CHAPTER I

PRELIMINARIES

This chapter will give some definitions and theorems
which will be need in our investigation.

The materials of this chapter are drawn from reference,
[1] and [2].

1. Vector in R,
2.1.1 Definition, Let >0 be an integer. An ordered set of
real numbers (1, 2,,..J ) s called a vector with

components and will be denoted by a capital letter ; for
example, v = (11 2*..., ). The number is called the

k th  component of the vector . The set of all vectors with
components is called - space and is denoted by E «

2.1.2 Definition. Let = (. 2,...,n) a<

V=1(, v2,1.,v") be vectors in EN We define

(a) Equality
VvV oif, and only if, 1=V ?=\2,...,
=V

(b) Sum



U+V = ( 1+ ¥11 2+ ¥2, n+ ¥n ).

«
(c) Multiplication by scalars (scalar =a real number) :

al = (a2, ,..laun)  ( areal).

(d) Difference

2.1.3 Definition. Let = (1, 2, ..., n)and

V= (¥1, ¥2, ..., vM) Dbe ¥ectors in En . The dot product of

and V, denoted by u.v is the real number uv = 1¥1 + Uav2 + oot ur
The ¥ector and V are said to be orthogonal if their dot

product is zero, i.e., uv = 0,

2.1*+ Definition. The space En with abo¥e operations of ¥ector

addition, scalar multiplication and dot product is called

Euclidean - space, and is denoted by Rn .

2.1.3 Definition. Let (1, 2, ) and

V= (¥1, ¥2, ¥ ) be ¥ectors in Rn . We define



(a) The absolute value or norm of U by

Ul =(e ufj = V()

(b) The distance Pbetween and V

(V) = Ju-v =¢  (uivi)2)
Vi=l 1]

A vector E inRn s said to be a unit vector if its
norm is 1 1

2,16 Lemma. (Cauchy - Schwarz inequality). f =(1, 2, ,,.1

and V.= (v »v2,...,v ) are arbitrary vectors in Rn, WG have

(w) 6 112 V2

Proof, A sum of squares can never be negative. Hence
we have

v *V2»0

for every real X. This inequality can be written in the form

A2+ Bx + ¢ N0

where
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It A> 0, put » = - Kto obtain B AC < 0, which

is the desired inequality. If A = 0, the proof is trivial

Thus the lemma is proved,

2,17 Theorem, Let and V denote vectors in  Rn . Then

we have
@ 11~ 0 and p . o if, and only if,
(b)) I - VI = - u
€ | +v| s 1Vj

Proof, Statements (a) and (b) are immediate from
definition. To prove (c) we make use of the Cauehy - Schwarz

inequality which can now be written as
Vkj < m m

Since we have
lU+Vv|2 =E (k+V 2 <v 2Y k +vk b
il 2+hi 2 + 2k Yk
61U + IV[2+ 21 JIVE = (] (+ VD)

Property (c) follows at once. The proof is complete



Let and V be too nonzero vectors in  Rn, then by
Lemma 2.1,6 9

-1 MVI < uv 21l Vi

or
uv

Hence we can define the angle IJ between and V by
C0S , = 0 fo t
1 M M [

Because of the restriction 0 < p £71, the angle 2 is unique
and write

I T

2 Vector - valued functions .
2.2,1 Definition. By a vector - valued function we shall mean
a function from some closed interval [a, b] into Fn,

A vector-valued function will be denoted by a capital letter
for example F. Since each value F(x) is then a vector in Rn
and thus we can write

F(x) = (f*(x)9f2(x), ...9fn(x), if X£[a, b] 9



where each component function f is a real - valued function

on [a, A

| assume that the reader is familiar with the basic
theorems of differential calculus of real - valued function of a
real variable. We now give a brief discussion of some theorems
on the differential Calculus of vector - valued functions of a real
variable.

