CHAPTER II

MINIMUM SEMILATTICE CONGRUENCES

The purpose of this chapter is to study the minimum semilattice congruences on factorizable semigroups. It is shown that in any factorizable semigroup S with identity, the group of units forms a class of the minimum semilattice congruence on S. However, this property is not a property of any regular semigroup with identity. A counter example is given.

Let S be a semigroup with a left identity e. Suppose ρ is a semilattice congruence on S. Then for any $\mathbf{x} \in S$, $(\mathbf{x}\rho)\,(\mathrm{e}\rho) \,=\, (\mathrm{e}\rho)\,(\mathbf{x}\rho) \,=\, \mathrm{e}\mathbf{x}\rho \,=\, \mathbf{x}\rho. \quad \text{Then e}\rho \text{ is the identity of } S/\rho.$ Hence, from Lemma 1.1, the following proposition follows :

2.1 <u>Proposition</u>. Let a semigroup S be factorizable as GE and e is the identity of G. If ρ is a semilattice congruence on S, then e ρ is the identity of S/ρ .

Let S be a semigroup. A congruence ρ on S is a semilattice congruence if and only if for all a, b \in S, a ρ a 2 and ab ρ ba. Then, arbitrary intersection of semilattice congruences on S is a semilattice congruence on S. Hence, the intersection of all semilattice congruences on S is the minimum semilattice congruence on S.

Throughout this chapter, for any semigroup S, let η denote the minimum semilattice congruence on S.

Let T be a subsemigroup of a semigroup S. The semigroup T is called a <u>filter</u> of S if for any a, b \in S, ab \in T implies a \in T and b \in T. If a \in S, let N(a) denote the smallest filter of S containing a; that is, N(a) is the intersection of all filters of S containing a.

Let S be a semigroup. It has been proved in [4] that the minimum semilattice congruence on S. η , defined as follows: and if and only if N(a) = N(b), and hence for a \in S, and $= \{x \in S \mid N(x) = N(a)\}$. Therefore an \subseteq N(a) for all a \in S. In general, for a \in S, and and N(a) are not necessarily equal. An example is given as follows:

Example. Let $S = \{1, 2, 3, ...\}$ and define an operation * on S as follows: $x * y = maximum \{x, y\}$. Then (S, *) is a semilattice having 1 as its identity. Because S is a semilattice, η on S is the identity congruence. Then $2\eta = \{2\}$. It is clearly seen that the smallest filter on S containing 2 is $\{1, 2\}$; that is, $N(2) = \{1, 2\}$. Therefore $2\eta \neq N(2)$. #

Let ρ be a congruence on a semigroup S. Let $a \in S$. Then, a ρ is an idempotent of S/ρ if and only if a ρ forms a subsemigroup of S. Hence, if ρ is a semilattice congruence on S, then every ρ -class forms a subsemigroup of S.

2.2 Lemma. Let S be a semigroup with a left identity e. Then $e\eta = N(e)$; that is, $e\eta$ is the smallest filter containing e.

Proof: Because $e \in e\eta \subseteq N(e)$, it suffices to show that en is a filter of S. Since η is a semilattice congruence on S, en is a subsemigroup of S. Let $a, b \in S$ such that $ab \in e\eta$. Thus $ab\eta = e\eta$. Because e is a left identity of S and η is a semilattice congruence on S, it follows that $a\eta = (ea)\eta = (e\eta)(a\eta) = (ab)\eta a\eta = (a^2\eta)(b\eta) = ab\eta = e\eta$ ab $\eta = e\eta$ and $\theta = (eb)\eta = (e\eta)(b\eta) = (ab)\eta(b\eta) = (a\eta)(b^2\eta) = ab\eta = e\eta$. Therefore $a, b \in e\eta$. This proves $e\eta$ is a filter, as desired. #

Let ρ be a semilattice congruence on a semigroup S. Let $a \in S$. If a' is an inverse of a in S, then $a\rho = a'\rho$. To prove this, let $a' \in S$ such that a = aa'a and a' = a'aa'. Since ρ is a semilattice congruence on S, $a\rho = (aa'a)\rho = (a\rho)^2(a'\rho) = a\rho a'\rho = a\rho(a'\rho)^2 = a'\rho a\rho a'\rho = (a'aa')\rho = a'\rho$.

