CHAPTER V

FUNDAMENTAL THEOREM OF CURVES IN
EUCLIDEAN N-SPACE

The main purpose of this chapter is to generalize some theorems

on curves in R™ to curves in  Rn, by using the curvatures defined in

Chapter 1V,

L. Identical vanishing of the curvature, have geometrical

interpretation as follows
5.1.1 Theorem. If k”~(s) = 0, then the curve is a straight line.

Proof. Assume k”(s) = 0. By Theorem L.1.6, we have

ERee——u
By Theorem 2.2.16, V-( ) = C , where Cis a constant vector.

Since F(s) = V’\() = C, therefore
F(s) = Cs+ D, D= constant vector,

which is an equation of straight line. The proof is complete.

5.1.2 Theorem. If kr( ) =0, then the curve lies in an r-dimensional

linear manifold, r =2,3,..., n-1.



Proof. Let r ¢12,..., -1\ and assume that kr( ) = 0.

By Theorem 2.1, F~r + () happen to he linearly dependent upon
f0), f£F7C ),..., FA(s) for all £ 1 = [0.1J.

Thus, FAr '( ) can be written as a linear combination
F(r+l)( ) = |31( )f )+/92( JE"( )+t Dr( ) F(r) () s

of the vectors F (), F ( ),..., FA(s), where the functions /I are
ri

real-valued functions defined on the interval |I.

Equ.(l) is equivalent to the following scalar equations

fjre18() =PLO)A(s)+ R()TL( )+t ()FrA()

Pooare)() =N )4 ()HE2( )4 ()t M () ) ()

Grai)( ) =ALEE )+ p 20 M )+ 120 () 1) () ) v

where F(s) = (fA( ), f2( ),.... f ().

The i th equation of the system (A) is a linear homogeneous
equation of the function f , which by Theorem 8.1 in the Appendix,

has a solution of the form
4 () = 1lgl( )-+w2g2( )+.. 4wrisl( ) ,

for 1 =1,2,..., . Or equivalently
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(F2C )20 ), 70)) =(vilgl()+ 20g2( )+.. AW gr (1), 1291( )+

H2sr (s owingi ( )2 52(s)+ee*Mhgr (s))
= 190( ) 22( )+..AWg ()
=FN) 5
where 1 =(1, 12,..., m, i =1,2,....r,
are constant vectors, and the g ] =1,2,..., r are the solutions of

every differential equation of the system (a) determined by
fv P2R*pr e

Since the function gj is a solution of the differential equations

of the system (a) and by assumption that r = 2, then gj is clearly
differentiable on the interval I, | =1,2,...,r.

Hence, the functions g”g2

..... g are integrable on the interval
interval 1, and ve have

Fe) = 1 (1g10+WGe2(t)+.. g (D)ck+V7jiHd

(0 grdowi( 1 g2)dw2e 4 (1 gr ()d0wr+ g

Lt hi() = j gl)dt, i=1,2,...r thus
0

FGS) = \( ) 1#2() 2+..+ hr() r+ r+l,

where 1 is a contant vector, ad e .
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By Remark 3.3.2, F(s) lies in the linear manifold, which is
of dimension less than or equal to r.

Thus the proof is complete.
2. Fundamental existence theorem for curves in R
5.2.1 Theorem. Let he an integer such that ns 2, and suppose that '
we are given n-1 real-valued function
A()> 0, k2(s)  0,..., kn1() >0
defined on an interval jo,I].

Assume that the functions k”(s) are of class cn 1-\i =1,2,...,n-1
then there exists a curve F in Rn for which k*( ), k2(s),..., kM 1()
are the first, second,...,(n-1)th curvatures at the point F(s) and s
the arc length measured from some suitable base point. Such a curve is
uniquely determined up to a Euclidean motion.

Proof.  Existence
Consider the differential equations

tyl(s) =kl(s)y2(s)
B () =-ki10)yi 10 )0 )yirl( ) 1=23,..n-l

1 d?2yn(s) * -kn-I(s)yn-I(s) -



It is proved in the Appendix that these equations admit a unique set
of C**-solutions which assume prescribed values ypi, yop,..., y0
when = 0.

