autocorrelation of the b.m.lLs, is similar to
those of white noise, Morever, the b.m.l.s, posses other properties56*'14 20
which are useful for the calculation of the cross-correlation function,

(

2.3 Autocorrelation Function of Binary Maximum Length Sequences

Consider a b.m.l.s,, x(t), with amplitude of %a and the time
period T shown in Fig, 1. The autocorrelation function B

B =YX (O)x(t+7)dt (4).

The wave form of "x(?) is illustrated in Fig, 2.
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Fig. 1 ADb.m.ls. with the period of 15 bits.
Consider a b.m.l.s, generated by states shift register generator,
its time period is NAt, where N is the number of bits in one period and
equal to 2n-1, and At is the consLant time-bit interval which is the
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Fig. 2 Continuous autocorrelation function
of b.m.l, . illustrated in Fig. 1

clock pulse period5. In discrete form, the autocorrelation function may
be written as

A xx(iAt) = |£]3<O(jdt)x(jAt+i4t) (5)

where i is an integer corresponding to a shift from the original sequence.
It has been shown that the autocorrelation function5 is

<Bxx(i4t) = a2 for i = O,N2N..coo
= -2 otherwise (6).

The discrete wave form of <Bix(iAt) is shown in Fig. 3.
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Fig. 3 Discrete autocorrelation function of bh.m.l, .



For the intermediate value discrete forml7, the autocorrelation

function of Eqn, (6) can be illustrated in Fig. 4.

G (1At)

2

=
21

HRE
o

N4t

-
f
Fig, 4 Intermediate value discrete form of
autocorrelation function of b.m.I, .

Suppose that the time-bit interval, At, is divided into m small
intervals, For the small interval Atim as the interval of integration,
the autocorrelation function in Egn, (5) becomes

j-0
_oo Nl At s A s A
N ?OX(jAH PADX(ALAALHAL AL (7)
where 1 is an integer, 0 < l«m-1, It has been shown that the autocor-

relation function2 in Eqgn, (7) may be written as

] ] for i =0N,2N,,. ..
y otherwise (8)

where r is an integer, -(m-1) < r < m-1.
When the value of mapproaches infinity, Eqn. (8) degenerates
into the result obtained by the continuous integration,



In addition, if the time-bit interval, At, is divided into m
3,13

small intervals, and the interval of integration is At 5 the auto-
correlation function is
HiAt-t-AL) = - 2XJAL)X(JAt*IAt*~AL) 9)

where L is an integer, 0" 1" m-~l.

Since the value of i/m is less than 1, and the magnitude of the
b.m.l.s. input, x(t), within the time-bit interval remains the same.
Then Egn, (9) reduces to

4>>(iAt+FnAt) = j|jj LX(ADX(jAtHAL) (10).
From Eqns. (5) and (6), we obtain
PYiAtt"AL) = a2 for i = 0,N,2N,,...

= - otherwise (11).

However, when the value of mapproaches infinity, Eqn. (11) yields
the continuous autocorrelation function of the form shown in Fig. 5.
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Fig. 5 The autocorrelation function of b.m.lLs.
satisfying Eqn. (11) when m approaches infinity
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The integration method using At as the interval of integration is
proposed for a new method of cross-correlation technique which will be
described in Section 2.5.

2.4 Discrete Cross-Correlation Technique

For the discrete identification of a linear system with a b.m.Ls.
as an input signal,the system output is sampled at time t = (i+A)At,
where i =0,1,2,...and the value of ais in the range 0< a~ 1. The
output sequence can be expressed by

ViC mA = Atz gAYX](i+A-)AT] (12)

The cross-correlation function between the discrete input and the discrete
output is

Xy(AY) = iz x [GHAAL]Y[(i+] +A)AL] (13).
From Eqns. (12) and (13), the convolution integral can be written as
Xy(IAt) = At ZIg(jAt)<Ex((i-])At] (14).

For a physically realizable system and the impulse response decays
to zero within the time period of the input sequence, NAt, the cross-cor-
relation  %y(iAt) in Eqn. (14) reduces to

YA = Atz giAYEXX](i-])AL] (15).

Since the input signal is a b.m.l.s. and from Egn. (6), the equa-
tion (15) becomes

MYAY) = —e) Atz gAY Ir L(i-)AL-IAtgg (j4t)  (16)
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where <r(iAt) is a unit rectangular pulse of pulse width At, and d¥(iAt)
may be expressed in the form

F(iAt) = (iAt+AA)-U(IAtHA At-At) (17).

