ยุ่งข**าว**ทำควยปู่นทร**า**ยเสริมไม้ไผ

005763

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

แผนกวิช**า** วิศวกรรม**โย**ษ**า**

บัณฑิตวิทยาลัย จุฬาลงกรณมหาวิทยาลัย

W.M. 2519

A STUDY OF BAMBOO AS REIMFORCEMENT FOR RICE BINS

Mr. Sutat Chansangpetch

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering

Department of Civil Engineering

Graduate School

Chulalongkorn University

12

1976

Accepted by the Graduate School Chulalongkorn University in partial fulfillments of the requirement for the Degree of Master of Engineering

Kisid Grochalomol

(Prcf. Dr. Visid Prachuabmoh) Dean of the Graduate School.

Thesis Committee

.. Chairman (Prof. Dr. Niwat Daranandana) Mana Vongrevat Advisor (Mr. Mana Vongpivat) .. Member

(Assistant Dr. Sutham Suriyamongkol)

Member

(Dr. Pramote Tiewtranon)

Thesis Advisor : Mr. Mana Vongpivat

Copyright 1976

by

The Graduate School

Chulalongkorn University

Thesis Title A Study of Bamboo as Reinforcement for Rice Bins

By Mr. Sutat Chansangpetch

Department Civil Engineering

Thesis Title A Study of Bamboo as Reinforcement for Rice Bins.

Name Mr. Sutat Chansengpetch Academic Year 1976

ABSTRACT

The purpose of this investigation is to study the suitability of bamboo as reinforcement for conical rice bins, and to compare the theoretical analysed structure of conical rice bins as composite and isotropic materials to the field test measurement of deflections and strains of a conical rice bin. The mechanical properties of bamboo and mortar were determined by tests, the result of which will be used in the design.

Bamboo, one of the most common materials available in many parts of Thailand, may be proved to be a good substitute for steel because of its high tensile strength and is also the low-cost construction material. In the investigation a variety of bamboo scientifically called Thrsostachys Oliveri Camble known locally as Pai Ruak in Thailand was used. The test results also showed that the average ultimated tensile strength, the average modulus of elasticity and the average bond stress between bamboo and

mortar are 1937 kg/sq.cm, 2.64 x 10⁵ kg/sq.cm and 8.35 kg/ sq.cm respectively.

The mortar used for all the test samples had cementsand ratio of 1 : 2 by weight with a water cement ratio of 0.45. The average ultimate compressive strength and the average modulus of elasticity of mortar were determined by cylindrical control specimens (15 cm. dia. x 30 cm.) as 408 kg/sq.cm and 3.0 x 10^5 kg/sq.cm respectively and from cube control specimens (5.0 cm x 5.0 cm x 5.0 cm) as 325 kg/ sq.cm and 3.25 x 10^5 kg/sq.cm respectively.

A prototype rice bin was constructed at the site at Chulalongkorn University. Measurements were carried out, using dial gages for deflections and electrical resistance strain gauges for strains at various positions shown in Figs. (22), (23). Test results showed that the bin occured higher deflections than the deflections calculated from theoretical analysis about 50 percent. The bin did not crack but sparse permention in the bin cocured. This is because there is a loss of moisture content of mortar during construction, and because the mortar had not been mixed with sealing compound and also because the water pressure was 2.25 m. height which was too high. The compressive strength of mortar occured lower than the compressive strength calculated from theoretical analysis about 19 percent but the tensile strength of bamboocement was equal to those calculated.

v

หวีขอวิทยานิพนซ์ ยุ้งข้าวทำก้วยปู่นทรายเสริมไม้ไย ชื่อ นายสูทัศน์ จันทร์แสงเพ็ฐร์

2519

ปีการศึกษา

บทคัดยอ

การศึกษานี้มีจุดประสงค์ เพื่อศึกษาถึงความเหมาะสมของการเอาไม้ไผ่ มาทำเป็นโครงรูปกรวย แล้วฉาบควยปู่นทราย โดยการวิเคราะห์โครงสร้างของ ยุ่งขาวรูปกรวยเป็นวัสดุผสม (composite materials) และวัสดุเหมือนทุก ทิศทาง (isotropic materials) แล้วเปรียบเทียบระยะโก่งตามแนวราบ และความเค้นกับการทดลองในสนาม พร้อยทั้งหาดุณสมบัติทางกลของไม้ไผ่ และ ปูนทราย เพื่อใช้ในการออกแบบ

