## CHAPTER IV

## HIGHER CURVATURES OF CURVES IN EUCLIDEAN N-SPACE

The main purpose of this chapter is to characterize the Frenet frame and the curvatures of curves in Euclidean n-space. These results first reported in  $\begin{bmatrix} 4 \end{bmatrix}$ .

## 1. The Frenet frame and the curvatures.

Let

Let I = [a,b] be an interval in R and  $F : I \longrightarrow \mathbb{R}^n$  and  $\mathbb{R}^k$ -parametrization by arc length. This means that the arc length along the curve from  $F(s_1)$  to  $F(s_2)$  is  $\left|s_1 - s_2\right|$  and by Theorem 2.3.5;  $\left|F'(s)\right| = 1$  for all  $s \in I$ . Suppose that for each  $s \in I$ , the vectors,

$$F'(s), F''(s), ..., F^{(r)}(s)$$
  $r < k$ 

are linear independent. A pplying the Gram-Schmidt orthonormalization process to these vectors, we obtains an orthonormal r-tuple of vectors,

$$(v_1(s), v_2(s), ..., v_r(s))$$
,

called the Frenet r-frame associated with the curve at the point F(s).

The Gram-Schmidt process is actually carried out as follows:

$$E_1(s) = F'(s)$$
 and  $V_1(s) = \frac{E_1(s)}{|E_1(s)|}$ 

If  $V_1(s)$ ,  $V_2(s)$ ,...,  $V_{i-1}(s)$  have already been determined.

Let

$$E_{\mathbf{i}}(s) = F^{(\mathbf{i})}(s) - \sum_{\mathbf{j} < \mathbf{i}} \left[ F^{(\mathbf{i})}(s) \cdot V_{\mathbf{j}}(s) \right] V_{\mathbf{j}}(s)$$

and

$$V_{\mathbf{i}}(s) = \frac{E_{\mathbf{i}}(s)}{|E_{\mathbf{i}}(s)|}$$

This works for  $i = 1, 2, \ldots, r$ .

4.1.1 Remark. By our assumption that for each  $s \in I$ , the vectors F'(s), F''(s),...,  $F^{(r)}(s)$  are linearly independent, we can easily show that  $F^{(i)}(s)$ ,  $E_i(s)$ , and  $V_i(s)$  can not be equal to zero vector for all  $s \in I$  and for i = 1, 2, ..., r.

4.1.2 Lemma. Every vector V,(s) is a linear combination

$$V_{i}(s) = a_{i1}(s)F'(s) + a_{i2}F''(s) + ... + a_{ii}(s)F^{(i)}(s)$$

of the vectors F'(s), F''(s),...,  $F^{(i)}(s)$ , where  $s \in I$  and  $a_{ij}$  are  $C^{k-i}$ - real-valued functions defined on I, for j = 1, 2, ..., i, i = 1, 2, ..., r.

Proof. When i = 1, by the Gram-Schmidt process

$$V_1(s) = \frac{1}{|F'(s)|} F'(s)$$

By letting  $a_{11}(s) = \frac{1}{|F'(s)|} = 1$ , we are done.

Assume that the lemma holds for all value of j < i  $\leq$  n. Then from the induction hypothesis,

$$V_{j}(s) = a_{j1}(s)F'(s) + a_{j2}(s)F''(s) + ... + a_{jj}(s)F^{(j)}(s),...(1)$$
  
where  $a_{j1}, a_{j2},..., a_{j,j}$  are of class  $C^{k-j}$ ,  $j = 1,2,..., i-1$ .

Obviously  $a_{jm}$ ,  $m=1,2,\ldots,j$ ,  $j=1,2,\ldots,$  i-1 are at least of class  $C^{k-i}$ , thus  $V_1$ ,  $V_2$ ,...,  $V_{i-1}$  are at least of class  $C^{k-i}$ .

