CHAPTER IV
HGHR CRAILRS - GRES IN HOIDEAN NPAE

The main purpose of this chapter is to characterize the
Frenet frame and the curvatures of curves in Euclidean n-space.
These results first reported in [uj .

1. The Frenet frame and the curvatures.

Let | =[a ] be aninterval in Rad F: =R
,a c-parametrization by arc length. This mears that the arc length
along the curve fron F(s") to F(s2) is ™~ 2 and by Thearem 2.3s
FA) =1 for all €1. Suppose that for each €1, the vectors,

FAs), £"i(),..., Hr)() r ~ Kk

are linear independent. Applying the GamSchmidt orthonormall *-'
process to these vectors, we obtains an orthonormal r-tuple of vectors

(“C ) v2( )iy ()

called the Frenet r-frame associated with the curve at the point . . .,
The GamSdmidt process is actually carried out as follows
Let

V() =00 ad o) = gy

If M(), \2( ),..., V () have already been determined.
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E(s) = F”(s) F¥1’()-Vj(s!" v3( )

E. ()
vi(s) - TEi()

This works for i =12, »p,
u.l.l Rerark By our assumption that for each E 1, the vectors
F.(), FK ),..., F~ () are linearly independent, we can easily
sowthat FA( ), EN ), and vA(S) can not he equal to zero vector
forall £1 adfori=1,2,..,r.
It1.2 Lemma  Every vector V/(S) is a linear combination

Vo) = oan ()FT( )+ R2FF( )+ &I()F(I) ()
of the vectors F (), F ( ),..., FA(s), where £ 1 and a”j are
ck i- real-valued functions defined on I, for j =1,2,...,1,
1 =1,2,..., 1.

Proof. Wi =1, by the GamSchmick process

ORI

By letting a () = —— = 1, veare dore

LL
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Asune that the lenma holds for all value of j <i < .
Then from the induction hypothesis,

Viis) =a()F ()t a"2( )R+ BIC)F (0 ),.o(l)
where a”’, ag,..., aN are of class k-, J = 1,2,..., I-1.

Ooviowsly ayl, Th=1,2,...,j, j =1,2,..., -1 are at
least of class 1, thus Vv Vag,..., are at least of class
-K-i
Let' consider,

E(s) = FONO)- T ARCC )V OV (). (2)

J<i
Using Equ.(l) and Equ.(2), e can express EA(S) in term of F (),

FIC ). H)()

50 = F) () jCCI([f(l)(b)-Vj-( )L CEp- RGN )))

= HD()- (Caajme)[F()( ).M( )IFa)())

= Hi()- 1WIC)F™1)( )-...- UC)F (),
i-1
where b~ ) =22 9()[Ff" () ()] j=1.2,., Il
By the induction hypothesis and theorem 2.2.15, we can easily verify
that the functions b”j are of class forj=1,2,.., I-1.
Therefore E* is of class ¢”1, but E(S) is never zero for all £ |
thus |ex( )) is also of class 1.
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Now
E.(9)
V() TR
o A b, ()
ooy bR oe
Let
. . o V s>
ai (s> HATT a¥d alj<s) e”()!
for j  1,2,, i-1
Hence we can write
V.(S) = a (s)F(i)( )+ + &iL()F'( ),
and a”, 41 1,...» aii are c3ass 1 by virtue of Theorem 2.2.15-

The proof now follows by Mathematical induction.

1.3 Corollary. is of class ¢k 1 for i =1,2,..., r< k.

Proof. Using the fact that FALA is of class 1 and

applying Lemma .1.2, finishes the proof.

1. Theorem Every vector v f( ) is a linear combination

() =ell( i Jcl2( v2( )+. . -+cii+1( Jvi+1( )
of the vectors (), M ),... v.+1( ), where ¢/Yj is of class G 1"
for j =1,2.,..., i+, i =1,2,..., r-1.
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Proof. By Lemma .1.2, we can write

VILL ) = ail( )F ( )tai2( )( )t .., +aiL( JF A2 8) s (3)
where are of class 1, j =1,2,..., i. Differentiating Equ.(3)
yields

V.(S) =aid( )F( )+ a( )F ()+2( )F (s)+al2( )F ()
tot (RN )Hal ()FM()
=all( )F () L ()ralz( ))F ( )+...+
(aii 1()ali ()F ( )+aiA( )FAi+17( ).
= ch1( IF (s)+di2( )F (.. 4dii+1( JPALHA ) ()
were d () = a ()
dims) = aim-l(s)+ain(s)’ m=2>3,...i a&d
a..(S)
obviously diy, dip diiyq are of class k-1l

E.(s) = F(I) ()-[F(1) () ()] v () [F(D)()-V.A ()] v. X ).
Thus

T
>
—
wn
SN—
I
—
=h
>
—

JVLOIVLC) +03er () 10 ) TI0)HE ()
= p(1 s 10 VI )b R} V20 WV 1( )+ &)V

for 1=23,...,r and FL )= ()



Replacing F~(s) by Equ.(5) in Equ.( ), we have
() = LOVLC)+di2( )(fFr2)( ). ve)I v )+ B2() va( ))+...

