CHAPTER II

PRELIMINARIES

This chapter will give some definitions and theorems which will be need in our investigation.

The materials of this chapter are drawn from reference. [1] and [2].

- 1. Vector in Rⁿ.
- 2.1.1 <u>Definition</u>. Let n > 0 be an integer. An ordered set of n real numbers (u_1, u_2, \ldots, u_n) is called a <u>vector with n components</u> and will be denoted by a capital letter; for example, $U = (u_1, u_2, \ldots, u_n)$. The number u_k is called the k th <u>component</u> of the vector U. The set of all vectors with n components is called n space and is denoted by E_n .
- 2.1.2 <u>Definition</u>. Let $U = (u_1, u_2, ..., u_n)$ and $V = (v_1, v_2, ..., v_n)$ be vectors in E_n . We define:

 - (b) Sum :

$$U + V = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n).$$

(c) Multiplication by scalars (scalar = a real number) :

$$aU = (au_1, au_2, ..., au_n)$$
 (a real).

(d) Difference:

$$U - V = U + (-1)V$$
.

(e) Zero vector or origin :

$$e = (0, 0, ..., 0)$$
.

2.1.3 <u>Definition</u>. Let $U = (u_1, u_2, \dots, u_n)$ and $V = (v_1, v_2, \dots, v_n)$ be vectors in E_n . The <u>dot product</u> of U and V, denoted by $U \cdot V$ is the real number $U \cdot V = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$

The vector U and V are said to be orthogonal if their dot product is zero, i.e., $U \cdot V = 0$.

- 2.1.4 <u>Definition</u>. The space E_n with above operations of vector addition, scalar multiplication and dot product is called <u>Euclidean n space</u>, and is denoted by R^n .
- 2.1.5 <u>Definition</u>. Let $U = (u_1, u_2, \dots, u_n)$ and $V = (v_1, v_2, \dots, v_n)$ be vectors in R^n . We define

(a) The absolute value or norm of U by:

$$|U| = \left(\sum_{i=1}^{n} u_i^2\right)^{1/2} = \sqrt{(U, V)}$$

(b) The distance ρ between U and V :

$$f'(U,V) = |U - V| = \left(\sum_{i=1}^{n} (u_i - v_i)^2\right)^{\frac{1}{2}}$$

A vector \mathbf{E} in \mathbf{R}^n is said to be a unit vector if its norm is 1 .

2.1.6 Lemma. (Cauchy - Schwarz inequality). If $U = (u_1, u_2, ..., u_n)$ and $V = (v_1, v_2, ..., v_n)$ are arbitrary vectors in \mathbb{R}^n , we have $(U \cdot V) \leq |U|^2 |V|^2 .$

 $\underline{\mathtt{Proof}}_{ullet}$ A sum of squares can never be negative. Hence we have

$$\sum_{i=1}^{n} (u_k x + v_k)^2 \geqslant 0$$

where

$$A = \sum_{k=1}^{n} u_k^2$$
, $B = \sum_{k=1}^{n} u_k v_k$, $C = \sum_{k=1}^{n} v_k^2$.

If A > 0, put $x = -\frac{B}{A}$ to obtain $B^2 - AC \le 0$, which is the desired inequality. If A = 0, the proof is trivial. Thus the lemma is proved,

2.1.7 Theorem. Let U and V denote vectors in R^n . Then we have

- (a) $|U| \ge 0$, and |U| = 0 if, and only if, U = 0.
- (b) |U V| = |V U|.
- (c) $|U + V| \leq |U| + |V|$.

Proof. Statements (a) and (b) are immediate from definition. To prove (c) we make use of the Cauchy - Schwarz inequality which can now be written as

$$\left(\begin{array}{cc} n & \\ \sum_{k=1}^{2} & u_{k}v_{k} \end{array}\right)^{2} \leq |U| |V|.$$

Since we have

$$|U + V|^{2} = \sum_{k=1}^{n} (u_{k} + v_{k})^{2} = \sum_{k=1}^{n} (u_{k} + 2u_{k}v_{k} + v_{k}^{2})$$

$$= |U|^{2} + |V|^{2} + 2\sum_{k=1}^{n} u_{k}v_{k}$$

$$\leq |U|^{2} + |V|^{2} + 2|U||V| = (|U| + |V|)^{2},$$

Property (c) follows at once. The proof is complete.