In particular there is a unique set v Vv2i***“* \hj
assume initial values 1, [K2,..., inwhen =0, where =0 if

i Bjand =1 ifi=j, forj=1,2,...,,0=12,.,
We now prove that for all value of and fori =1,2,..., ,
vii2(s) +v272(s) +..+ vni2( ) = 1.
Evidently
ii2(s)tv2L:2(s)+---+
= 2 (vILC v (rv2iQ NV2( )+ i (VI ().

Claim that the right-hand member of the previous equation
vanishes identically.

To see this, since "vai» v2i**“ *\hi} is a solution of (8),
we can write the system of differential equations,

viI() =0 M() (1)
(c) Vii(s) =-Vi(sV 11(s)+V s)V ii(s)’
j=23,., -l

ni ¢ = p-20Ovp 4 O ()
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Multiply the J th equation of the system (c) by
vmi( ), m=1,2,..., ve get

vn (ML) =7 )M )\21( )

V2i(S)V2i(S) = “Ku( yvir(yvar( ytke( yvar(yvsi()

VL)V 1i(s) = -V 2<sV21(s)V u (s)+V I(B)V 1i(BVnl(5)

v (s)v ((s) =-kn-I(s,V li(s)V (B) -
Adding all these equations gives
vx1( )VIL(5)+\21( V2" ( )+, +vLld( JvnL( )

= (~( )VIL( )V21( )+k2( )V21( )V31( )+

q -tkr.-1(S)V 11 (s)vni(s))

1()-vit( )vat( ) +kg(gvat()var( )+

w \ (S)V T1(5)vni<s))
0.

Thus our claim is proved.

Hence
FOREO)+. () = constant

A Dl * oL

giving the require result.



Fom abowve result we can show that

hn(s) TI2(s)-"TIn(s,\
viz() 22 .,V va() v2( )...,20)

= Id,
vin(s) v2n(s)-"wn(s) \Ti) v (s)-"\m(s)}
where Id is an by identity matrix.
To prove this it sufficies to show that
h {EILijs)V s) - 01 IfJ]*k'
or equivalently
El «ij(8)iik(s)+iit(s,vij(s)) 5 O -
Consider the two system of differential equations ... (D
vk(s) = V avzk(s)
(D) i = _ki-|IN yj- ALl N oy Ay *
V.Iikz(g,3,...kr=-1| Vi- Lk M ki vit kA » s (*)
'n“ ) = 'kn-g-( )V-I:LL() """""""""" ( )
and
fovg() = k() (1)
Vos) o -ki-1(S)vi-1j(s)+ki (S)V 13 (S) mmmrrnnn (i)
® = 2,3,.., n1

Vo) * ke OMagi) ()

56
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Multiply the mth equation of the system (D) and (E) by vmj( ) and vy ()
respectively for m=1,2,..., , and then adding all there equations gives

L(iij<s)id (s)+Tik(sKiV's,)
(k, (VA Jvzk()+kO( )VBL( va(3)+ ...+

kn-1(s)V 1] (s)vnk(s,*1l (3,vIk(s)v2J(s,+
k2U)T2k(s)133(s)+— +kn-1<3)V Ik (s,inj(s))
~(kx (vl ()~ )#k2( Jvek( )v3j( )+ ...t
kn-1(s)V Tk (s,V s)+V s)vis(s)vk(s)+
k2(s)i23(s)v3k(s) +ee-+kn-1(s)V 1j(s)ink(s))

5 0,
¢ TE) V) vnl(s)\
2< VB ) o

von( ). yneg)

where € [o,Lj.

From the above result, for each € [0,L] the matrix A(s) is
orthogonal, i.e., A(s) Al(s) =Id where A/( ) is the transpose of A(s).
But the equation
A(s) a-() = Id implies AN ) = A~™(s) and so
A7( )A() = Id, which is equivalent to
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[T vi2(s)™ M=)\ vu () M 10).Tl() v
VILC) a(s)---T2 3, tl2(s) \R2(s)--\ha(s) 1 =10

vnl(s) V=20 )Y (v Avings) i2n(s)-"'mn(s) |

or explicitly

n

2 v, (s)v. (s) = &,
oy ik °
; QN YE/AAE &
where 6£k =
1, if i=k.

