

Appendix A

The material of this part is drawn from reference [7].

Existence theorem on linear differential equations.

A.1 Theorem. The differential equations

$$\frac{d}{ds} u_{i}(s) = \sum_{k=1}^{p} c_{ik}(s) u_{k}(s) , i = 1, 2, ..., P,(1)$$

where c_{ik} are continuous functions in the interval $0 \le s \le r$, has a set of c^1 -solutions which assume prescribed value u_i^0 when s=0.

Since c_{ik} are continuous functions on a compact set the y are bounded i.e., there exist a constant C such that

$$\left|c_{ik}(s)\right|< C/_{p}$$
 for all $s\in[0,r]$ and for $i=1,2,\ldots,P$, $k=1,2,\ldots,P$.

We assume that
$$|u_i^0| \leq K$$
 for $i = 1, 2, ..., P$.

Then

$$\begin{vmatrix} u_{\mathbf{i}}^{1}(s) - u_{\mathbf{i}}^{0} \end{vmatrix} = \begin{vmatrix} \int_{0}^{s} \sum_{k=1}^{P} c_{\mathbf{i}k}(t) u_{k}^{0} dt \end{vmatrix}$$

$$\stackrel{=}{=} \sum_{k=1}^{P} \int_{0}^{s} |c_{\mathbf{i}k}(t) u_{k}^{0}| dt$$

$$\stackrel{=}{=} K \sum_{k=1}^{P} \int_{0}^{s} |c_{\mathbf{i}k}(t)| dt$$

KCs

Also
$$u_{i}^{2}(s) - u_{i}^{1}(s) = \int_{0}^{s} \sum_{k=1}^{p} c_{ik}(t)(u_{k}^{1}(t)-u_{k}^{0}) dt$$

and also

$$\left| u_{i}^{2}(s) - u_{i}^{1}(s) \right| \leq \sum_{k=1}^{S} \int_{0}^{s} \left| c_{ik}(t) \right| \left| u_{k}^{1}(t) - u_{k}^{0} \right| dt dt$$

$$< (KC)(C/_{n}) \sum_{k=1}^{P} \int_{0}^{s} t dt$$

$$= KC^{2} \frac{s^{2}}{2}.$$

In similar way it follows that

$$|u_{i}^{n}(s) - u_{i}^{n-1}(s)| < KC^{n} \frac{s^{n}}{n!} \leq KC^{n} \frac{r^{n}}{n!}$$

Hence, by the Weierstrass M-test, the sequence $\left\{u_{\mathbf{i}}^{n}(s)\right\}$ converges uniform in the interval $0 \le s \le r$ and a continuous function $u_{\mathbf{i}}(s)$ can be defined by the equation.

4

$$\lim_{n\to\infty} u_{\underline{i}}^{n}(s) = u_{\underline{i}}(s) .$$

Also, from the uniformity of convergence, it follows from (2), that, as $n \to \infty$,

$$u_{i}(s) = u_{i}^{0} + \int_{0}^{s} \sum_{k=1}^{p} c_{ik}(t)u_{k}(t)dt.$$

Hence

$$\frac{d}{ds} u_{i}(s) = \sum_{k=1}^{P} c_{ik}(s) u_{k}(s) \text{ and } u_{i}(0) = u_{i}^{0}.$$

This complete the proof of the existence theorem.

Appendix B

The material of this part is drawn from reference [5].

The solution of homogeneous linear differential equations of order n.

The general homogeneous linear equation of the n th order is

$$L(y) = a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x) \frac{dy}{dx} + a_0(x) y = 0 \quad \dots (1)$$

We use L(y) to denote the result of substitute any any function y in the left member of Equ.(1). Since multiplying y by a constant multiplies each term by a constant,

$$L(cy_1) = cL(y_1)$$
, and $L(cy_1) = 0$, if $L(y_1) = 0$.

Again, replacing y by $y_1 + y_2$ replaces each term in y by the sum of two similar terms, one in y_1 and one in y_2 . Hence

$$L(y_1 + y_2) = L(y_1) + L(y_2)$$
 and $L(y_1 + y_2) = 0$, if $L(y_1) = 0$, $L(y_2) = 0$.

Consequently the sum of two solutions, or the product of one solution by a constant, is again a solution of the homogeneous equation (1). Hence we have proven the first part of the following theorem.

B.1 Theorem. The solution of the homogeneous equation (1) form a vector space W. Furthermore $\dim(W) \leq n$.

<u>Proof.</u> The first part of this theorem follows at once from the above remark. To prove the second part, let u_1, u_2, \ldots, u_k be k linearly independent solution of (1). Thus the associated vector-valued functions U_1, U_2, \ldots, U_k would be linearly independent, where

$$U_{i}(x) = (u_{i}(x), u_{i}'(x), \dots, u_{i}^{(n-1)}(x)), i = 1,2,\dots,k.$$

To see this, if U_1, U_2, \ldots, U_k are linearly dependent vector-valued function, then there are scalars c_1, c_2, \ldots, c_k not all zero, so that

$$c_1U_1(x) + c_2U_2(x) + ... + c_kU_k(x) = 0$$
,

where $\theta = zero vector$.