Let U and V be two nonzero vectors in \mathbb{R}^n , then by Lemma 2.1.6,

or

$$-1 \leq \frac{U \cdot V}{|U| |V|} \leq 1 .$$

Hence we can define the angle β between U and V by

$$\cos \beta = \frac{U \cdot V}{|U||V|} \qquad 0 \le \beta \le \pi .$$

Because of the restriction 0 \leq β \leq π , the angle β is unique and write

$$\beta = 2 (U,V)$$
.

- 2 Vector valued functions .
- 2.2.1 <u>Definition</u>. By a <u>vector valued function</u> we shall mean a function from some closed interval [a, b] into R^n .

A vector-valued function will be denoted by a capital letter; for example F. Since each value $F(\mathbf{x})$ is then a vector in \mathbb{R}^n and thus we can write

$$f(x) = (f_1(x), f_2(x), ..., f_n(x)), if x \in [a, b],$$

where each component function f_i is a real - valued function on [a, b].

I assume that the reader is familiar with the basic theorems of differential calculus of real - valued function of a real variable. We now give a brief discussion of some theorems on the differential calculus of vector - valued functions of a real variable.

2.2.2 <u>Definition</u>. Let F be a vector - valued function from some closed interval [a, b] into R^n . If $c \in [a, b]$ and if $A \in R^n$, then we write

$$\lim_{x\to c} F(x) = A$$

to mean that for each ϵ > 0, there exist S > 0 such that

$$x \in ((c - 3, c + 3) - \{c\}) \cap [a, b] \text{ implies } |F(x)-\Lambda| < \epsilon$$

2.2.3 Lemma. Let F be a vector - valued function from [a, b] into R^n . Let $c \in [a, b]$ and assume that we have

$$\lim_{x \to c} F(x) = \Lambda,$$

where
$$F(x) = (f_1(x), f_2(x), ..., f_n(x))$$
 and $\Lambda = (a_1, a_2, ..., a_n)$

Then
$$\lim_{x \to c} f_1(x) = a_1$$
, $\lim_{x \to c} f_2(x) = a_2$,...,

$$\lim_{x \to c} f_n(x) = a_n \quad \text{and conversely.}$$

Proof. Assume $\lim_{x\to c} F(x) = A$, and let $\epsilon > 0$ be given.

There exists a & > 0 such that

 $x \in ((c - \delta, c + \delta) - \{c\}) \cap [a, b]$ implies $|F(x) - A| < \epsilon$ Since $|f_i(x) - a_i| \le |F(x) - A|$ for each i = 1, 2, ..., n,

We thus have for each i

 $x \in ((c - \xi, c + \xi) - \{c\}) \cap [a, b] \text{ implies } |f_i(x) - a_i| < \xi$ Therefore

$$\lim_{x \to c} f_{i}(x) = a_{i},$$

for all i = 1, 2, ..., n.

To prove the converse, assume that $\lim_{x\to c} f_i(x) = a_i$ (i = 1, 2, ..., n) .

Then given $\epsilon > 0$, there exist $\delta_1 > 0$, $\delta_2 > 0$,..., $\delta_n > 0$ such that for each i

$$x \in ((c - \delta_i, c + \delta_i) - \{c\}) \cap [a, b]$$
 implies
$$|f_i(x) - a_i| < \underbrace{\epsilon}_{\sqrt{\gamma_i}} . Let$$

$$\delta = \min \{\delta_1, \delta_2, \dots, \delta_n\}$$
.