It follows that there are mutually orthogonal units vector
Vi() = 110 ), vi2( ),..., vin( ), i =1,2,...n

Since the system of differential equations (C) admit a set of
cl-solutions then the function VA, v~ ... ,vn are of class ¢ 5

consequently 1 vA(t)dt exists (Theorem 2.b,3) for all £ [o,Lj.
0

If F(s) = s vi(t)dt B [0, 17w (2)
{0

Then claim that the function F determines a curve not only having
Vi () as its unit tangent vector at the point F(s), but also having
VI( ), ¥0( ),..., VI(") as its Frenet frame, k*( ), kO( ),..., kn 1()
as its curvature at the point F(s), and as its arc length,

To prove this claim, we must show that

(i) The curve Fis a Cn-parametrization by arc length

(i1) For each t 10,1], the vectors

FC) 0 ) FAC)
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are linearly independent

(i) If (), 2( ),...., ()) is the Frenet frame of F
at the point F(s) then,

(10) 20 ) 1)) =MO)VA ),.om())

(iv) 1f h™(S), 2( ). M () are the curvatures of F at
the point F(s), then

() = 10) 20) = 2( )., hn 1() = ndi(").
For the proof of this claim, we shall first prove of the following
proposition.

5.2.2 Proposition. Foreach i =2,..., , the vector-valued. function F
defined by Equ.(2) is of class C  on [o,1]. Furthermore the function
FMA can be written in of the form

FG)() = .20 WO N2 )+t 11V ), )

where  £10,1J IMis of class a. on [o, 1] (see for the definition
below), m=1,2,...,i, ad 1l )>o forall £ jo.LI.

5.2.3 Definition.  Areal-valued function f defined on [o,1] is said to
be of class 1 if it can be built up by addition, substruction, and
multiplication from the function in the set A" where

A =Tk K kut) kK kMY k

note. The definition of addition, substruction, and multiplication of
two real-valued function have already been defined in Theorem 2.2.12.
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Proof.  (of Proposition 5.2.2)

Tre existence of F () follows from Equ.(2) and because of the
system of differential equation (C), we obtain

F(O) = V() = K()v) .
By the hypothesis of this theorem, we kowthat k™s) > 0 for all

£lo] thenbyletting () =0and hg2() =k”(s), our proposition
is true for i =2

Nowvassure that our proposition is true for i = < .
Then we can write

FN(O) = hI0OMO)H2()¥2()+. + ()V()

where hjm Is of class & m=1,2,..., J.

By assumption that Kfi is of class crvi* (m=1,2,..., n-l), together
with the condition that j < and Theorem 2.2.15, ve see that every
function which is of class a is at least of class c1. It follows that
hjmis at least of class ¢\ Fomthe system of differential equation (c),
we see that V is at least of class ¢1, m=1,2,..., j. Hme by
Thearem 2.2.15,

=y )’is of class c]', and moreover
HH+L)() =hX( ) ( )+ 20 )M( )20 )\2( )+j2( )\2( )+
Lt h OV UV ().

= (n.2OMO)+ - (v2( )+ Hhy( V()
Hhiji (s)vi ( )2( z( )+ 4h (V())
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= (V) +hi?( N2( )+ + hij(s)Vi(s))
HH1() (0N )) +h.20) (KI(M( ) +K2()V3( )
+..+ hjj(s)-k 10V () +Kj()VIHL( )
h () - hp() () + hg() + (MLO)KLC )-K2()h,3()) ()
Tt (k) V i(s) M
Let hj+i(s) = hj1() - hj?( )kL()

Vim'y’ hjm(s> + (V -1<s)V 1(s) - Im(s)V a (s>)’
m=2,3,, j-1 and

*W 3 1 Vos)+V L(s)h3]-I(s)
Vout (s> - hjj(s)ki(s) -
Hence
FOO+1)( ) = hJ+11(5)VLIS)+hJ+12( )V2( )+...+ M +13+1( )vj+L(ED).

By the induction hypothesis and Equ.( ), it is easily seen that hj+|m
is of class ajk, and hjtxj+x() IS obviously greater than zero for all |
since hjj()> 0 by the induction hypothesis and k.( ) > 0 by assumption.

Thus our proposition now follows by Mathematical induction.

Now we shall prove our claim.

To prove (i), the fact that F is of class cn follows immediately
from Proposition 5.2.2. Therefore F is rectifiable (Theorem 2.3.3).