Let's consider,

$$E_{i}(s) = F^{(i)}(s) - \sum_{j < i} [F^{(i)}(s).v_{j}(s)]v_{j}(s).$$
 .....(2)

Using Equ.(1) and Equ.(2), we can express  $E_i(s)$  in term of F'(s),  $F''(s), \ldots, F^{(i)}(s)$ :

$$E_{i}(s) = F^{(i)}(s) - \sum_{j < i} (\left[F^{(i)}(s) . V_{j}(s)\right] (\sum_{m=1}^{j} a_{jm}(s) F^{(m)}(s)))$$

$$= F^{(i)}(s) - \sum_{j < i} \sum_{m=1}^{j} a_{jm}(s) \left[F^{(i)}(s) . V_{j}(s)\right] F^{(m)}(s))$$

$$= F^{(i)}(s) - b_{ii-1}(s) F^{(i-1)}(s) - \dots - b_{i1}(s) F^{(m)}(s),$$
where  $b_{ij}(s) = \sum_{m=1}^{j} a_{mj}(s) \left[F^{(i)}(s) . V_{m}(s)\right], \quad j = 1, 2, \dots, i-1.$ 

By the induction hypothesis and theorem 2.2.15, we can easily verify that the functions  $b_{ij}$  are of class  $C^{k-i}$  for  $j=1,2,\ldots, i-1$ . Therefore  $E_i$  is of class  $C^{k-i}$ , but  $E_i(s)$  is never zero for all  $s\in I$  thus  $|E_i(s)|$  is also of class  $C^{k-i}$ .

Now

$$V_{i}(s) = \frac{E_{i}(s)}{|E_{i}(s)|}$$

$$= \frac{1}{|E_{i}(s)|} F^{(i)}(s) - \frac{b_{ii-1}(s)}{|E_{i}(s)|} F^{(i-1)}(s) - \dots - \frac{b_{i1}(s)}{|E_{i}(s)|} F'(s).$$

Let

$$a_{ii}(s) = \frac{1}{|E_{i}(s)|} \text{ and } a_{ij}(s) = -\frac{b_{ij}(s)}{|E_{i}(s)|},$$

for j = 1, 2, ..., i-1.

Hence we can write

$$V_{i}(s) = a_{ii}(s)F^{(i)}(s)+...+a_{il}(s)F^{'}(s),$$

and  $a_{ii}$ ,  $a_{ii-1}$ ,...,  $a_{il}$  are of class  $C^{k-i}$  by virtue of Theorem 2.2.15.

The proof now follows by Mathematical induction.

4.1.3 Corollary.  $V_i$  is of class  $C^{k-1}$  for i = 1, 2, ..., r < k.

<u>Proof.</u> Using the fact that  $F^{(i)}$  is of class  $C^{k-i}$  and applying Lemma 4.1.2, finishes the proof.

4.1.4 Theorem Every vector  $V_i'(s)$  is a linear combination

$$V_{i}'(s) = c_{i1}(s)V_{1}(s)+c_{i2}(s)V_{2}(s)+...+c_{ii+1}(s)V_{i+1}(s)$$

of the vectors  $V_1(s)$ ,  $V_2(s)$ ,...  $V_{i+1}(s)$ , where  $c_{ij}$  is of class  $C^{k-i-1}$  for j = 1, 2, ..., i+1, i = 1, 2, ..., r-1.

Proof. By Lemma 4.1.2, we can write

$$V_{i}(s) = a_{il}(s)F'(s) + a_{i2}(s)F''(s) + ... + a_{ii}(s)F^{(i)}(s), ... (3)$$

where  $a_{ij}$  are of class  $C^{k-i}$ , j = 1, 2, ..., i. Differentiating Equ.(3) yields

$$V_{i}'(s) = a_{i1}(s)F(s) + a_{i1}'(s)F'(s) + a_{i2}(s)F''(s) + a_{i2}'(s)F''(s)$$

$$+ \dots + a_{i1}(s)F^{(i+1)}(s) + a_{i1}'(s)F^{(i)}(s)$$

$$= a_{i1}'(s)F'(s) + (a_{i1}(s) + a_{i2}'(s))F''(s) + \dots + (a_{ii-1}(s) + a_{ii}'(s))F''(s) + a_{ii}(s)F^{(i+1)}(s).$$

$$= d_{i1}(s)F'(s) + d_{i2}(s)F''(s) + \dots + d_{ii+1}(s)F^{(i+1)}(s), \dots (4)$$

where  $d_{i1}(s) = a'_{i1}(s)$ 

$$d_{im}(s) = a_{im-1}(s) + a_{im}(s), m = 2,3,...i$$
 and

$$d_{ii+l}(s) = a_{ii}(s)$$
.

obviously  $d_{i1}$ ,  $d_{i2}$ ,...,  $d_{ii+1}$  are of class  $C^{k-i-1}$ .

$$E_{i}(s) = F^{(i)}(s) - \left[F^{(i)}(s) \cdot V_{1}(s)\right] V_{1}(s) - \dots - \left[F^{(i)}(s) \cdot V_{i-1}(s)\right] V_{i-1}(s).$$