O+ JCF+D)C ) VIOV ()4
|-('”)( JVIi() v e +let+l( ) vit1( )
C0LL( VI )« 12( )V2( )+« Lkl )v.+L( ),

where

°13<9) =1 v s [Ft)(s>"3(s)] +aij(s,K (s,i

a~1,2,..., i and cii+1( ) = di;L+1( ) )Ei+1()! .

Therefore v/(s) is a linear combination of vA(s),v2( ),..., VAN ().
Since ¢y FAJ\ Vj, and are at least of class ¢ "1
=12, i+1, then by virtue of Theorem 2.2.15, one easily sees
that the Cqy are of class 1V jp=1,2,.., i+1. The theorem is
provede

t15 Thearem For 1 =1,2,..., r-1, j =1,2,..., T,
VUHPLALGINEKGRN {
except possibly for | = 1-1 and | = i+l
Proof. Let i,j be two numbers such that

i ¢ EL2,..., 11§« E1,2,...,r], and assume that j ~ i-1
and ] N I+1



By assumption, j ™ i-1 and j ™ i+l thus we have three eases, i.e.,
gither j < i-1 or j =1 or j > i+l. We shall prove the theorem

for each case separately.

Csel If j<i-1,theni #j. Ths

which gi V)
v e () =VIOND . o

By Thearem I+Li+,

V(3 =<0V HO2UK. SHONHL )......(T
Replacing Vi) by ¢, ( )N( V... €, A0V, () in By .(6),
we obtain

VA( )-V'() = - (CRLO)VI( )re.2( )v2( )+...+C 10 )Vj+L( ))evi ().

Since j <i-1 the right hand side of the last equation is equal to zero,

) o

Ce2 |If =i,
Since () *Vv\Ns) = 1, therefore

VO V() = .
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Case 3. If > i+l, then from Equ.(T) we get
viC ) () = (0010 )M( 0120 N2 )+.. Acii+1( )vi1( ))*™M( ).

But j > i+l then the right hand side of the last equation is equal
to zero, therefore

Wi)yeev() = 0.
Corbining all three cases proves the theorem

.16 Thearem  Thre derivative formula of ¥ can be written asi"
follows

() = kx()\2()
YA () =-ki_1()vi 1) ()WL) (i =2,3,....r-1),

where the k" are real-valued and of class ¢ 1 ¥ inside the given
interval |.

Proof. First, we shall find the derivative formula of ¥~.

By Theorem .1. , the derivative formula of IS
YA(C) = el ()L ) +cl2()ve( ) .
But by Theorem .1.5,

)ev1

() =0~ o

Hence V[() = ~2() ¥2) .

By letting *.1() = C (), therefore
VI() = () va().



Now we shall find the derivative formula of Y,, i
For i =2, by Theorem 1(-11+5
Vo) = GaL(VA( )22 )va( )+e23( )V3( ).
But  c2M( ) =\2() . ¥()
(). ¥2()
- (M) #2( )« *¥2()
= - ()
ad  022() = ¥() . ¥) =0
V()= - 1) ¥() +@B
Byletting kg() = @B() 9 we get
¥2() = - kx( )¥L( ) + kg( )¥3( ).
Nowassune that V() =-kj ()% “( )+Kj( )Yj+( )
forall j «i £r-1. By Theaemu.l.u, we obtain

=2.,3,..., r-1.

*

¥3( ) = o3L( WL( 1R W2 )+..4cii+1( )¥+1( )

Famthe induction hypothesis and Thearem 1+.15,

e () =¥3() %9
0 Mm=12,. i-2)9

Ciip () =¥3() *¥_1()

- - V-1U) -Vi(s)
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-(-k._2( v 2 _IOV.C)) - VI()
= ki,,l()»

and cii() =v'() () 0; hence
Vi(s) = - ki~I(s)vi-1(s)+cii+I(s) vi+l (s) -
Let ki() =cii+l() 5 we get
Vi(s> = - Ki-i(s) Vi-I(s>+ ki (s)viti(s) -

Moreover, "y Theorem .1, | the function k™ are of class -1+

Thus hy induction on i, the theorem is proved.

1.7 Remark There is a hit of a problemwith \f( ), since there
myhe oM+ (). Gwen Oel, if p(r+Yy)( 0) is linearly independent
with respect to F;( 0),F'(sq)ee.5 F~ ( 0), then >ythe continuity
of p(r+l)(s) this will also he true in sone neighborhood of O in 1.