2.2.2 Definition, Let Fbeavector -valuedfunctior from some
closed interval [a,b]into Rn. If ¢ £[a, b and if
A £ Vil then we write

lira F(x = ST
x-EC()

to mean that for each £ > 0, there exist > 0 such that
x £ ((c - M1c+X) 1{2})0 [a, b] implies 1 «F(x)-Al<

2.2.3 Lemma. Let F be a vector - valued function from [a, D]
into Rn. Let ¢ £ [a,b] andassume that  we have

lim F(x) = A
X—c
where F(x) = (f1(x), fA(x), ..., f (x)" and
A= (ajrazy e ® J
Then XI@? Cf.1(x) =a XI|_rn> Cf (x) =a,...,

lim (X)) = and conversely
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Proof,  Assume Xlirpc F(x) = A and let 6 >0 be given.

There exists a £ > 0 such that
xe ((c-S ¢+ )-[cj)nfa ] implies H¥(x) - Ai<6

Since  [fAX) - af < IF(x) - Al £reach 1= ,2,..n,

We thus have tor each |
XE((c-£,¢c+g)-{c}) [a, ] implies [f1(x) - a"j ¢ ¢

Therefore

lim f/(XYJe=st4a 1
x -+ C 1() 1

for all 1=, 2, ...,

To prove the converse, assume that IimC f.l(x) = a1
X =>

(1,2 «« ).
Then given E > 0, there exist >0 ,92>0,....$n> 0
such that for each |

XE((c-81,c+ 1)-{c} )n [a, } implies

|f(x)-a|</fc . Let

Bo=min | 9], 2, eoe» .



Thus we have

xe((c -g, c+8) - [c})n [a, ] implies

() - al < £ 10 1,2
R

Hence XHT F(x) = A and the proof is now complete.
C

2.2, Theorem. Let F and G be two vector - valued functions from
[, | into R, Let ¢£ [a, ] and assume that we have
lim F(x = A lim G(x) = B
o (X) e (x)
Then we have

(i) i (F0) i G

() Jim (76 +600)

—»C

Also if c((x) is any real - valued function defined, on 14, |
such that
lim  0(x) = d, then

x = C

(i) Jip 00F() = dA.

Proof. Let

M
—_—
>
~
1
—_—
—
7
>
~
—h
[pS)
—_——
>
~
—h
=
—_——
>
SN—
~
(€p)
—_—
>
~
1
—_—
[{e>)
—
—_——
>
~
[{e>)
[ ]
—_—
>
~

g (x)),



10

First, we prove(i), Using the fact that

lira.  F(x) = a and i 1
(X) | N . |raC (x)
implies
XILrC f+(x) - (X = 1, i=1, 2 ..ft,

and applying the converse of Lemma 2.2.3, proves (i).

To prove (ii) , Using the fact that

I f. = /4. d i .
x-|>mc 1(x) a1 an x”Zao gl(x) 1
implies

Xlﬂac fi(x) gi(x) = a“, =12, ...,
Thus

xlira F(x),G(x) c”—r’gc/\ m

: f.(x) g.(xf exist ,

1
and moreover

lim f1(x)g1(x)
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Hence part (i) is proved.

Ve prove (iii), part (iii) is proved in the similar way that
part (i) is. This completes the proof.

2.2.5 Definition. It F be a vector- valued function from [al ]
into IT. The function F is said tote continuous at a point

¢ £ ta» 6] if*
(i) Fis defined at c,

(i) lira FX) = F(c).
XN c

The function F is said tote continuous on fa, 1 if it is
continuous at every point on [a, |.

2.2.6 Theorem Let F and Ghbetvo vector - valued functions from
fa, ] into Rn. Let ct fabj and assume that F and Gare
continuous at ct Thenwe also have F+G F- G and FG are
continuous at c. If, in addition, da

defined on [a, ]J is continuous at c then pF is also

real - valued function

continuous at c.
Proof.  Apply Theorem 2.2.~,  and we are done.

2.2.7 Definition. Let F be a vector - valued function from
fa, 1 into Rn . The function F is said to have a
derivative at ¢ 6. [a, ] if the limit

lim
D

—»C F(X)X -- Fé C)
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exists. This limit, denoted by Fy(c), is called the derivative
of F at c.