Thus we have

.

$$x \in ((c - 8, c + 8) - \{c\}) \cap [a, b]$$
 implies

$$|f_{i}(x) - a_{i}| < \frac{\epsilon}{\sqrt{n}}, i = 1, 2, ..., n.$$

Hence $\lim_{x\to c} F(x) = \Lambda$ and the proof is now complete.

2.2.4 Theorem. Let F and G be two vector - valued functions from [a, b] into R^n . Let $c \in [a,b]$ and assume that we have

$$\lim_{x \to c} F(x) = A$$
, $\lim_{x \to c} G(x) = B$.

Then we have

(i) Lim
$$(F(x) \stackrel{+}{-} G(x)) = \Lambda \stackrel{+}{-} B$$
,

(ii)
$$\lim_{x \to c} (F(x) \cdot G(x)) = \Lambda \cdot B \cdot$$

Also if $\emptyset(x)$ is any real - valued function defined on $\{a,b\}$ such that

$$\lim_{x \to c} \emptyset(x) = d, \text{ then }$$

(iii)
$$\lim_{x \to c} \emptyset(x)F(x) = dA$$
.

Proof. Let

$$F(x) = (f_1(x), f_2(x), \dots, f_n(x)), G(x) = (g_1(x), g_2(x), \dots, g_n(x)),$$

$$A = (a_1, a_2, \dots, a_n) \text{ and } B = (b_1, b_2, \dots, b_n).$$

First, we prove(i). Using the fact that

$$\lim_{x\to c} f_{\mathbf{i}}(x) = a_{\mathbf{i}} \quad \text{and} \quad \lim_{x\to c} g_{\mathbf{i}}(x) = b_{\mathbf{i}}$$

implies

$$\lim_{x \to c} f_i(x) \stackrel{+}{-} g_i(x) = a_i \stackrel{+}{-} b_i, i = 1, 2, ...n,$$

and applying the converse of Lemma 2.2.3, proves (i).

To prove (ii), Using the fact that

$$\lim_{x\to c} f_{i}(x) = a_{i} \quad \text{and} \quad \lim_{x\to c} g_{i}(x) = b_{i}$$

implies

$$\lim_{x \to c} f_i(x) g_i(x) = a_i b_i, i = 1, 2, ..., n.$$

Thus

$$\lim_{x\to c} F(x) \cdot G(x) = \lim_{x\to c} \left(\sum_{i=1}^{n} f_i(x) g_i(x) \right) \text{ exist },$$

and moreover

$$\lim_{x \to c} \left(\sum_{i=1}^{n} f_{i}(x) g_{i}(x) \right) = \sum_{i=1}^{n} \left(\lim_{x \to c} f_{i}(x) g_{i}(x) \right)$$
$$= \sum_{i=1}^{n} a_{i}b_{i}$$

= A.B

Hence part (ii) is proved.

We prove (iii), part (iii) is proved in the similar way that part (i) is. This completes the proof.

2.2.5 <u>Definition</u>. It F be a vector- valued function from [a,b] into \mathbb{R}^n . The function F is said to be <u>continuous</u> at a point $c \in [a,b]$ if.

- (i) F is defined at c.
- (ii) $\lim_{x \to c} F(x) = F(c)$.

The function F is said to be continuous on [a, b] if it is continuous at every point on [a, b].

2.2.6 Theorem. Let F and G be two vector - valued functions from [a, b] into R^n . Let $c \in [a, b]$ and assume that F and G are continuous at c. Then we also have F + G, F - G and $F \cdot G$ are continuous at c. If, in addition, \emptyset a real - valued function defined on [a, b], is continuous at c then $\emptyset F$ is also continuous at c.

Proof. Apply Theorem 2.2.4, and we are done.

2.2.7 <u>Definition</u>. Let F be a vector - valued function from [a, b] into R^n . The function F is said to have a derivative at $c \in [a, b]$ if the limit

$$\lim_{x \to c} \frac{F(x) - F(c)}{x - c}$$

exists. This limit, denoted by $F^{'}(c)$, is called the derivative of F at c.