Since ")) = J ()j 51, then by Theorem 2.3.5, Fis
parametrization by arc length. This prove (i).
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To prove (ii) Because of Equ.(2), ve hawe
FI() = V) £9 forall £]0L .
Ths for 1 =1, part (ii) is proved.

Asune that (ii) is true for i =j < , and assure further that
S £ [o,1] such that ( ) is linearly dependent with respect
to F (Sq), F (S9)3..., (Sq), then there exist 2,..., not all
zero such that
F(3H)(0) = 1f'( 0) 2F'( 0)+...+ .F(j)(s0).

But Equ.(3), allows LS to write
F(O)=M(0)=~](0)\( 0) " if m1(sQ =1
f"(s0) - h2L(50)VL( 0)+1122( 0)V2( 0)

F(0) = (so}*(o)thge( o) o) + (o) (0)

F (0) =h+1( 0)"1( O#KH2( O\2( 0)+.,.+hj+HLI+1(50)\+1( 0),
*ere hHJa(0) > o.
Since
F<3+1>(50) = 1F'(50)+ 2F"(50)+...+ 1F<J*(50), thus
h+XI(sOM (50>~ +h)+lj+I(sO)\+1(s0)
= I( 12(50)VL( 0))+ 2(h21( OPVL( 0)+ 22( 0p2(50))
+..+  1(h,1(50M\L(50ythj2(50)\2(50)+...+hjj (50)V,(50))
= gL( 0)VL(50)1+g2(50)\V2(50)+...+ 1(50)V.(50),
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N
where 1L 0) =bm(jg 3L ( ) m' 1"2... j -

Hence

hj+1j+ 17 S0MVj+17300 = el A SCA"hj+ 1A SO AMASD A e2AS07"hj+12750M )V2AS0M *e e

But hj+1j+1( 0) > O» thus

VA | A (Q/ (\P)_'K‘/'-‘ul (\P)')\Y’(VO)+

i a linear combination of vi( q)> VO( 0),..., V.(0), this contradicts
the orthogonality of VI( 0), V2( 0),..., Vj+L1( 0)

Therefore () is linearly independent with respect to
F () FI(),.... F*() forall  £[o,L], The proof of part (ii)
now follows by induction.

Next prove (iii), let ( (), 2( ),..., Lg(s)) be the Frenet-frame
of F at the point F(s).
Since, by the definition of Frenet frame 7() =F () and from Equ.(2),
() =F (), we thus have that

() = W% ()
Now assume that ( 1( ), 2( ),.... () = (), v?( ),..., \n( ))
for some number men. Consider the vector



g = Fma) -2z FMOTO )

then by the induction hypothesis, we have

() = FmH)() - JZ [Pme( ).( )IMA()
Replace Equ.(3) in Egu.(5), this gives

m

Bt () =2 MOt beghis) sy 13
mH m
“9 u (s|\ (sle

= hmHiH(s)V 1<s)-

Since m. (B) = -jryriyp “d VI ml() > >
we can conclude that
2) = Vi(s)-
Henee the proofs of part (iii) follows by induction.
Finally to prove (iv), by virtue of theorem .1.6, we obtain
h(s) = 1() . i+1(), i=1,2,..., n1
and from the system of differential equation (c), we have
N) =NV )i+L() , 1 =1,2,..., nl .
By (iii), 1()=V()5 i=1.2,., . Hoee



65
() =k¥s) 91i=1,2,.., n-1
Therefore our claim is proved.
This prove the existence of the required curve.

Uniqueness

Suppose ve are given two curves F and Gdefined in terms of
their respectively arc lengths £ jo,I], such that

“O)= o) k()= 20 ). k() =hn ()
for all , where k™(s) and () are the curvatures of F and Gat the
point F(s) and G(s) respectively, i =1,2,..., n-1. ¥ are going to
dowthat there is a unique Euclidean motion T such that
T(F) = G 5if £ [0,1]5

Let (¢1( ), v2( ),..., w()) and (1( ), 2( ),..., n()) hethe
Frenet frame of F and Gat the point F(s) and G(S) respectively.