The function F is said to be differentiable on [a, OV
if it has a derivative at every point X on £a, b]

2.2.8 Theorem. Let F be a vector - valued function from [a, ]
into Rn . Let ¢ £ [ab] and assume that F has a derivative
at ¢, then F is continuous at c.

proof, If X [a, bl , Xt ¢, we can write

F(x) - F(c) = (x-¢) 3R zJSs)

Applying Theorem 2,2.% (iii), we find Xlirgc F(x) = F(c). This

prover the assertion.

2.2.9  Theorem. Let F = cf®, f25.  f") be a vector - valued

function from [a,b] into Rn and assume that F has a
derivative at a point ¢ g [a, ] . Then the function f* also

has a derivative at ¢, for each i =1, 2, ..., and conversely .
Proof. It X [a, ], X QL we can write
) ooy = Voo, e 11 f (§-fn(c)

By Theorem 2.2.3, lim F(x) - F(c) exists if, and only if,

w TTED T f

XA eXists, each i = , 2, ..., and thus
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we have
F () = (f*Cc), fp(c), ... fn(c)
This proves the theorem.

2.2.10 Theorem Let Fand Ghe two vector - valued functions,
each defined on an interval [a,bl 1 with function values in Fn,
Let ¢ £ [a,bj antl assume that F and Ghave a derivative at the
point ¢, then the function F+G F- G and FG also have a
derirative at c, If, in addition, P a real - valued function
defined on [a. ] , has a derivative at ¢ then OF also has a
derivative at c. These derivatives are given by the following
formulae

i) Fi § = &G,
(ii) (FG = Fg + YG ,
(iii) (OF/ - Y +fiFe
Proof. First apply the Product Theorem for derivatives of
real - viued functions on fa,b] to each comporent function of

Fand G and then apply the converse of the theorem 2,2.9
\E are done,

2.2,11 Definition. Let f be a L - vilued function defined
on £a,bj, fis said to be of class ¢k on[a, ] , if
f,f, .., fk exist and are continuous for all Xwith a é X4 b .



Ik

If f is merely continuous on [a, ] 1 then f is said to fee of
class o® on [a, ]

2.2.12 Lemma Let f and g betwo real - valued function defined
on [a,] and assume that f and ¢ are of class ck on |a, ]

k >1e Then ft g, f- g, and fg are each of class ck on fa, ]
The quotient f/ is also of class ck on [a, ] » provided that

g(x) 0 forall X5 [a ]

N°te, We denote by f +¢g, f - g, fg, and f/g the function
whose value at Xis, respectively, f(x) +g(x), f(x) - g(x),
f(x)g(x), and f(x) /g(x) .

Proof. We shall only prove that fg is of class ck by
induction. The other part is proved in the similar way.

Let p(k) be the statement that “If f and g are of class ck
on [a, ] , then fg is also of class on fa, ] "
(k - ! 21 ---)-

Clearly, p(l) s true. Now assume that p(k) is true,
to prove p(k+l) is true we can assume that f and g are of

class cktl  on fa, ]
Let b fg thus
b = fg + fg
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By assumption that f and ¢ are of class ¢™ f, ¢, f, and 4
are at least of class ¢« .
Therefore h is of class and our theorem is proved.

2.2.13 Corollary to lemma.  Let f be a real-valued function defined

on a closed interval [a, ] and let f([a,bj) be the image of [a,b]
under f. Let g be a real-valued function defined on f(fa,b]) and
consider the composite function g Of defined for each X in ab by

gof(x) =g (f(x)). Assume that f is of class on [a,b] and g
is of class  on f([a,b]), k> 1 Thengo fis also of class
on [ab] .

“roof. We shall prove that g o f is of class on [a, ]hby
by induction.

Let P(v) be the statement that " If f and g are of class
on [a,] and f([a, ]) respectively, then g o f is also bf class ¢
k=1,2,....).

Clearly p(l) is true. Now assume that p(k) is true, to prove
p(k+l) is true we can assume that f and g are of class ¢ on [ab
and f([a, ]) respectively.