Let ρ be a semilattice congruence on a semigroup S and G be a subgroup of S. If e is the identity of G, then for $g \in G$, $g\rho = g\rho g\rho = g\rho g^{-1}\rho = e\rho$. Hence G is contained in a single ρ -class.

From the above fact, Lemma 1.1 and Lemma 2.2, we then have

2.3 <u>Proposition</u>. Let S be a semigroup which is factorizable as GE. Then $G \subseteq e\eta = N(e)$, the smallest filter containing e, where e is the identity of G.

We have a following question: "If a semigroup S is factorizable as GE, does G form a η -class? or, is G equal to en?, where e is the identity of G". The answer is "No". It is shown by the following example: Let S be a nontrivial right zero semigroup. Then E(S) = S and for a \mathcal{E} S, $\{a\}$ is a subgroup of S and S = $\{a\}$ E(S).

Because for all x, $y \in S$, xy = y and η is a semilattice congruence on S, η is a universal congruence on S. Thus $x\eta = S$ for all $x \in S$. Hence $\{a\} \subsetneq a\eta$ for all $a \in S$.

Let S be a semigroup with identity 1. By Lemma 2.2, $l\eta=N(1)$. Let G be the group of units of S. Then $G\subseteq l\eta=N(1)$. We show in the next theorem that in any factorizable semigroup S with identity 1, the group of units coincides with $l\eta$. We first give an example to show that in a regular semigroup S with identity 1, the group of units of S and $l\eta$ are not necessarily equal.

Example. Let $X = \{x_1, x_2, x_3, \ldots\}$ where $x_i \neq x_j$ if $i \neq j$, and I_X be the symmetric inverse semigroup on the set X. Then G_X , the permutation group on X, is the group of units of I_X . Therefore $G_X \subseteq 1\eta = N(1)$ where 1 is the identity map on X. To show that $G_X \neq 1\eta$, it suffices to show G_X is not a filter of I_X . Let α be the map on X defined by $x_i \alpha = x_{2i}$ for all $i \in \{1, 2, 3, \ldots\}$. Then $\alpha \in I_X$. Moreover, $\alpha \alpha^{-1} = 1 \in G_X$. But α and α^{-1} are not elements of G_X . Hence G_X is not a filter of I_X . Therefore G_X is a proper subset of 1η . #

2.4 <u>Lemma</u>. Let S be a semigroup with identity 1. If S is factorizable, then the group of units of S is a filter of S.

<u>Proof</u>: Assume S is factorizable as GE. Then, by Theorem 1.7, G is the group of units of S. To show G is a filter of S, let $x, y \in S$ such that $xy \in G$. Since S = GE, x = gf, and y = hf' for some $g, h \in G$, $f, f' \in E$. Thus $gfhf' \in G$ which implies that $fhf' \in G$.

Therefore $(fhf')^{-1}(fhf') = 1$. Hence $1 = (fhf')^{-1}(fhf') = (fhf')^{-1}(fhf')f' = 1f' = f'$. Thus $y = hf' = h \in G$. But $fhf' \in G$ and f' = 1. Then $fh \in G$ and so $fhh^{-1} = f \in G$. Therefore f = 1, so $x = g \in G$. This proves G is a filter of S as required. #

2.5 Theorem. If S is a factorizable semigroup with identity 1, then the group of units is the η -class containing 1.

 $\underline{\text{Proof}}$: It follows directly from Proposition 2.3 and Lemma 2.4. #

We know that any factorizable inverse semigroup has an identity. Then, from Theorem 2.5, we have that the group of units of a factorizable inverse semigroup S is a η -class of S.

A semigroup S is called $\underline{\eta\text{-simple}}$ if S has only one $\eta\text{-class}$. Hence, the following corollaries follow :

- 2.6 Corollary. Any η -simple factorizable semigroup with identity is a group.
- 2.7 Corollary. Any η -simple factorizable inverse semigroup is a group.