Thus

$$F^{(i)}(s) = \left[F^{(i)}(s) \cdot V_{1}(s)\right] V_{1}(s) + \dots + \left[F^{(i)}(s) \cdot V_{i-1}(s)\right] V_{i-1}(s) + E_{i}(s)$$

$$= \left[F^{(i)}(s) \cdot V_{1}(s)\right] V_{1}(s) + \dots + \left[F^{(i)}(s) \cdot V_{i-1}(s)\right] V_{i-1}(s) + \left|E_{i}(s)\right| V_{i}(s), \dots$$

$$\dots (5)$$

for i = 2,3,...,r and  $F'(s) = V_1(s)$ .

Replacing F<sup>(i)</sup>(s) by Equ.(5) in Equ.(4), we have

$$\begin{aligned} v_{i}'(s) &= d_{i1}(s)v_{1}(s) + d_{i2}(s)(\left[F^{(2)}(s).v_{1}(s)\right]v_{1}(s) + \left|E_{2}(s)\right|v_{2}(s)) + \dots \\ &+ d_{ii+1}(s)(\left[F^{(i+1)}(s).v_{1}(s)\right]v_{1}(s) + \dots + \\ &+ \left[F^{(i+1)}(s).v_{i}(s)\right]v_{i}(s) + \dots + \left|E_{i+1}(s)\right|v_{i+1}(s)) \\ &= c_{i1}(s)v_{1}(s) + c_{i2}(s)v_{2}(s) + \dots + c_{ii+1}(s)v_{i+1}(s), \end{aligned}$$

where

$$c_{ij}(s) = \sum_{m=j+1}^{i+1} d_{im}(s) \left[ F^{(m)}(s) . V_{j}(s) \right] + d_{ij}(s) \left| E_{j}(s) \right| ,$$

$$j = 1, 2, ..., i \text{ and } c_{ii+1}(s) = d_{ii+1}(s) \left| E_{i+1}(s) \right| .$$

Therefore  $V_i'(s)$  is a linear combination of  $V_1(s), V_2(s), \ldots, V_{i+1}(s)$ . Since  $d_{i,j}$ ,  $F^{(j)}$ ,  $V_j$ , and  $\left|E_j\right|$  are at least of class  $C^{k-i-1}$ ,  $j=1,2,\ldots,$  i+1, then by virtue of Theorem 2.2.15, one easily sees that the  $c_{i,j}$  are of class  $C^{k-i-1}$ ,  $j=1,2,\ldots,$  i+1. The theorem is proved.

4.1.5 Theorem. For 
$$i = 1, 2, ..., r-1, j = 1, 2, ..., r$$
, 
$$V_{i}'(s) \cdot V_{j}(s) \equiv 0,$$

except possibly for j = i-1 and j = i+1.

<u>Proof.</u> Let i,j be two numbers such that  $i \in \{1,2,\ldots,\,r-1\},\,j \in \{1,2,\ldots,\,r\},\,\text{and assume that}\,\,j \neq i-1$  and  $j \neq i+1$ .

By assumption,  $j \neq i-1$  and  $j \neq i+1$  thus we have three cases, i.e., either j < i-1 or j = i or j > i+1. We shall prove the theorem for each case separately.

Case 1. If j < i-1, then  $i \neq j$ . Thus

$$V_i(s) \cdot V_j(s) \equiv 0,$$

which gives

$$v'_{i}(s) \cdot v_{j}(s) = -v'_{j}(s) \cdot v_{i}(s)$$
 .....(6)

By Theorem 4.1.4,

$$V'_{j}(s) = c_{j1}(s)V_{1}(s) + c_{j2}(s)V_{2}(s) + ... + c_{jj+1}(s)V_{j+1}(s).$$
 ....(7)

Replacing  $V'_{j}(s)$  by  $c_{j1}(s)V_{1}(s)+...$   $c_{j,j+1}(s)V_{j+1}(s)$  in Eq.(6),

we obtain

$${\tt V_i(s) \cdot V_j'(s) = -(c_{jl}(s) V_l(s) + c_{j2}(s) V_2(s) + \ldots + c_{jj+1}(s) V_{j+1}(s)) \cdot V_i(s) }.$$

Since j < i-l the right hand side of the last equation is equal to zero hence

$$V_{i}'(s) \cdot V_{j}(s) \equiv 0.$$

Case 2. If j = i.