The function F is said to be differentiable on [a, b] if it has a derivative at every point x on [a, b].

2.2.8 Theorem. Let F be a vector - valued function from [a, b] into R^n . Let $c \in [a,b]$ and assume that F has a derivative at c, then F is continuous at c.

proof. If $x \in [a, b]$, $x \neq c$, we can write $F(x) - F(c) = (x-c) \frac{F(x) - F(c)}{x-c}$

Applying Theorem 2.2.4 (iii), we find $\lim_{x\to c} F(x) = F(c)$. This prover the assertion.

2.2.9 Theorem. Let $F = (f_1, f_2, ..., f_n)$ be a vector - valued function from [a,b] into R^n and assume that F has a derivative at a point $c \in [a,b]$. Then the function f_i also has a derivative at c, for each i = 1, 2, ..., n and conversely.

$$\frac{\underline{Proof}}{x-c}. \quad \text{It } x \in [a,b] \text{, } x \neq c, \text{ we can write}$$

$$\frac{\underline{F(x) - F(c)}}{x-c} = \left(\frac{\underline{f_1(x) - f_1(c)}}{x-c}, \frac{\underline{f_2(x) - f_2(c)}}{x-c}, \cdots, \frac{\underline{f_n(x) - f_n(c)}}{x-c}\right)$$

By Theorem 2.2.3, $\lim_{x\to c} \frac{F(x) - F(c)}{x - c}$ exists if, and only if,

 $\lim_{x \to c} \frac{f_{i}(x)-f_{i}(c)}{x-c}$ exists, for each i = 1, 2, ..., n and thus

we have

$$F'(c) = (f_1'(c), f_2'(c), \dots f_n'(c).$$

This proves the theorem.

2.2.10 Theorem. Let F and G be two vector - valued functions, each defined on an interval [a,b], with function values in \mathbb{R}^n . Let $c \in [a,b]$ and assume that F and G have a derivative at the point c, then the function F + G, F - G, and $F \cdot G$ also have a derivative at c, If, in addition, \emptyset a real - valued function defined on [a,b], has a derivative at c then $\emptyset F$ also has a derivative at c. These derivatives are given by the following formulae:

(i)
$$(F \stackrel{+}{-} G)' = F' \stackrel{+}{-} G'$$
,
(ii) $(F \cdot G) = F \cdot G' + F' \cdot G$,
(iii) $(\not O_F)' = \not O_F' + \not O_F$.

Proof. First apply the Product Theorem for derivatives of real - valued functions on [a,b] to each component function of F and G, and then apply the converse of the theorem 2.2.9.

We are done.

2.2.11 <u>Definition</u>. Let f be a real - valued function defined on $\{a,b\}$, f is said to be of <u>class</u> C^k on [a,b], if f', f'', ..., f^k exist and are continuous for all x with a $\leq x \leq b$.

If f is merely continuous on [a,b] , then f is said to be of class \mathbb{C}^0 on [a,b] .

2.2.12 Lemma. Let f and g betwo real - valued function defined on [a,b] and assume that f and g are of class C on [a,b] $k \ge 1$. Then f+g, f-g, and fg are each of class C^k on [a,b] The quotient f_g is also of class C^k on [a,b], provided that $g(x) \ne 0$ for all $x \in [a,b]$

Note. We denote by f + g, f - g, fg, and f/g the function whose value at x is, respectively, f(x) + g(x), f(x) - g(x), f(x)g(x), and f(x)/g(x).

 $\underline{\text{Proof.}}$ We shall only prove that fg is of class C^k by induction. The other part is proved in the similar way.

Let p(k) be the statement—that "If f and g are of class C^k on [a,b], then fg is also of class C^k on [a,b]." $(k=1, 2, \ldots)$.

Clearly, p(1) is true. Now assume that p(k) is true, to prove p(k+1) is true we can assume that f and g are of class C^{k+1} on [a,b] .