Consider the expression j2_%g(jAt)er(i-j)4t] in Eqn. (16) and the
value of r(lit) in Egn. (17), we may writel®

1 EQADAVIG-DAL = [sI(i+A)At -S(0)] for i = 0
= JA[s [(+A)AL-S[(i+A-D)0t)] for 170 (19)

where (7) is the step response of the system.

By Taylor's series expansions of S[(i+A)At] and [(itA-1)At] about
(7), where 7 = (i+AyU)At and the value of yUis in the range 0 A~ 1,
we have

[(IHAAL] = (7)+Z — <k, (7) (19)
[(I+A-NAt] = (T)+eATIMAL <k (7) (20)
For the case i F 0, Eqn. (18) can be written as

g(jAt)chrt(i-)At)

HUs(1*-1)k 1 <k>(7)

(e N — [yuk-(yu-Dk] " (7) (21).
Since g(t) = "~ , Egn. (21) becomes
g(jat)<fri(i-j)At]

g(7)+& ~  1[xil-9u-Djt  <p(7) (22).

Similarly for the case i =0, Eqn. (18) can be rewritten as
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S g(AUCM ()AL = AgT)+E (A T[V +-A-A)M] 0, ()  (23)

It can be seen that the odd terns of the series representing the
error in estimating g(?) in the right hand side of Eqn. (22) are zero
when ax= 1/2.  This value of ax also minimises the factoryU™**1-~U-1)J+1
in the even terms. The impulse response is obtained at discrete time
iAt when A=/U = 1/2 and the output must be sampled at the time
t = (i+1/2)At.  The sampling at the middle of the time-bit interval of
a signal is called the intermediate value sequence.

Substituting Eqns. (22) and (23) into Eqn. (16) and for A =ax =
1/2, we obtain

§0nt) . MEh-Rt[g(ut)+s 20 g* s(i*t)]-§AtEg(JAY)

for 1=0
[8( o« « H
for i +0 (24).

This is the most accurate estimate of g(iAt) which can be achieved
by this discrete cross-correlation method. The same coefficient of the
derivative terms can be obtained by continuous integration if the auto-
correlation of the input signal is considered to be a unit rectangular
pulse as shown in Appendix A,

If sample sizes are increased and suppose that the system output
y(t) is sampled at the time t = (i+1/2)At/m, where mis an integer and
m> 0, then the cross-correlation function between the discrete input
and the discrete output is performed over mN samples with At/m as the



interval of integration. e have

Oy A = BAL 21 gPADD, i AY) (25)

From Eqn. (8), the equation (25) may be rewritten as

Vo~ A - & M 2MKIA v AN A -sAE? > T4t 26>

where 6 @A is the discrete representation of the unit triangular pulse
of pulse width 2At. The function 6 (FA) can be expressed as

V;4t)-t'-’\ VT;44) for-(m-1)<r<m-1
=0 otherwise (27)
where 6°(-At) is the unit rectangular pulse of pulse width At/m and
6, (FAt) may be expressed in the form

6r (mit) - (rt-XAt)-u(«AzlAt) (28)

Substituting Egn. (27) into Egn. (26) and from.Eqn. (28) for the
value of X= 1/2, we obtain

Vo4t -
-s<O>j]- " 4t"¢ 0 s<adt> for i -0
- T 4t L , 4-T >E>(41 -S >
ot ze (4 ) for i >m

For the case i £ m, by Taylor's Series expansions and g(t) =
We can write
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r:l-] )( 1 l_ gﬂ\ [ Jtr+|/2 At) S(|+r-1/2At)]
- %r: : w-1) Ig /r\ﬁA‘t +JZv=1m5)E ng*
-0:~) +1}8< (M 0]
o LI TUT RN L TR
- (r-1)J+1}gcjJ("At)
g("At)J+1m w0 L_'I'(mln (FED{(r+1)-»*
-(r-D+}Hg<d (") (30)

Since the expression r=-|cﬁ!r-1) (14 ){ra)" +1H4r-H" +1} s zero
for the odd value of |, then Eqn. (30) becomes

1) =
N re<-0h- D 4]t ' « 1
= <7 )10
- (r-1)2+1}]g(z))4At)
= + >2|+1>
-2 (1) 23+ 1 g N j) (i) (31)