Since  $V_i(s) \cdot V_i(s) \equiv 1$ , therefore

$$2V_{\mathbf{i}}'(s) \cdot V_{\mathbf{i}}(s) \equiv 0$$
.

Thus

$$V_i'(s) \cdot V_i(s) \equiv 0$$
.

Case 3. If j > i+1, then from Equ.(7) we get

$$V_{i}'(s) \cdot V_{j}(s) = (c_{i1}(s)V_{1}(s) + c_{i2}(s)V_{2}(s) + ... + c_{ii+1}(s)V_{i+1}(s)) \cdot V_{j}(s).$$

But j > i+l then the right hand side of the last equation is equal to zero, therefore

$$V_{i}'(s) \cdot V_{i}(s) = 0.$$

Combining all three cases proves the theorem.

4.1.6 Theorem. The derivative formula of  $V_{i}$  can be written as follows:

$$V_1'(s) = k_1(s)V_2(s)$$
  
 $V_i'(s) = -k_{i-1}(s)V_{i-1}(s) + k_i(s)V_{i+1}(s)$  (i = 2,3,...,r-1),

where the  $k_{\hat{i}}$  are real-valued and of class  $C^{k-\hat{i}-1}$  inside the given interval I.

<u>Proof.</u> First, we shall find the derivative formula of  $V_1$ . By Theorem 4.1.4, the derivative formula of  $V_1$  is

$$V_1'(s) = c_{11}(s)V_1(s) + c_{12}(s)V_2(s)$$
.

But by Theorem 4.1.5,

$$V_1'(s) \cdot V_1(s) = 0 = c_{11}(s)$$
.

Hence  $v_1'(s) = c_{12}(s) v_2(s)$ .

By letting  $k_1(s) = c_{12}(s)$ , therefore

$$V_1'(s) = k_1(s) V_2(s).$$

Now we shall find the derivative formula of  $V_i$ , i = 2,3,...,r-1.

For i = 2, by Theorem 4.1.4,

$$V_2'(s) = c_{21}(s)V_1(s)+c_{22}(s)V_2(s)+c_{23}(s)V_3(s).$$

But 
$$c_{21}(s) = v_2'(s) \cdot v_1(s)$$
  
 $= -v_1'(s) \cdot v_2(s)$   
 $= -(k_1(s) \cdot v_2(s)) \cdot v_2(s)$   
 $= -k_1(s)$ 

and 
$$c_{22}(s) = V_2'(s) \cdot V_2(s) = 0$$
; therefore  $V_2'(s) = -k_1(s) V_1(s) + c_{23}(s) V_3(s)$ .

By letting 
$$k_2(s) = c_{23}(s)$$
, we get  $V_2'(s) = -k_1(s)V_1(s) + k_2(s)V_3(s)$ .

Now assume that  $V_{j}'(s) = -k_{j-1}(s)V_{j-1}(s)+k_{j}(s)V_{j+1}(s)$ ,

for all j < i ≤ r-1. By Theorem 4.1.4, we obtain

$$V'_{i}(s) = c_{i1}(s)V_{1}(s)+c_{i2}(s)V_{2}(s)+...+c_{ii+1}(s)V_{i+1}(s)$$
.

From the induction hypothesis and Theorem 4.1.5,

$$c_{im}(s) = V'_{i}(s) \cdot V_{m}(s)$$

$$\equiv 0 \qquad (m = 1, 2, ..., i-2),$$
 $c_{ii-1}(s) = V'_{i}(s) \cdot V_{i-1}(s)$ 

$$= -V'_{i-1}(s) \cdot V_{i}(s)$$

$$= -(-k_{i-2}(s)V_{i-2}(s)+k_{i-1}(s)V_{i}(s)) \cdot V_{i}(s)$$

$$= -k_{i-1}(s),$$

and 
$$c_{ii}(s) = V_i'(s) \cdot V_i(s) \equiv 0$$
; hence 
$$V_i'(s) = -k_{i-1}(s)V_{i-1}(s) + c_{ii+1}(s) V_{i+1}(s)$$
.

Let 
$$k_{i}(s) = c_{ii+1}(s)$$
, we get 
$$V_{i}'(s) = -k_{i-1}(s) V_{i-1}(s) + k_{i}(s) V_{i+1}(s) .$$

Moreover, by Theorem 4.1.4, the function  $k_i$  are of class  $C^{k-i-1}$ . Thus by induction on i, the theorem is proved.

