
CHAPTER I I I

EUCLIDEAN N-SPACE

The main purpose of th is  chap ter i s  to  in troduce  the  no tion  of 
Euclidean n -space , l in e a r  m anifo ld , and Euclidean motion in  Rn .

The m a te ria ls  of th is  chap ter are  drawn from re fe re n c e  [ 2^,
£ 5] ,  and [ 6 ]  ,

1. Vector space and subspace

3 .1 .1  D e fin it io n . A v ec to r space c o n s is t o f an ab e lia n  group V under 
a d d itio n  and a f ie ld  F, to g e th e r w ith  an o p e ra tio n  of s c a la r  m u l t ip l i ­
c a tio n  of each element of V by each element of F on the l e f t ,  such 
th a t  fo r  a l l  a , b 6 F and น, V e V the  fo llow ing co n d itio n s a re  
s a t i s f i e d  ะ

( i )  au £ V
( i i )  a(bu) = (ab)u

( i i i )  (a+b)น = au + bu
(iv )  a(u+v) = au + av

(v) l u  = น .

The elem ents of V a re  c a lle d  v e c to rs  and the elem ents of F a re  
c a lle d  s c a la r s .  We s h a l l  say th a t V i s  a v ec to r space over F.



3 . 1 . 2  D e f i n i t i o n . L et V b e  a v e c t o r  s p a c e  o v e r  R. S u p p o se  t o  ea ch
pair of vectors น, V  € V there is assigned a scalar (น,v) £ R.
This mapping is called an inner product in V if it satisfies the 
following axioms

(i) (aUj + bu2, v) ะ= a(u1$ v) + b(น,,, v)

(ii) (น, v) = (v, น)

(iii) (น5น) 0 ; and (น,น) =0 if and only if น = 0.

The vector space V with an inner product is called a real
inner product space.

3.1.3 Example. The set of all n-tuples of elements of R with vecto 
addition and scalar multiplication defined by

(น1,น2, . . . ,น11)  +  (v15v2, . . . ,vn) =  (น 1 + V 1, น2 + V 2 , . . . , น 1 + V11)

and
a (u 1?น2, . . . , น11) = (3น1>3-น2, . . .  au^) 5

where the. น1, V and a belong to R, is a vector space over R ; 
we denote this space by V .

Consider the dot product in V

ข .  V = น 1V1+  น2 ' / 2+ . .  . +  น11V 1,

where บ = (น1,น2,... น11) and v= (Vĵ v 2,... v_1) .

This is an inner product on V1, and V11 with this inner product 
usually refered to as Euclidean n-space and is denoted by Rn.



3.1.4 Definition. Let พ be a subset of a vector space over a field F. 
พ is called a subspace of V if พ is itself a vector space over F with 
respect to the operations of vector addition and scalar multiplication 
on V.

3.1.5 Definition A subset i of a vector space V is said to be 1inner 
varietyof V if L = น + VJ for some น in V and some, subspace พ of V.

The subspace พ is called base space of the linear variety L.

2. Dimension of vector space.

3.2.1 Definition. Let V be a vector space over a field F and let 
vl ,v2’*” Vm  ̂ Any vector in V of the form

a l Vl +  a 2V2+  • • •  +  a vm m
where the â  £ Fs is called a linear combination of Vj5v^s. 
The following theorem can be easily verified.

V m

3.2.2 Theorem. Let ร be a nonempty subset of V, The set of all linear 
combinations of vectors in ร, denoted by L (s ) , is a subspace of V 
containing ร. It is called the subspace spanned or generated by ร.

3.2.3 Definition. Let V be a vector space over a field F. The vector
V ,v are said to bo linearly independent, if for every
choice of scalars 5... , a_ £ FsI z m
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a 1น1+ a2u2+ . + a Um m
implies

3.2.4 Definition. A vector space Vis said to be of dimension ท,

span V. The sequence น̂ ,น9, . . . ,น is then called a basis of V.

3.2.5 Definition. The dimension of a linear variety is defined to 
be the dimension of the base space of the linear variety.