Let
$$h = fg$$
, thus $h' = fg' + fg'$

By assumption that f and g are of class c^{k+1} , f , g , f, and g are at least of class c^k .

Therefore h is of class C^{k+1} , and our theorem is proved.

2.2.13 Corollary to lemma. Let f be a real-valued function defined on a closed interval [a,b] and let f([a,b]) be the image of [a,b] under f. Let g be a real-valued function defined on f([a,b]) and consider the composite function g o f defined for each x in a,b by g o f(x) = g(f(x)). Assume that f is of class C^k on [a,b] and g is of class C^k on f([a,b]), $k \ge 1$. Then g o f is also of class C^k on [a,b].

 $rac{1}{2}$ We shall prove that g o f is of class C^k on [a,b] by induction.

Let P(k) be the statement that " If f and g are of class C^k on [a,b] and f([a,b]) respectively, then g o f is also of class C^k ." (k=1,2,...).

Clearly P(1) is true. Now assume that P(k) is true, to prove P(k+1) is true we can assume that f and g are of class C^k on [a,b] and f([a,b]) respectively.

Let
$$h = g \circ f$$
, thus $h' = (g' \circ f)(f')$

By assumption that f and g are of class C^{k+1} , f, f, and g are at least of class C^k . Hence by induction hypothesis g o f is of class C^k .

Therefore h' is of class C^k (by Theorem 2.2.12), so h is of class C^{k+1} . Thus the theorem is proved.

2.2.14 <u>Definition</u>. Let F be a vector-valued function from [a,b] into R^n , F is said to be of <u>class C^k </u> on [a,b] if each of its component functions is of class C^k on [a,b], where k = 0,1,2,...

2.2.15 Theorem. Let F and G be two vector-valued function from [a,b] into \mathbb{R}^n . Assume that F and G are of class \mathbb{C}^k on [a,b] then F+G, F-G, F·G, and \emptyset F are of class \mathbb{C}^k on [a,b], where \emptyset is a \mathbb{C}^k -real-valued function defined on [a,b].

If, in addition, $F(x) \neq \theta$ for all $x \in [a,b]$ then |F| is also of class C^k on [a,b], where θ is the zero vector.

<u>Proof.</u> By the virtue of Theorem 2.2.6, this is true for k = 0. If $k \ge 1$, then the first part of this theorem follows immediately from Definition 2.2.14, and Lemma 2.2.12.

For the second part, assume that F is of class c^k and $F(x) \neq 0$ for all $x \in [a,b]$.

Write $F = (f_1, f_2, ..., f_n)$ then each component function f_i is also of class C^k , and thus

$$|\mathbf{F}|^2 = \sum_{i=1}^n \mathbf{f}_i^2$$

is of class Ck.

Since the square root function is of class C^k on any compact subinterval of the open interval $(0,+\infty)$ and by assumption that $|F|^2(x) = \sum_{i=1}^n f_i^2(x) > 0$ for all x belong to [a,b].

We thus have $|F| = \left(\sum_{i=1}^{n} f_i^2\right)^{1/2}$ is also of class C^k on [a,b].

Our theorem is proved.

2.2.16 Theorem. Let F be a vector-valued from [a,b] into \mathbb{R}^n .

Assume that F is differentiable on [a,b] and $F'(x) = \theta$ for each $x \in (a,b)$, then F is constant through out [a,b].

Proof. Write

$$F(x) = (f_1(x), f_2(x), ..., f_n(x)), \text{ where } x \in [a,b].$$

By assumption, we have

$$f'(x) = (f_1(x), f_2(x), ..., f_n(x)) = \theta$$

for all x & (a,b). Hence

$$f_1(x) = f_2(x) = \dots = f_n(x) = 0 \text{ for all } x \in (a,b).$$

This implies that (see[1] on page 94)

$$f_1(x) = c_1, f_2(x) = c_1, ..., f_n(x) = c_n,$$

for some real constants c_1, c_2, \ldots, c_n . Therefore

$$F(x) \equiv C = (c_1, c_2, ..., c_n).$$

Hence the theorem is proved.