4.1.7 Remark. There is a bit of a problem with  $V_r(s)$ , since there may be no  $V_{r+1}(s)$ . Given  $s_0 \in I$ , if  $F^{(r+1)}(s_0)$  is linearly independent with respect to  $F'(s_0), F'(s_0), \dots, F^{(r)}(s_0)$ , then by the continuity of  $F^{(r+1)}(s)$  this will also be true in some neighborhood of  $s_0$  in I. (see Appendix 3). For s in such a neighborhood,  $V_{r+1}(s)$  can be defined as above and we will have

$$V_{r}(s) = -k_{r-1}(s)V_{r-1}(s) + k_{r}(s)V_{r+1}(s)$$
.

If  $F^{(r+1)}(s_0)$  happens to be linearly dependent upon  $F'(s_0)$ ,  $F''(s_0)$ ,...,  $F^{(r)}(s_0)$ , then

$$v_{r}'(s_{0}) = \alpha_{1}v_{1}(s_{0}) + \alpha_{2}v_{2}(s_{0}) + ... + \alpha_{r}v_{r}(s_{0})$$

where  $\alpha_i$  are real constants, i = 1, 2, ..., r.

Obviously,

$$\alpha_{i} = v_{r}'(s_{0}) \cdot v_{i}(s_{0}), i = 1, 2, ..., r.$$

By Theorem 4.1.5, we thus have

$$\alpha_{i} = 0$$
,  $i = 1, 2, ..., r-2$ .

If  $i \ge r-2$ ,

$$\alpha_{r-1} = v_{r}'(s_{0}) \cdot v_{r-1}(s_{0})$$

$$= -v_{r-1}'(s_{0}) \cdot v_{r}(s_{0})$$

$$= -(-k_{r-2}(s_{0})v_{r-2}(s_{0}) + k_{r-1}(s_{0})v_{r}(s_{0}) \cdot v_{r}(s_{0})$$

$$= -k_{r-1}(s_{0}),$$

$$\alpha_{r} = v_{r}'(s_{0}) \cdot v_{r}(s_{0})$$

and

Hence  $v'_{r}(s_0) = -k_{r-1}(s_0)v_{r-1}(s_0)$ .

4.1.8 <u>Definition</u>. The coefficient appearing above,  $k_1(s)$ ,  $k_2(s)$ , ...,  $k_{r-1}(s)$ , are called the <u>curvatures</u> associated with the given curve at the point F(s). The r th curvature  $k_r(s)$  may be defined similarly when  $F^{(r+1)}(s)$  is independent of F'(s), F''(s),...,  $F^{(r)}(s)$ , and to be zero in the dependent case.

It turns out that  $k_i(s) > 0$  for i = 1, 2, ..., r-1, and  $k_r(s) \ge 0$ . By virtue of Theorem 4.1.6, the functions  $k_i$  are of class  $c^{k-i-1}$ , i = 1, 2, ..., r-1 and  $k_r$  is of class  $c^{k-r-1}$  when it does not vanish, but over all can only be guaranteed to be continuous.

## 2. The algorithm for parametrization by arc length.

The algorithm for computing the curvatures derives from the following:

4.2.1 Theorem. 
$$k_i(s) = \frac{|E_{i+1}(s)|}{|E_i(s)|}$$
 for  $i = 1, 2, ..., r$ .

Proof. First assume i < r. Then by Theorem 4.1.6,

$$k_{i}(s) = V_{i}'(s) \cdot V_{i+1}(s)$$

$$= \left(\frac{E_{i}(s)}{|E_{i}(s)|}\right) \cdot V_{i+1}(s)$$

$$= \left(\frac{|E_{i}(s)|E_{i}'(s) - E_{i}(s)(|E_{i}(s)|)'}{|E_{i}(s)|^{2}}\right) \cdot V_{i+1}$$

$$= \frac{E_{i}'(s) \cdot V_{i+1}(s)}{|E_{i}(s)|} - \left(\frac{(|E_{i}(s)|)'}{|E_{i}(s)|^{2}}\right) E_{i}(s) \cdot V_{i+1}(s)$$

$$= \frac{E_{i}'(s) \cdot V_{i+1}(s)}{|E_{i}(s)|} + \left(\frac{1}{|E_{i}(s)|}\right)' E_{i}(s) \cdot V_{i+1}(s) .$$

Now  $E_i(s)$  and  $V_{i+1}(s)$  are orthogonal, so the second term on the right above is zero. Hence

$$k_{i}(s) = \frac{E'_{i}(s) \cdot V_{i+1}(s)}{|E_{i}(s)|}$$
.