Let h = gof, thus

o= (go f)(1)
By assumption that f and g are of class ~+1, f, fz, and ¢ are at
least of class ¢”. Hence by induction hypothesis go f is of class
T .

002211
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Therefore h is of class  (by Theorem 2.2.12), so h is of
class CM*.  Thus the theorem is proved.

2.2.1k Definition. Let F be a vector-valued function from [a,b]
into R, Fis said to be of class ¢k on £a,bj if each of its
component functions is of class  on [a,b], vhere k =o,1,2,....

2.2.15 Theorem.  Let F and Gbe two vector-valued function from

jabj into M. Assume that F and Gare of class  on [a,b™ then
FHG, F-G, F'G, and OF are of class (ton[a,b] where 0 is a c”-real-
valued function defined on [a,bj.

I, in addition, F'x) ~ 0 for all xE [a,bj then FIis also
of class  on £a,b], where 9 is the zero vector.

Proof. By the virtue of Theorem 2.2.6, this is true for
k=0, If k>1, then the first part of this theorem follows
immediately from Definition 2.2.1k, and Lemma 2.2.12.

For the second part, assume that Fis of class  and F(x) 0 e
for all x£ [a,b].

Write F = (fA,f2,...,f ) then each component function
is also of class ¢ , and thus



Is of class ¢

Since the square root function is of class CKon any compact subintervalpf
the open interval (o,+00) and by assumption that Hz‘x) | 'I'nl f.%(x) 5 0

for all X belong to [a,b].

Ve thus have IFl = £|2T %/ "2 s also of class & on [a,b].

Our theorem is proved.

2.2.16 Theorem. Let F be a vector-valued from [a,b3 into R,
Assume that F is differentiable on [a,b] and F (x) “ 0 for each
X e (a,b), then Fis constant through out [a,bj.
Proof.  Write
F(x) * (f1(x), f2(X).n fn(x)), where x s [a,b] .
By assumption, we have
f'(x) - (f/(X), f2 ),..., fn(x)) = 9 |

for all X (a,b). Hence
fA(x) = fz2(x) * ... = fMx) = ofor all X (a,b).

This implies that (see[l] on page %
fi(x) 5 , f2(x) 5Cj,.., fn

for some real constants Cj, ¢2,..., ¢ Therefore

)
(

X) cn
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F) ¢ @ (I %1

Hence the theorem is proved.
3. Curve In R

2.3.1 Definition. A parametrized curve in R is a continuous
vector-valued function F from some closed interval [a,b] into Rn.

Consider a curve in R described by a continuous function
F&(fjp fA»..., f) defined on [a,b] . For each partition

D =jXg, Xp.., xM-of [ah] we set

- F(x3)

The consecutive line segments joining Pqg to Pjp Pj to Pg»**m
and PRJ to P* form a polygon ¢. Since each Pj lies on F, we speak
of ¢ as inscribed in F.

For such polygons, we define length hy

L(C) - |p0- Pjl+IPj- p2!+...+ |pn. I- pj

* ¢ |P(Fj+1)- F(x3)| .

2.3.2 Definition.  The length of a continuous curve F is defined
to be the least upperbound of the number L(C), where ¢ ranges over
all polygons inscribed in F.

When the set of numbers L(C) is not bounded, then we write
L(F) »+d, and say that F has infinite length. If L(F) ¢ + 00,
then Fis said to be rectifiable.
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2.3.3 Theorem. If FIs a curve of class ¢ from [a,b] into Rn

then Fis rectifiable, and L(F) is given by
b
S IF/(x)|dx.

For the proof of this theorem see e.g.[2] on page 321

2.3.4 Definition. Let Fbe a curve in R defined on [a,b] .
Then F is called parametrization by are length if the arc length

along the curve from F(s") to F(s2) 1®@|s]~ 2 f°ra S 1>s2 belong
to [a,b].