But this implies

$$c_1 u_1(x) + c_2 u_2(x) + ... + c_k u_k(x) \equiv 0$$
,

therefore u_1, u_2, \dots, u_k are linearly dependent.

Now since U_1,U_2,\ldots,U_k are linearly independent then $U_1(x_0),\ U_2(x_0),\ldots,\ U_k(x_0) \ \text{would be linear independent in } V_n. \ \text{But there can be no more than n linearly independent vectors in } V_n, \ \text{since dim}$ $(V_n) = n. \ \text{Hence } k \ \text{cannot exceed n and } \dim(W) \leqslant n.$

Thus the theorem is proved.

A Proof of Remark 4.1.7.

Let $F: J = [0,L] \longrightarrow \mathbb{R}^n$ be a C^k -parametrization by arc length. Let $s_0 \in J$ and assume that the vectors $F'(s_0)$, $F''(s_0)$, $F''(s_0)$, ..., $F^{(r+1)}(s_0)$ (r < k) are linearly independent then the vectors F'(s),..., $F^{(r+1)}$ are linearly independent in some neighborhood U of s_0 in J.

Proof. Let $M((r+1) \times n)$ be the set of all $(r+1) \times n$ matrices with real entries $(r+l \le n)$. Since there exists a function I mapping $M((r+1) \times n)$ onto $R^{(r+1)n}$ in a one-to-one onto way, then $M((r+1) \times n)$ can be endowed with the same topology as that of $\mathbb{R}^{(r+1)n}$. We denote by $M((r+1) \times n, r+1)$ the subset of $M((r+1) \times n)$ which consists of these matrices of rank r+1. Claim that $M((r+1)\times n, r+1)$ is an open subset of $M((r+1) \times n)$. To prove this we note that $M((r+1)\times n, r+1)$ is a submanifold of $M((r+1)\times n)$ of dimension (r+1)n (see [2] on page 109). Thus it sufficies to show that if ${\tt M}$ is a manifold of dimension n and ${\tt M}$ is a submanifold of ${\tt M}$ of the same dimension then M is open in M. Let $a \in M$, since M is a submanifold of N of the same dimension, then there exists an open subset $V \ni a$ of M and a function \emptyset such that \emptyset is a homeomorphism of V onto some open subset V of \mathbb{R}^n , and \emptyset is a homeomorphism of $V \cap M$ onto some open subset $W \subset W$ of R^n . Because W is open in \mathbb{R}^n , therefore W and $\emptyset^{-1}(\mathbb{W}') = \mathbb{V} \cap \mathbb{M}'$ is open in W and V

respectively under the usual relative topology. Thus $V \cap M = P \cap V$ for some open subset P of M. This implies that $V \cap M$ is open in M. Hence a is an interior point of M, but a is arbitrary we conclude that M is open.

To finish the proof of Remark 4.1.7, we define a new function $\Psi: J \longrightarrow M((r+1) \times n) \text{ as follows :}$

$$\psi(s) = \begin{pmatrix} F'(s) \\ F''(s) \\ \vdots \\ F^{(r+1)}(s) \end{pmatrix}$$

By the continuity of the functions F', F',..., $F^{(r+1)}$, we have that ψ is also continuous on J. Clearly $\psi(s_0) \in M((r+1) \times n, r+1)$, but $M((r+1) \times n, r+1)$ is open in $M((r+1) \times n)$, then there is an open subset $U' \ni \psi(s_0)$ of $M((r+1) \times n)$ and $U \subset M((r+1) \times n, r+1)$.

Furthermore $\psi^{-1}(U)$ is open and contains the points s_0 in U because ψ is continuous. Hence there exists a neighborhood U of s_0 in U such that $\psi(U) \subset U$, so U is the required neighborhood. The proof is complete.

References

- [1] Apostol, Tom M., Mathematical Analysis. 5 th ed.
 Reading: Addison-Wesley, 1957.
- Auslander, L., and Mackenzie, R.E. Introduction to
 Differentiable Manifolds. Mc Graw-Hill, 1963.
- [3] Birkoff, G. and Mac Lane, S., A Survey of Modern Algebra. 3rd.
 New York: Macmillan, 1965.
- Buck, R.C., Advanced Calculus. 2nd. ed. New York: MacGraw-Hill, 1965.
- [5] Gluck, Herman, Higher Curvature of Curves in Euclidean Space.

 The American Mathematical Monthly, Vol. 73, No. 7, 1966.
- [6] Kaplan, Wilfred, and Lewis, Donald J. Calculus and Linear Algebra
 New York: John Willey and Sons, Inc., 1970-1971.
- [7] Komogorov, A.N. and Fomin, S.V., <u>Introductory Real Analysis</u>.

 transl. and ed. by Silverman, Richard A. Englewood

 Cliffs: Prentice-Hall, 1970.
- 8 | Willmore, T.J., Differential Geometry. Oxford University Press, 1959.
- [9] Struik, D.J., <u>Lectures on Classical Differential Geometry</u>.

 Reading: Addison-Wesley, 1950.
- Chern, S.S., Notes on Differential Geometry. U. of Cal.,
 Berkeley lecture notes.

VITA

Name : Mr.Piroj Sattayatham

Degree : B.A. (Thammasat University), 1974.

Scholarship : University Development Commission (U.D.C.)

Thai Government, 1974-1976.