To verify the theorem, we must show that  $E_i'(s) \cdot V_{i+1}(s) = |E_{i+1}(s)|$ .

Differentiating the equation  $E_i(s) = F^{(i)}(s) - \sum_{j < i} [F^{(i)}(s) \cdot V_j(s)] V_j(s)$ yields

$$E_{i}'(s) = F^{(i+1)}(s) - \sum_{j < i} [F^{(i)}(s).V_{j}(s)] V_{j}(s) - \sum_{j < i} [F^{(i)}(s).V_{j}(s)] V_{j}'(s).$$

Every vector on the right hand side of this last equation, except for  $F^{(i+1)}(s)$ , is a linear combination of  $V_1(s)$ ,  $V_2(s)$ ,..., $V_i(s)$ , and these are all orthogonal to  $V_{i+1}(s)$ . Therefore

$$\begin{split} E_{i}'(s) \cdot V_{i+1}(s) &= F^{(i+1)}(s) \cdot V_{i+1}(s) \; . \\ \text{But} \quad E_{i+1}(s) &= F^{(i+1)}(s) - \sum_{j < i+1} \left[ F^{(i+1)}(s) \cdot V_{j}(s) \right] V_{j}(s) \; , \quad \text{so} \\ F^{(i+1)}(s) \cdot V_{i+1}(s) &= E_{i+1}(s) \cdot V_{i+1}(s) = \left| E_{i+1}(s) \right| \; , \end{split}$$

completing the proof in the case i < r.

If i = r and  $E_{i+1}(s) \neq \theta$  ( $\theta = zero vector$ ), the same proof works. If  $E_{i+1}(s) = \theta$ , so is  $k_i(s) = 0$ , and the theorem is proved.

4.2.2 Example. Let a and b be two real number such that a > 0,  $b \neq 0$ , and  $a^2 + b^2 = 1$ . Consider the curve given by  $F : [0,2\pi] \longrightarrow \mathbb{R}^3$ , where

$$F(s) = (a cos s, a sin s, bs).$$

This curve is called a circular helix, since |F'(s)| = 1 then by Theorem 2.3.5, the curve F is parametrization by arc length. The determinant of the three vector F'(s), F''(s), F''(s) is never zero for all  $s \in [0,2\pi]$ , since

$$(F'(s),F''(s),F''(s)) = \begin{vmatrix} -a \sin s & a \cos s & b \\ -a \cos s & -a \sin s & 0 \\ a \sin s & -a \cos s & 0 \end{vmatrix} = a^{2}b \neq 0.$$

Hence for each  $s \in [0,2\pi]$  the vectors F'(s), F''(s), F'''(s) are linearly independent.

Thus the various curvatures may be calculated according to the algorithm given by Theorem 4.2.1, as follow:

$$F'(s) = (-a \sin s, a \cos s, b)$$
  
 $F''(s) = (-a \cos s, -a \sin s, 0)$   
 $F'''(s) = (a \sin s, -a \cos s, 0)$ 

Beginning the Gram-Schmidt process, we get

$$E_1(s) = F'(s) = (-a \sin s, a \cos s, b)$$

$$|E_1(s)| = 1$$

$$V_1(s) = \frac{E_1(s)}{|E_1(s)|} = (-a \sin s, a \cos s, b).$$

Next we have

$$E_2(s) = F''(s) - [F''(s) \cdot V_1(s)] V_1(s) = F''(s) = (-a \cos s, -a \sin s, 0)$$

$$|E_2(s)| = a$$

$$V_2(s) = (-\cos s, -\sin s, 0).$$

Finally we have

$$E_{3}(s) = F'''(s) - \left[ (F'''(s) \cdot V_{1}(s)) V_{1}(s) - \left[ F'''(s) \cdot V_{2}(s) \right] V_{2}(s) \right]$$

$$= ((a-a^{3})\sin s, (a^{3}-a)\cos s, -ba^{2})$$

$$|E_{3}(s)| = \sqrt{(a-a^{3})^{2} + b^{2}a^{4}}.$$

The curvature are then given by :

$$k_1(s) = \frac{|E_2(s)|}{|E_1(s)|} = a$$

$$k_2(s) = \frac{|E_3(s)|}{|E_2(s)|} = b.$$

Classically this is the curvature and tersion of curves in R3.