2.3.5 Theorem, Let/F [a,b]—» R be a c”-parametrization by
arc length. ThenjF ()1 = 1for all « [abl and conversely.

Proof. ~ Suppose that F is a c”-parametrization by arc length.
Then, by Definition 2.3.4, and Theorem 2.3.3,

s, s
L |F (s)) ds = I8y~ 8,
1

for all Sj, 2£ [ab] .

But J Zds = A= 2 for all S| 2£ £aV], hence
*1
82 ;
5 (JF(s)| - 1)ds = 0
Sl
for all Sj, 2 £ [a, ].

Claim that (|f ()!-1) 2 0.
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To prove this suppose that there exists an Sq£ [a,b3 such
that ([f/( 0)- 1) + 0.

Without loss of generality we may assume that (|f (Sg)| -1) > 0.
Since F () is continuous then IFfand also IFj- 1are
continuous on [a,b] .
Therefore there exists a neighborhood  about sq and an 6 > 0
such that
(IFC)~1) > &
forall £ nfab] e

Choose two distinct points ~ and 2in nfab] 1 we
then have

) 1 9
531 (F () - 1)ds> 551e ds = efSj* 2 > 0.

Thus contradicts the assumption that

IS2 Gl 1) s = 0

St
for all §j, 2£ £ab]| *
Hence our claim is proved, i.e., jF/() - L

Conversely, the hypothesis (f () — 1 implies

9
D% (nes =[5 2
1

for all §j, 2 £ [ab" »

Thus F is parametrized by arc length and the theorem is proved.
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4, Integral of Vector-valued functions.

2.4.1 Definition. If [a,b] is a finite interval, then a set of
points

p = [v V")
satisfying the inequalities a = Xg< <... <xMJ< Xn= bis
called a partition of [a,b] .

2.4.2 Definition. Let p= {xo* ... x11} be a partition of
[ab] and assume that tM£ [x" x"] is chosen k =1,..., . If

F - 1= H I f»
Is a vector-valued function from "ab™ into R, we form the sum

PE) - £ FEK(V v D).

We say that Fis integrable on [a,bj if there is a vector A £ Rn
having the following property — for every £ > o, there is a partitio
Pt of fajb} such that for every partition pJ Pf and for every choice
of the point t £ [x" p XjJ , we have

JSP, F) - A) < £
When such a number A exists, clearly it is uniquely determined and

is denoted by  f F(x)dx,
a
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2.A.3 Theorem. Let F = (f1, f2,..., ") be a vector-valued
function on [a,b]. Then we have

b b
Ia F(x)dx = (ja f1(x)dx, Lf2(x)dx,..., Ja fH(x)dx)

whenever each integral on the right exists.

Proof.  For each partition p of [a,b] and for every choice
of tk E X-1°\] » we have

(P, F) = jp F(tk)(xk- xk 1).  Let

(P,f1) = H fL(tk)(x, - x_1) (i =1,2,.., )
then

SP, F) = ((P.EL), (P,f2),.... (p,fn)) i (1)

Assume that each function f is integrable on [a,b], then there is
a real number al correspond to the function f1, having the property
that, for given e >0 there is a partition p"6 of [a,b] such that

(Pf1)- 31 <6MN  (i=12,.. ).

This sum is independent of the partition p p.£ and of the
choice tk £ [xk 1, xk] .

If we let Pc = '|P' ,then
1= e

IS(P,f.) - 31 < t/fn (i=1,2,.,),



for every partition P2 R; ad for every choice of t"€ ~xj»  x].
Which implies that

IQ—‘I s, \/ - £
Because of Equ.(l), ve have
ISP,F) - A N ¢ (A=(@1 al,..., &) ;

for every partition p of [a,b] such that p 7€ and for every choice
ty IsX"]. Hence the theorem is proved.

2.44 Theorem Let Fhbe a continuous vector-valued function from
[a, ] into R, then Fis integrable on [a,bY].

Proof. Since Fis continuous on [a,b™ »then each conponent
function is also continuous an [a,b] (Lewa 2.2.3).

Therefore each component function of F is integrable on £a']
(see [I] on page 211).

Henee by Thearem 2.4.3  Fis integrable on [a,b]. The proof
IS complete.
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