3. Curve in Rⁿ

2.3.1 <u>Definition</u>. A parametrized curve in R^n is a continuous vector-valued function F from some closed interval [a,b] into R^n .

Consider a curve in R^n described by a continuous function $F = (f_1, f_2, ..., f_n)$ defined on [a,b]. For each partition $P = \{x_0, x_1, ..., x_n\}$ of [a,b] we set

$$P_{j} = F(x_{j})$$

The consecutive line segments joining P_0 to P_1 , P_1 to P_2 ,..., and P_{n-1} to P_n form a polygon C. Since each P_j lies on F, we speak of C as inscribed in F.

For such polygons, we define length by

$$L(C) = |P_0 - P_1| + |P_1 - P_2| + ... + |P_{n-1} - P_n|$$

$$= \sum_{j=0}^{n-1} |F(x_{j+1}) - F(x_j)|.$$

2.3.2 <u>Definition</u>. The <u>length</u> of a continuous curve F is defined to be the least upperbound of the number L(C), where C ranges over all polygons inscribed in F.

When the set of numbers L(C) is not bounded, then we write $L(F) = +\infty$, and say that F has infinite length. If $L(F) < +\infty$, then F is said to be <u>rectifiable</u>.

2.3.3 Theorem. If F is a curve of class C from [a,b] into Rⁿ them F is rectifiable, and L(F) is given by

$$L(F) = \int_{a}^{b} |F'(x)| dx.$$

For the proof of this theorem see e.g.[2] on page 321.

- 2.3.4 <u>Definition</u>. Let F be a curve in R^n defined on [a,b]. Then F is called <u>parametrization by arc length</u> if the arc length along the curve from $F(s_1)$ to $F(s_2)$ is $|s_1 s_2|$ for all s_1 , s_2 belong to [a,b].
- 2.3.5 <u>Theorem</u>. Let $F: [a,b] \longrightarrow \mathbb{R}^n$ be a C^1 -parametrization by arc length. Then |F'(s)| = 1 for all $s \in [a,b]$ and conversely.

<u>Proof.</u> Suppose that F is a C^1 -parametrization by arc length. Then, by Definition 2.3.4, and Theorem 2.3.3,

$$\int_{s_1}^{s_2} |F'(s)| ds = |s_1 - s_2|$$

for all s_1 , $s_2 \in [a,b]$.

But
$$\int_{s_1}^{s_2} ds = |s_1 - s_2|$$
 for all $s_1 s_2 \in [a,b]$, hence

$$\int_{s_1}^{s_2} (|F(s)| - 1) ds = 0$$

for all s_1 , $s_2 \in [a,b]$.

Claim that (|F'(s)|-1) = 0.

To prove this suppose that there exists an $s_0 \in [a,b]$ such that $(|F'(s_0)| - 1) \neq 0$.

Without loss of generality we may assume that $(|F'(s_0)|-1) > 0$. Since F'(s) is continuous then |F'| and also |F'|-1 are continuous on [a,b].

Therefore there exists a neighborhood U about \mathbf{s}_0 and an $\epsilon > 0$ such that

$$(|F'(s)| - 1) > \epsilon$$

for all $s \in U \cap [a,b]$.

Choose two distinct points \mathbf{s}_1 and \mathbf{s}_2 in $\mathbf{U} \, \cap [\mathbf{a}, \mathbf{b}]$, we then have

$$\int_{s_1}^{s_2} (|\mathbf{F}'(s)| - 1) ds \ge \int_{s_1}^{s_2} ds = \epsilon |s_1 - s_2| > 0.$$

Thus contradicts the assumption that

$$\int_{s_1}^{s_2} (|F(s)| - 1) ds = 0$$

for all s₁, s₂ { [a,b] .

Hence our claim is proved, i.e., $|F'(s)| \equiv 1$.