ไม้ไผ่เป็นวัสถุที่มีมากมายในประเทศ ราคาก็ถูก และหาได้งายในทุกภาค ของประเทศไทย อาจจะพิสูจน์ได้ว่าใช้แทนเหล็กได้ดี เพราะมีแรงดึงสูง เนื่อง จากไม้ไผ่มีอยู่มากมายหลายชนิด มีอยู่ชนิดหนึ่ง ที่ทางวิทยาศาสตร์เรียกว่า ไธรโซส แท็คชี้อือลลเวอร์ แกมเบิล (Thyrsostachys Oliveri Gamble) ในประเทศ ไทยที่เราเรียกกันตามทองถิ่นว่าไม้ไผ่ควก ซึ่งเป็นชนิดที่ใช้ในการวิจัยกรั้งนี้ ผลการ ทุกลองแสกงกวยว่า คาเฉลี่ยของแรงดึงประลัย โมกูลัสแหงความยุกหยุ่น และกาเฉลี่ย ของแรงยุ่ดหน่วงระหว่างไม้ไผ่กับปู่นทราย เป็น 1937 ก.ก. ต่อตาราง ซ.ม., 2.64 x 10⁵ ก.ก. ต่อตาราง ซ.น. และ 8.35 ก.ก. ต่อ ตาราง ซ.ม. ตาม ลำคับ

บู่นพรายซึ่งไว้ในการทดลองบอ๊ตราส่วนของ ปูนซึเมนต์ดอทราย เทากับ

1 : 2 โดยสารนัก กับ อัตราชวนของน้ำต่อปูนซึเมนก์เทากับ 0.45 แลการทดลอง

ได้ค่าเฉลี่ยแรงคิงประดับและโบกูลัสแห่งความยึดหยุ่นของปู่นทราย ตัวอย่างรูปหรง กระบอกมาตราฐานพี่มีเส้นผ่าสูนย์กลาง 15 ธ.ม. สูง 30 ธ.ม. มีค่าเป็น 408 ก.ก. ต่อ(ธ.ม)² และ 3.0 x 10⁵ ก.ก. ต่อ(ธ.ม)² ตามลำดับ และหาจาก ตัวอย่างรูปทรงลูกบาศก์ มาตราฐาน ขนาด 5 ธ.ม. x 5 ธ.ม. x 5 ธ.ม. มีค่าเป็น 325 ก.ก. ต่อ (ธ.ย)² และ 3.35 x 10⁵ ก.ก. ต่อ (ธ.ม)² ตามลำดับ

ยุ้งข้าวขนาดเท่าของวริง ซึ่งไร้ในการทดลอง ได้สร้างในบริเวณจุฬา-ลงกรณมหาวิทยาลัย โดยใช้ Bial Gages สำหรับวัตระยะโก่งตามแนวราบ และ Electrical Resistance Strain Caugesสาหรับวัตความเก้นที่ระยะ ต่าง ๆ ตามพี่แสกงในรูป (22) และ (23) แลการหคลองแสกงว่ายุ้งข้าวมีระยะ โก่ง ตามแนวราบที่วัคได้สูงกว่าค่าประมาณการณ์จากการวิเกราะห์ 50 เปอร์เซนต์ แต่ไม่มีรอยแทก มีแต่รอยซึมประปรายตามผนังต่องยุ้งข้าว เนื่องจากปู่นทรายไม่ได้ ผสมน้ำยากันซึมอีกทั้งแรงคันของน้ำที่สูง 2.25 บ. มีค่าสูงบาก แรงอักของปู่น-พรายที่หาได้จากการทดลองมีก่าต่ำกว่าค่าที่ได้จากการวิเกราะห์ 19 เปอร์เซนต์ ส่วนแรงก็งของไม่ไผ่ผสมปูนทราย ที่หาได้จากการวิเกราะห์ 19 เปอร์เซนต์

ACKNOWLEDGEMENTS

The author would like to acknowledge the Department of Civil Engineering, Chulalongkorn University for providing him with the opportunity for advanced study in his field of specialization and was financed by a University research grant.

The author wishes to express his sincere gratitute to his thesis advisor, Mr. Mana Vongpivat for their kind advices, valuable guidance and encouragement throughout the course of this study.