Egn. (31) can be reduced to

11, Irivm\itrl/2 '”;nllet)]

g(-4t)+ s f2a) (2j+1)I mj+z 21(2r-1) d 1g<zj> "mat)) (327
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For the case 1 =0, we also obtain

ot
: * - (- (3 [s (B2 0y -5 (0)]
1 i At J m 2 N .
g Eg( At)+J§ [2“’23 +i), Ty Efi(Zr—l)JH g‘ )(I%At)] (33)

Substituting Eqns. (32) and (33) into Eqn. (29), the cross-correla-
tion is obtained as

8, (GO0 = 2L e [ At)+2{2J(J if)tlyijrlé (2r-1)j* V >(")}]

_:_%At?%;g(ju) for 1 =0

2 . . i m i " .

20D ok + 11 g ol e 2, oot s oy

—a—zdtm%lg(j At) for i>T (34)
j=0

When m= 1, Eqn. (34) can be reduced to Egn. (24). When the value
of m> 1, the coefficient of each derivative term in Eqn.(34) is greater
than the coefficient of the corresponding derivative term in Eqn. (24).
Morever, when m approaches infinity, Eqn. (34) yields the result which
Is identical to those of the continuous cross-correlation function
obtained by using correlator. Thus, the discrete cross-correlation, Eqgn.
(24), provides a more; accurate estimate of system impulse response than
that obtained by continuous cross-correlation.

From Eqn. (24), the impulse response can be evaluated as

S _@ey
g(iAt) = a2(N+DAt [Py <0>+—Atzg<3“>] Z 55Gnr 8 (O

fori =0
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"IM) - z e(j.t)]-z: 2*% g i7-g»-" (i«)

otherwise  (35)
This process of the discrete linear system identification will be
used in Chapter 4.

2.5 New Method of Correlation Technique for Identification

For this new method, the system output y(t) will be sampled at
time t = iAt+(i+1/2)At/m, where i =0,1,2,.... and mis the number of
sampled points in time-bit interval, At and £=0,1,2,....,(m-1).

The output sequence {yj } obtained by this method is the intermediate
value sequence. If the b.m.l.s. input signal is sampled at time t = iAt
+(1+1/2)At/m, then the cross-correlation between the output sequence and
the input sequence with At as the interval of integration can be expressed
as

OXy(iAt+M\t) = Htjzo g (A D0y (1A tEAAL-iiY) (36)
where OXX(iAt#ﬁAt) Is the autocorrelation function of the input sequence
expressed by Eqn. (11).

Then, we obtain

V BEEDE « 04tk e(insr<iate=4:" 4t)
-a 4tjf0 o> 1 37)

where 67(iAt) is a unit rectangular pulse of pulse width At. This rectan-

gular pulse may be written in the sequence of the form as "1.,12,1.,...
£ 1 which is the train of unit rectangular pulses of pulse width At/m.

000728
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Applying the similar technique described in Section 2.4, Eqn. (37)
may be rewritten as

Oxy(iAt+h t) Shftl)
for 1 =0
4t> e (14t+; At)-s AtH %
for i #0 (38)

where Qo (IAt+sAL) Is the system impulse response function with discrete
interval At/m, including the error due to the derivative terms. The
value of g, (IAt+RAL) can be expressed by

8g(IAt+~iiy = 8(0)+ ~ " ;18<]) (n) fori=r=0

:g(iAt+r-f$t)+j2_Ii2J(2j+|j4 gtzd) (IAt+:AL)  otherwise  (39)

From Eqn. (38)5 we obtain
8e(0) (40)

§6(mAt) a2(N+I)Ai[.Qxy(ﬁ’N')'0W‘ﬁfAt)]» for I =1,2,__ ,ml (41)

e (AD a2(Nn1\IS Athxy ' wxyvm o T26e’ (42)
gg (IAHAY) a§(NT’ﬁ)At*[oXy(iAt+%t)-0Xy(iAt+A¥-AtH
g (IAL-AHA) otherwise  (43)

The linear system impulse response function at discrete time
t = iAt+HAt/m, where 1 =0,1,2,... 5i =0,1,2,....,(m-1), and mis the
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number of sampled points in time-bit interval, At, can be determined by
using Eqns. (39), (40), (41), (42), and (43). This method provides
additional discrete points of the system impulse response function by
using the shorter period of the b.m.lLs. input signal.
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