3.2.6 Definition. Let บ = {น1,น2, . . . ,น be a subset of a real 
inner product space V. The set บ is said to be orthonormal if

be any finite set of linear independent vectors of Rn. Then Rn 
contains a set of vectors

if there exists linearly independent vectors น̂ ,น2 which

3.2.7 Theorem. Cr ram-Schmidt theorem). Let

(1)

such that
(i) The set ~K° is orthonormal ;

(ii) Every vector is a linear combination

of the vectors โ̂ , น,,..., โ^;
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(iii) Every vector is a linear combination

He * bklVl+bk2V2+ -  bkk\ 
of the vector Vp Vp... for k =
Moreover, every vector of ‘V3is uniquely determined by these conditions 
to within a factor of -1.

Proof. First we construct Vp Setting

V1 = a l l V
we determine ap from the condition

( พ  = a ^ d l p  ซ1) -  1,

which implies
1 m 1 

อ11 = *11 = -7(บ1, บ1)
This obviously determines Vj uniquely (except for sign).

Next suppose vectors VpVp...,  ̂ satisfying the conditions 
of theorem have already been constructed. Then can be written in 
the form

He -  bk i V - - - + b k k - i \ - i + w k <2>
where

(พ11, V) = 0 (j - 1,2,..., k-1).

In fact, the coefficients bpj and hence the vector พ̂ are uniquely 
determined by the conditions
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( พ

i • c • O b- .kj
Clearly (พ̂ ,

-  < t - b k i vi — - - b k k - i Tk - i *  V

-  ( V Y  '  พ Y  -
- (\.v ,)  (j - 1 , 2 ..........k-1).

พ^) > 0, i f  (พk ’^k^ = 0 by D e fin itio n  3 .1 .2 »
พ̂ = 9, and thus

V  ๖k 1V - • • - ๖kk-lvk-l -  0 5 . . . . (3)

where 9 is the zero vector.
By induction hypothesis, we can write V. on the left hand side of 
Equ.(3), intern of บ̂, 1^,..., ฃ (j = 1,2,..., k-1).

Then the zero vector in Equ.(3), can be written as a linear 
conbination of for which not all coefficients of
are zero (since the coefficient of 1̂  = 1). This contradicts the 
assumed linear independence of the vectors (1). Let

พ.

4 w
(4)

thing (2) and (4) , we express พ̂ and hence in terms of the 
functions Uj, โ^,...,โ^, i .e.,

vk = ak l Ul + \ 2 U2+ • • - + a k k \  »
where

®kk ! 1

Moreover
J w

(พ  
< v v

(j = 1,2..........k-1),
1
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and

He = ๖ lelVl+ bk2V2+‘,,+ ๖ kk\ 5
where

๖kk = f t wk> Wk'
Thus, start from the vectors V ĵV ,̂..., ^_ satisfying the conditions 
of the theorem, we have constructed vectors 'ร»ร?»*, , »\  1 * \ satisfying 
the same conditions.

The proof now follows by mathematical induction.

3. Linear manifold in Rn.

3.3.1 Definition. A set in Rn is a k-dimensional linear manifold
if the corresponding vectors form a k-dimensional linear variety of Rn.

3.3.2 Remark. From definition 3.1.5, let L be a linear manifold 
of dimension k. Then the vectors of the linear variety L are all 
vectors of the form

1  = v0+ 1 1พ1+ t 2พ2+ . . . + t kwk  ,

where Sc are ar îtrary scalars, is a constant vector
and พ ^ , พ พ ^  are linearly independent, vectors in L.

4. Euclidean motion of Rn.

3.4.1 Definition. A mapping F ะ Rn----J» Rn is called a linear
mapping (or linear transformation) if it satisfies the following
two conditions
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(i) For any บ, V £ Rn, F(UfV) = F(U) + F(V).

(ii) ïor any a £ R and any บ £ Rn, F(aU) = aF(U).

3.4.2 Definition. A translation R in Rn is any transformation 
of the form

R(U) = u + c ,
where บ £ R° and c is a constant vector in Rn.

3.4.3 Definition. An affine transformation T of Rn is any 
transformation of the form

T( โD = F(t) + c ,
where F is a linear mapping of Rn and c is a fixed vector in Rn.