Thanks are also extended to Prof. Dr. Niwat Daranandana Assistant Prof. Dr. Sutham Suriyamongkol and Dr. Pramote Tiewtranon for serving as members of the thesis committee.

The author is also thankful to Mr. Visarn Angsakul and the computer center staff for their helps in the numerical calculation.

Special thank is due to Mrs. Kanita Ratanasak for the checking language.

Finally, the author wishes to thank all friends for their helps in the experimental work of this research and is also indebted to Mrs. Chowante Chansangpetch for typing the manuscript.

viii

CHAPTEI	5	TITLE	PAGE
	TITL	E PAGE	1
	THES!	IS APPROVAL	iii
	ABSTI	RACT	iv
	ACKNO	DWLEDGEMENTS	viii
	TABL	E OF CONTENTS	ix
	LIST	OF TABLES	xii
	LIST	OF FIGURES	xiv
	LIST	OF DEFINITIONS AND SYMBOLS	xvii
I	INTRO	DDUCTION	l
	1.1	Statement of Problem	l
	1.2	Literature Review	2
	1.3	Purpose of Research	3
	1.4	Scope of Research	4
II	THEOR	REFICAL CONSIDERATIONS	5
	2.1	Physical Detsils of Conical Rice Bin	5
	2.2	Method of Analysis of Conical Rice Bin	6
		2.2.1 Membrane Solution	7
		2.2.2 Bending Solution	7
		2.2.3 Total Solution	7
	2.3	Plate Analysis of Bin Lid	8
	2•4	Design Example of Covidal Rice Bin	9

CHAPTER		ΨΙΨLΕ	PAGE
III	EXFE	RIMENT INVESTIGATED MECHANICAL PROPERTIES	
	OF B	AMBOO AFD MORTAR	12
	3.1	Quelity of Bamboo and Mortar Used for	
		Tests	12
	3.2	Tension Test on Bamado Specimens	13
	3.3	Bond Test	13
	3.4	Compression Test on Mortar Specimens	14
IV	COMS	TRUCTION OF COMICAL RICE BIN	17
	4.1	Materials	17
	4•2	Construction of Prototype Rice Bin	18
		4.2.1 Preparation of Foundation	18
		4.2.2 Fabrication of Reinforcements	18
		4.2.3 Casting of Prototype Rice Bin	19
		4.2.4 Prefabrication of Bin Lid	21
V	EXPE	RIMENT INVESTIGATION OF PROTOTYPE RICE BIN	22
	5.1	Test Equipment and Instrumentation	22
	5.2	Test Proceaure	23
	5.3	Experimental Results	23
	5•4	Cost of Prototype Rice Bin	24
	5.5	Discussions	24

х

CHAPTER	TITLE	PAGE
VI	CONCLUSIONS AND RECOMMENDATIONS FOR IMPROVEMENT	27
	BIBLIOGRAPHY	29
	APPENDIX A - COMPARISON OF BIN LOADS	33
	APPENDIX B · MECHANICAL PROPERTIES OF BAMBOO	39
	APPENDIX C - HECHANICAL PROPERTIES OF	
	BALIBOOCEMENT	46
	TABLES	60
	FIGURES	83

xi

LIST OF TABLES

TABLE	TITLE	PAGE
1	Membrane Analysis of Bin Under Dead Load	60
2	Membrane Analysis of Bin Under Edge Load	61
3	Membrane Anglysis of Bin Under Water Loading	62
4	Contributions of Edge Loads to the Stress	
	Resultants and Displacements	63
5ก	Properties of Materials Used in Design of	
	Conical Rice Bin	64
5b	Details and Proparties of Bamboocement Section	65
6 ถ	Edge Displacement Bing Forces and Uniform	
	Contact Pressure of the Foundation due to	
	Combination of Londing Cases	66
6b	Forces and Stresses in Bin Cap (Circular Plate)	66
7	Limiting Stresses at Any Conditions	67
ŝ	Theoretical Results of Stresses in Longitudinal	
	Direction.	68
9	Theoretical Results of Stresses in Circumferential	L
	Direction	69
10.	Tensile Strength of Bamboo	70
11	Results of Bond Test on Bambeo Skin	71
12	Results of Compression Test on Mortar Cube	
	Specimens	72