(6ee Appendix )* For IN . .. a neighborhood, V -A(s) can he

defined as above and we will have

ve( ) == kr L( )vr L)+ ke ( Jvr+l() .
If FY+Y)( ) happens to he linearly dependent upon
F(0), F(0),..., FA(sQ 5 then
V s0)= *IM(s0)+ ¥ 2(s0)+- + rw(sO}
where QL are read constants, i =3,2,..., T.
Obviously,
*i = w{s0} *vi(s0} » 1= r.



By Theorym .1.5, we thus have
05 1=12,.,r2.

If i >r-2,
i =V V'WV

“ - <kr-2(SOM-2(B0)1H - | (B0M (s0) ) (30)
- kr-1's0"
ad (XY V> 0)-Vr (S0)
0.
- V 1 (SO)M-1( O}

Hnee vj(0)

.1.8 Definition. The coefficient appearing above, k™(s), k”"s),

k ~()5are called the curvatures associated with the given curve

at the point F(s). The r th curvature kp( ) nay be defined similarly
when (3) is independent of Fi( ), F'( ),..., FY/( ), axd to

be zero in the dependent case.

It turns out that k™s) >0for i =1,2,..., r-1, adk () >0

By virtue of Theaem .1.6, the functions k"are of class 9
1 =1,2,..., r-1 ad k™ is of class When it does not vanish,

but over all can only be guaranteed to be continuous.
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2. The algorithm for parametrization by arc length.

The algorithm for computing the curvatures derives from

the following

*\W s . ,
VS:l’ for 1 =1,2,..., .

Proof. First assume i < r. Then by Theorem 1+.1.6,
() = VAspitl()
I Ei(s) \ Vi+1( )

ex( )6 () - E.(s)(le.(s)l )" Vi,

N.2.1 Theorem.  k~(s) =

I(s)-v1+(3
e(E).(g) &
B( VA ()

i

Wow Ei () and v~+-~(s) are orthogonal, so the second term on the

1( 109 € 5yvint( )
I(s)
i ()vit( ) |

right above is zero. Hence

e'(s) *V ()

ki) IV S

To verify the theorem, we must show that e|(s)*vA+1( ) =]e™ ()! .

Differentiating the equation EA(S) = FAMg)- J7:._|f’\1’\( ) Vi)V
I
yields

el(s) =F(+1) () Ctle(D()-VIOIVI( ) ()MOMC).



Every vector on the right hand side of this last equation, except
for FAL (), is a linear combination of (), (),.... vV (),

and these are all orthogonal to V. 1( ). Therefore
e{(s)-V.+1( ) = F(i+1)( )-vitl()

But E () = F(i+1) ( )- jJ(¢Zi+1[F(i+1\ ).vJ :

F(i+1>(3).v.+1( ) = EI+1( ).v.+1() = [E+L( )T .
completing the proof in the case i < r.

[f i =7r and EM2( ) A 9 (9

zero vector), the same proof

works. If EMA( ) =9, so is k~(s) = 0 , and the theorem is proved.

k.2.2 Example. Let a and he two real number such that a > 0
b A0, and a®+ ™ =1, Consider the curve given by F [0,2ft] —* RA
where

F(s) = (acos , asin , bs).
This curve is called a circular helix, since (F7()) =1 then by
Theorem 2.3.5, the curve F is parametrization by arc length. The
determinant of the three vector F;(s), F.( ), FﬁTS) is never zero
for all  f [0,2F] 5 since

-a sin a cos h
(FI(), f"C ), () = ~a €0 -a sin 0 = ath fo.
a sin -4 €O0S 0

Hence for each £ [0,2/t] the vectors £'( ), F"(s), FN(s) are linearly

independent.
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Thus the various curvatures may he calculated according to

the algorithm given by Theorem 1+.2.1, as follow

FA() = (-a sin 5 acos , b)
F() = (-a cos , -asin ,0)
F(.(s) = (a sin , - acos , 0)
Beginning the Gram-Schmidt process, we get
EY9) =FX) =(-a sin ,acxs , b
K@ -1
Vv =fh_sh =(-a sin ,acos , ti),
0 pTTIT] ( )
Next ve have
() F(s)-[f ( yM()M() =F ()=(-acos A sin
JBc ) =a

Vg(s) H-cos , -sin , 0).
Finally we have
es(o)  FROH(RIC ). 2(0) VI( )- [rA( ).va( )] va()
((a-a™)sin , (a"- a) cos , -ha?)

E () = J (a-a3)2+ b2au

v 05



The curvature are then given by :

2()!
() 7
12( ) |E3£SH _ .

Classically this is the curvature and torsion of curves in R
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