3.4.4 Definition. A Euclidean motion of Rn is an affine map 
T(V) = F(V) + D, where F is a linear mapping and D is a constant 
vector in Rn, such that

(F(U),F(V)) = (บ, V) , liV € Rn.

3.4.5 Theorem Given two orthonormal basis of Rn(Ê ,E25. . . ,En) 
and (Fĵ , บ2ร. .. 5 F ) . Then there exists a unique Euclidean motion T 
such that

T(Ê ) = F̂ , i = 1,2,..., ท .

Proof. Given any two vectors p̂ , P2 in Rn, then clearly 
there is a unique translation R in Rn such that

R<p1) = P2
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So from now we can assume that (EpE^,..., E ) and (F^F^,... ร F̂) 
have the same initial point, which we can take as the origin.

Claim that there is a unique linear map F such that

F(Ei ) - F± , i = 1,2,..., ท.

Define a mapping F ะ Rn-----> Rn as follow ะ

Let V £ Rn. Since (£1,E2,. . . ,  E ) is a basis of Rn,

there exist unique scalars ท1,a2, . . . ,a  ̂£ R for which

V = 1+ ร2ร2+ ••• + an̂ 'ท* We define F ะ Rn----■> Rn by

F(V) .  at F1 + a2F2 +...* V ,1 .

(Since the a 1 are unique, the mapping F is well-defined.) Now, 
for i = 1,2,..., ท,

Ei = OE1+ ...+  IE + ...+  0En .
Hence

P(E ) = 0F1+...+ 1F+...+ OF̂ = F

To prove F is linear. Suppose V = ajE1+ ร2ร2+ . . .+  â En 

and พ = ๖1E1+ 2̂E2+*",+̂ nEท* Then

V + w = (Sj+ ๖1) E1+ (a2+ b2)E2+...+ (an+ bn) En 

and, for any k £ R, kv = kajE1+ ka2E2+... +kâ En .

By definition of the mapping F,

F(V) = a1F1+ a2F2+...+ anFn and F(w) = ๖1F1+ b? F2+ . . .+  ๖nFn .
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Hence F(v+W) = (31+ ๖1) F1+ (a2+ ๖2) F2+ . . .+ (311-๖๖11) F

= (31 Fj+32 F2+ . . . + V 11)+(๖1 F1+๖2F2+. . .+๖11 Fn>

= F( V) + F(W)

and F(kV) = k (a F 1-+a2 F2+. . .+ a F11) = kF(V) .

Thus F is linear .
Now suppose G ะ Rn-—? Rn is linear and G (E_1) = F_1 , 

i - 1,2,..., ท if V = a ^ 1+ a2̂ 2+' * °+ an̂ n’ then

G (V) = G (ajE 1'+a2E2+. . ,+anE ) = ap (£1)+a2G(E2) + . . ,+anG(En)

= a 1Fx + a 2F2+ . . .+  an F11 = F(V)

Since G(V) = F ( v )  for every V 6 R , G = F.  Thus F is unique.
Thus our claim is proved.

Finally we shall show that T is inner product preserving. 
Suppose V = 31E1+ a2E2+. ..+ 311E 11 and พ -  ๖1E1+ ๖2E2+.. .+ ๖11E . Then

(V,พ) = (31E1+ a2E2+...+ 311E , ๖1E1+ ๖2£2+...+ ๖11E11)
ท

E l
i=l• > -  aibi <Ei ’V  + เ^  ai Y Ei-V

and ( F(v) , F(w)) = <«1F1+ 3^2+...+ *111 '11,๖1 F■1+ ๖2 F2+...+ ๖11 y

-  c  “ i V T - V  +  c  * 1Y Fi ’ V

By orthonormality of (£1,£2, . . . ,E11) and (Fj , F2,. . . ,  £11) the last two 
equation becomes

(V, พ)
i=l

a . b .
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and (F(V)SF(พ)) = 12 a±b1

Which gives

(V,พ) = (F (v ), F(พ)) , V,พ £ Rn .

The required Euclidean motion is the mapping T = R OF , and T is 
unique because of the uniqueness of R and F.

Hence the theorem is proved.
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