		xiii
TABLE	TITLE	PAGE
13	Results of Compression Test on Mortar Cylinder	
	Specimens	73
14a	Experiment Results of Horizontal Radial	
	Deflections of Position (a)	74
145	Exporiment Results of Horizontal Padial	
	Deflections of Position (b)	75
14c	Experiment Results of Morizontal Radial	
	Deflections of Position (c)	76
15a	Experimental Results of Stresses in	
	Longitudinal Direction at Inner Fiber	77
15b	Experimental Results of Stresses in	
	Circumferential Direction at Inner Fiber	78
15c	Experimental Results of Stresses in	
	Longitudinal and Circumferential Direction	
	at Outer Fiber	79
15d	Experimental Results of Stresses in	
	Longitudinal Direction at Skeletal Bamboos	80
150	Experimental Results of Strasses in	
	Circumferential Direction at Skeletal Bamboos	81
16	Cost Analysis	82

LIST OF FIGURES

	LIST OF FIGURES	
FIGURES	5 TITLE	PAGE
1	Conical Rice Bin	83
2	Superposition of Solutions	84
3	Displacements and Stress Resultants in	
	Membrane Anglysis of Conical Shell	85
4	Displacements and Stress Resultants in	
	Bending Analysis of Conical Shell	85
5	Edge Loads and Displacements of Conical Frustum	85
6	Cross - Section of Prototype Rice Bin	86
7	Distributions of Mormal Stress Resultants and	
	Horizontal Radial Deflection due to the Pressure	
	of Water, Dead Load and Edge Load	87
8	Distributions of Bending and Shearing Stress	
	Resultants and Rotation due to the Pressure of	
	Water, Dead Load and Edge Load	88
9	Gradation of Natural Coarse Sand	89
10	Dimensions of Test Specimen of Bamboo	90
11	Stress - Strain Curve of Bamboo Specimen in	
	Direct Tension Test	91
12a	Tension Specimens of Bamboo Fitting With	
	Demec Strain Gauges	93
1 2b	Tension Specimen in Direct Tension Test	93

xiv

וי	GURES	TITLE	PAGE
	13	Bond Specimen in Bond Test	99
	14	Stress - Strain Curve of Mortar Cylinder	
		Specimen in Compression Test	94
	15	Cylinder Spaciman in Compression Test Fix	
		with Compressometer	99
	16	Cube Specimen in Compression Test	100
	17	Preparation of Foundation	100
	18a	Skeletal Bamboo Reinforcements of the Rice Bin	101
	18b	Typing of Fibers Bamboo Mesh of the Rice Bin	101
	19a	Sticking Strain Couges in Skeletal Bamboo for	
		Bottom Cone	102
	19b	Sticking Strain Gaugas in Skeletal Bamboo for	
		Top Cone	102
	20	Casting of Bottom Cone	103
	21	Casting of Top Cone	103
	22	Arrangement of Dial Gages	104
	23	Positions of Strain Gauges	105
	24	Casting of Bin Lid	106
	25	Test Equipment and Instrumentation of	
		Prototype Bin	106
	26a	Strain Indicator and Salector Switchs	107
	26b	Circuits of Selector Switchs	107
	27a	Method of Attaching Dial Gages	108

FIGURES

-

FIGUPES	5 CIPLE	PAGE
27°o	Method of Sticking Strain Gauges	108
28	Prototype Bin With Full of Water Loading	109
29	General View of Test Set - Up	109
30	Comparative Horizontal Radial Deflection	
	Curves	110
31	Experiment Horizontal Radial Deflection	
	Curves of Various Loading	112
32	Comparative Stresses in Longitudinal and	
	Circumferential Direction at Inner Fibers	115
33	Comparative Stresses in Longitudinal and	
	Circumferential Direction at Outer Fibers	116
34	Comparative Stresses in Longitudinal and	
	Circumferential Direction at Skeletal	
	Bamboos	117

LIST OF DEFINITIONS AND SYMBOLS

 $a_2 =$ outer radius of circular bin lid; $B[x,f_1(z),f_2(z)] = combination of Bessel functions of 2nd order$

=
$$\operatorname{ber}_2 \cdot \operatorname{x.f}_1(z) + \operatorname{bei}_2 \cdot \operatorname{x.f}_2(z);$$

$$D = \text{flexural rigidity of shell}$$
$$= \mathbb{P}h^{3}/(12(1-\mathbb{P})^{2})$$

$$= Eh^2/12(1 - \mathbf{v}^2) ;$$

$$E_b$$
 = modulus of elasticity of bamboo;