By Thearem 3. .5 there is a unique Euclidean motion T=Ro A where
Ais linear ad Ris a translation of R such that

T(FO) = G0 9 and

AMO).ANM2(0)),....AVNQ) =(1(), 2( ),... n(0)).
By Theorem .1.6 and since Ais linear, we hawe
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A ALY 10)) = AML(D* 1) + AOM)()e 1()
= AVL( )-(KLC) 2()) +AMIC ) ()
= 10 )ANVI())e 20)) + k() (AM2( ) 1())

= kx( YAML( ) 2() +ANV2( ) 1( ).
similarly

N ANV2()). 2()) =ANV2( ) H¥2() + AO¥)N( ). ¥2()

= - kx( )(AM2( ))¥L( ) +AM( )= 2()

+k2( )ANV2( ))x3() +AVv (Or 2())

al- (AVn.1( ) L1()) = AQn_L( ) H1() ¢ (Avn1)( ) n ()

1 - Kk -2<sMA<V1())s L2¢ )+ANM 2(s»«n 1())
tkn-1( ) (A(vn-I(s)) wn(s)+AVR( ))e ()
*(An( ) n() =AW )V (s) +(AOV)( )+ )

= - kn_1( ) (AN ))*¥n_1( )+AMLL( ))=¥I( )).
It follows by addition that

(AVL( ). ¥L( ) +AM2( ). ¥2( )+.. +AMI( ))¥( ) = O
Therefore
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(A ))* A )*ANVR( )+ 2()+.. #A(VR()s () = constant
But at s = 0, AVL()) = 1( ), AW2(0)) = 2oy,... AVI( ) = 1 ).

Thus at s =0, and hence for all

Ak()). 1AV ()0 20 )+ AV () () 3
Now two units vectors, say A(v”(s)) and 1( ), have the property that
L <AV ))e M) =cos  (A(VA( ))e M) 1. Hence if
AVA(s)e MOHAW( ) 20t AV (P () =n, then

AVL( ) 1() EL A(2e . 2() =1,..., Avn()» () = L.
Since the angle between any two vectors A(vi( )) and () is

zero, and they are of the same length, therefore they must he equal,
so we have for all

AVi() = () NN,
Finally, since
VA() i)
therefore

AVL()) AlF ()

Hence
A(F(s)

ROA(F(s)) = G(s) +D.

1
@
—_
wn
~—
+
(qp)

and
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where ¢ and D are some fixed constant vectorse

But at =10, Ro A(F(0)) = G(o). Hence T(F(s)) = G(s) for all
and it follows that F and G coincide. Whence F and G are identical to
within a Euclidean motion,

The proof is complote.

it. Natural Equations.

When a curve is defined by an equation F = F(s), its form depends
on the choice of the coordinate system. When a curve is moved without
change in its shape, its equation with respect to the coordinate system
changes. It is not always immediately obvious whether two equations
represent the same curve except for its position with respect to coordinate
system. The question therefore arises Is it possible to characterize
a curve by a relation independent of the coordinates?

This can be accomplished in a certain cases and such equation is
called a natural equation. ,

If the curvatures k. = k™ ), k2 =k?( ),....k 1 =k"1() and
the Frenet frame are analytic then they determine the natural equations
of an analytic curve in Euclidean n-space.

To see this, suppose the curve is analytic then we can write, in
the neighborhood of a point = 0, h= - 0

F(s) = F(30)+ £ F'( 0)+-" FJ( 0)+ "™ £'150)+ ....,

and this series is convergent in a certain interval < < 2 . Then
substituting for F, F, F, etc., their values with respect to the Frenet
at F(s0), we obtain



69

£(s0) = kx( 0)(-KL( OML( 0) +K2( 0)V3( 0))+ k(( 0)V2( 0)

= -k*(=0)V10 0)+ k1 VW o'W
Phsq) 1 veen

Fs) = F(80) + 1(80) +1 k1( 0)hd2( 0) +
i 3(-kA(SOVL(30)+kj'( 0)V2( 0)+kL(=0)k2(80)V3( 0))+ ..

where all terms can he found by differenting the Frenet-formulae, and
all successive derivatives of k" k*,..., k™ * as well as Vp"\2*1 1

at the point 0 are assumed to exist because of the analytical, character
of F. (see also Theorem .1.6).

If we choose at an arbitrary point F(s0) and arbitrary set of
mutually perpendicular unit vectors and select them as V7jVg,..., v*,
then Equ.(6) determines the curve uniquely (inside the interval of
convergence) up to Euclidean motion.
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