Conversely, the hypothesis $|F'(s)| \equiv 1$ implies

$$\int_{s_1}^{s_2} |F'(s)| ds = |s_1 - s_2|$$

for all s_1 , $s_2 \in [a,b]$.

Thus F is parametrized by arc length and the theorem is proved.

- 4. Integral of Vector-valued functions.
- 2.4.1 <u>Definition</u>. If [a,b] is a finite interval, then a set of points

$$P = \left\{ x_0, x_1, \dots, x_n \right\}$$

satisfying the inequalities $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$ is called a partition of [a,b].

2.4.2 <u>Definition</u>. Let $P = \{x_0, x_1, ..., x_n\}$ be a partition of [a,b] and assume that $t_k \in \{x_{k-1}, x_k\}$ is chosen k = 1,...,n. If

$$F = (f_1, f_2, ..., f_n)$$

is a vector-valued function from [a,b] into R^n , we form the sum

$$S(P,F) = \sum_{k=1}^{n} F(t_k) (x_k - x_{k-1}).$$

We say that F is <u>integrable</u> on [a,b] if there is a vector $A \in \mathbb{R}^n$ having the following property: for every E > 0, there is a partition P_{ℓ} of [a,b] such that for every partition $P \supset P_{\ell}$ and for every choice of the point $t_k \in [x_{k-1}, x_k]$, we have

When such a number A exists, clearly it is uniquely determined and is denoted by $\begin{cases} b \\ F(x) dx. \end{cases}$

2.4.3 Theorem. Let $F = (f_1, f_2, ..., f_n)$ be a vector-valued function on [a,b]. Then we have

$$\int_{a}^{b} F(x) dx = (\int_{a}^{b} f_{1}(x) dx, \int_{a}^{b} f_{2}(x) dx, ..., \int_{a}^{b} f_{n}(x) dx)$$

whenever each integral on the right exists.

<u>Proof.</u> For each partition P of [a,b] and for every choice of $t_k \in [x_{k-1}, x_k]$, we have

$$S(P, F) = \sum_{k=1}^{n} F(t_k)(x_k - x_{k-1}).$$
 Let

$$S(P, f_i) = \sum_{k=1}^{n} f_i(t_k) (x_k - x_{k-1}) \quad (i = 1, 2, ..., n),$$

then

$$S(P, F) = (S(P,f_1), S(P,f_2),...,S(P,f_n)).....(1)$$

Assume that each function f_i is integrable on [a,b], then there is a real number a_i correspond to the function f_i , having the property that, for given $\epsilon > 0$ there is a partition $P_{i\epsilon}$ of [a,b] such that

$$S(P, f_i) - a_i < \epsilon / \sqrt{n}$$
 (i = 1,2,...,n).

This sum is independent of the partition P \supset P and of the choice $t_k \in [x_{k-1}, x_k]$.

If we let
$$P_{\epsilon} = \bigcup_{i=1}^{n} P_{i\epsilon}$$
, then

$$|S(P,f_i) - a_i| < \epsilon/\sqrt{n}$$
 (i = 1,2,...,n),

for every partition P \supset P and for every choice of t \in [x_{k-1}, x_k]. Which implies that

$$\sum_{i=1}^{n} \left| S(P, f_i) - a_i \right|^2 < \epsilon^2.$$

Because of Equ.(1), we have

$$|S(P,F) - A| < \epsilon \quad (A = (a_1, a_2, ..., a_n));$$

for every partition P of [a,b] such that P \supset P_E and for every choice $t_k \in [x_{k-1}, x_k]$. Hence the theorem is proved.

2.4.4 Theorem. Let F be a continuous vector-valued function from [a,b] into R^n , then F is integrable on [a,b].

<u>Proof.</u> Since F is continuous on [a,b], then each component function is also continuous on [a,b] (Lemma 2.2.3).

Therefore each component function of F is integrable on [a,b] (see [1] on page 211).

Hence by Theorem 2.4.3, F is integrable on [a,b]. The proof is complete.