- E = modulus of elasticity of uncracked bamboo cement;
- E_{f} = modulus of elasticity of fibre bamboo; E_{m} = modulus of elasticity of mortar; E_{r} = modulus of elasticity of ring girder;
 - Et = modulus of elasticity of cracked bamboo cement;

- h_b, h_t = thickness of bottom and top cones
 respectively;
 - i subscript donoting functions at inner
 edge of conical shell;

 $K[x.f_1(z),f_2(z)] = combination of Kelvin functions of 2nd order$

=
$$Ker_2 \cdot x \cdot f_1(z) + Kei_2 \cdot x \cdot f_2(z);$$

$$k = \sqrt{12(1-v^2)}$$

L = layer numbers of fibre bamboo in bamboo cement section ;

$$M_y$$
, M_{Θ} = bending stress resultants at sections
across y and Θ directions respectively;

$$y, N_{\theta} = \text{normal stress resultants in } y \text{ and } \theta$$

directions respectively;

n = modular ratio of bamboo to uncracked bamboo cement

$$Q_r$$
 = plate radial shear stress resultant;
 Q_y = shear stress resultant of section across

y direction;

R₁, R₂ = radii of top and bottom ring girders respectively;

S = Spacing of skeletal bamboo ;

$$T_s$$
 = resisting force in skeletal bamboo ;

t = subscript denoting elements belonging
 to top cone ;

w(r) = plate deflection function;

$$y$$
, \bar{y} = co-ordinate distance from apexes of top
and bottom comes respectively ;

$$y_1, y_2$$
 = distance of inner and outer edges of
top cone from its apex ;

Z,
$$\overline{Z}$$
 = arguments of kelvin functions corresponding
to y and \overline{y} co-ordinates

=
$$2\int \frac{k \cdot y \cdot \cot x}{h_t}$$
 and $2\int \frac{k \cdot \overline{y} \cdot \cot x}{h_b}$ respectively

 $Z_0, Z_1, Z_2 = arguments of kelvin functions as defined$ $above corresponding to <math>y_0, y_1$ and y_2 respectively;

 ∞_{c} = ratio of neutral axis distance from compressive extreme fiber to thickness of shell section,

 $= h_c/h$;

1

- - = d/h ;

$$\delta_r$$
 = bulk density of rice;

 δ_{N} = density of water;

- $\Delta_{b}(Z), \Delta_{k}(Z) = \text{combinations of Beasel and Kelvin functions}$ of 2nd order
 - = $\log_2 \mathbb{Z} \varphi_{br}(\mathbb{Z}) + \log_2 \mathbb{Z} \varphi_{bi}(\mathbb{Z})$ and
 - = ker₂Z $\rho_{kr}(Z)$ + kei₂Z $\rho_{ki}(Z)$ respectively;

$$b$$
 = horizontal radial deflection ;

$$e_b$$
 = axial strain in skeletal bamboo

= tan e^{\prime}

top and bottom cones respectively;
$$\theta_{bi}(Z), \theta_{br}(Z) = \text{combinations of Bessel functions of}$$

 2^{nd} order

$$\theta_{ki}(Z), \theta_{kr}(Z) = \text{combinations of Kelvin functions of 2}^{nd} \text{ order},$$

= Zkei₂Z-Z/kei₂Z, Zker₂Z-2V ker₂Z respectively;

=
$$A_{rb} = r' E_{c} h_{t}^{2}$$

$$= A_{\rm rt} E_{\rm r}/E_{\rm c} h_{\rm t}^2$$

$$\begin{split} \sqrt{} &= \text{Poisson's ratio }; \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

$$\begin{aligned} & \varphi_{ki}(Z), \varphi_{kr}(Z) = \text{ Combinations of Kelvin functions of } \\ & 2^{nd} \text{ order,} \\ & = Zkei_2Z+2Vkei_2Z, Zker_2Z+2Vker_2Z \text{ respectively;} \\ & \varphi = \text{ angle of repose of grain ;} \\ & \varphi' = \text{ angle of friction between grain and bin } \\ & \text{ wall ;} \\ & \varphi' = \text{ rototion of tangent to the meridian in } \\ & \text{ generator ; and} \end{aligned}$$

 ω = vertical ring load on ring girder.