CHAPTER 1V

TRANSFORMATION  SEMIGROUPS

The purpose of this section is to study the factorizabilities
of full transformation semigroups and partial transformation semi-
groups. It is shown that the full transformation semigroup on a set
Xis factorizable if and only if X is finite and the partial trans-
formation semigroup on a set X is factorizable if and only if Xis
finite.

Throughout this chapter for any set X, let G, I, T and
denote the permutation group, the symmetric inverse semigroup, the
partial transformation semigroup and the full transformation semi-
crroup on the set X; resoectivelv. Then, for any set X, I & T,

63;( C Tx and GX is the group of units of TX, also of I and of CJ;(
For any set X, let 0 and 1 denote the zero and the identity of T
respectively.

Partial transformation semigroups and full transformation
semigroups are regular semigroups. Moreover, for any set X, af T,
ac E(T ) if and only if VAQ Aa and xa = X for all X£ V@, and
a6 E(1") if and only if a is the identity map on A4

Let Dbe a semigroup. For af , let the map >
defined by xp, = xa for all X£ - If a, bé , then for each x6 /
. = (xalb = x@h) - X . Therefore the set {0 1 a£ s} is a
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subsemigroup of AT. Letjj -y be defined by = p for all

af . Then | is a homomorphism from into | . Suppose has a

left identity e. Then, if a, b£ such that Pa = p , we have

a=ea=¢e =ep_ =eb= . It follows that[j is an isomorpnism.
From Lemma 1.1, every factorizable semigroup has a left iden-

tity. Hence the following proposition follows

4.1 Proposition. Every factorizable semigroup can be embedded in
a full transformation semigroup.

It has been proved by Chen and Hsieh in [3] that for any set
X, the symmetric inverse semigroup I,ris factorizable if and only if
Xis finite. Hence, for any finite set X 1 = GAEd?) ky Theorem
3.1(3) and (5). Using this result, we show in the two following
theorems that for any set X, the partial transformation semigroup on
Xis factorizable if and only if Xis finite; and the full transfor-
mation semigroup on Xis factorizable if and only if Xis finite.

4.2 Theorem. Let Xbe a set. Then the partial transformation semi-
group on the set X, T, is factorizable if and only if Xis finite.

Proof : Assume T" is factorizable. Decause  is the group
of units of T, from Theorem 1.7, T = G'E for some subset E of E(T").
Then Ty = GyE(F ). To show Xis a finite set, suppose not. Let
af X Because Xis infinite, |x -{a}l = |x|. Let a be a one-to-one
map from X - {a} onto X Thenaf£ T . since Tx = GE(T )' a = 3y
for some 3£ G, YE E(T ). It follows that
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X=Va=vpy = (VPn Ay)y = (Xn Ay)y = (Ay)y = Vy. Because
YG E(T ), xy =X for all XGVy. But Wy = X It follows that y is
the identity map on X. Hence a = 6G G, it is a contradiction since
Aa f X

Conversely, assume X is finite. Then | is factorizable and
| = GE(IX). To show that Tx = GXE(TX), let a G Tx« For each
a G Va, choose one element from the set aa ™ and call it x". Let
K= (x" 1 aG Va}. Then KC Aa, / if a, GVa al , and
IKI = IVal. Define the map 6 from K onto Va by x"p = a for all
aG Va. Therefore PG Ix and Va = VP. Because I =GXE(l ), p= Ay
for some AG G, Y6 E(I ). Define the map Y from (Aa)A into X as
follows
i N if XG (Aa)AP A/

(A L)a if xG (A)A—A

First, we show W G W, that is, to show ((Aa)A)y ¢ W, let
XxG (AQA If x£ Ay, then xy = xy £ W. Assume X Ay, Then
Xy = XAV 6 Va since VA =Vp, there exists y 6 Ap such that
(XA Na =yP. Butp=Ay, so (XA "Sa = VyAy = (YA)y C W. Hence
Xy £ W. Therefore WC W.

Next, we show that Vyc Ay. Let X GVy. Because Wc¢ W
and W = Ay, X£ Ay. Therefore XA "G (Ay)A = (X AyA " =
(VAn Ay)A A= Ay = Apc Aa and hence X = (A YA E (Aa)A = Ay.
To show that yy =y for all Yy G Vy, let y£ Vy. Because WG Ay,
yE£ Ay = (AQ)A. since Wyc Vy, YE Vy. But Wy = Ay, so YE Ay
Therefore y G (Aa)A Ay, Hence y§ =yy =y. This proves y G E(TX)*
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We claim that a = Ay, since VA= Xand Ay = (Adt)A
My = VA A)Ar= (Xn AY)AN= (AY)A = ((AdA)A = At Next,
let XE Ady = Aa. Then A0 (Aa)A = Ay, If XAG Ay, then
X€ (AY)AN = (XD Ay)A™ = (VAfl Ay)A™ = Ag, which implies that
Xa = XB = x\y = (xA)y since xA € Ay. Assume x\ ¢: Ay. Then

(X\)y = ((xk)k_l)a = xa., Therefore o = Ay.

Hence the proof of Theorem is completely proved, #

4.3 Theorem, Let Xbe any set. The full transformation semigroup

on X, qg, is a factorizable semigroup if and only if X is finite.

Proof : Assume 9;( is a factorizable semigroup. Decause G
is the group of units of UX, by Theorem 1.7, (J: = G,E for some sub-
set E of E(C];). Then ’]; ='6,2(]). suppose that X is infinite.

Let a £ X Then there exists a one-to-one map a from Xonto X - {a}.
Therefore o € C];( but o ¢ G . secause T, =6 8(T), a = 6y for some
gG G, yGE('T). Since a =gy, Va¢ Vy. But Va = X—{a}. Then
either W = Xor W= X—{a}. [f W =X then y is the identity map
on X which implies a = B & G, a contradiction. Assume Vy = X—={a}.
Then ay / a. since vg = X, there exist b, ¢ G X such that bfj = a

and eg = ay. It then follows that ba = bgy = ay = ayy = (ay)y =
(eg)y = ca, Buta is a one-to-one map. Then b = ¢, so by = eg which
implies that a = ay. It is a contradiction. Hence X is a finite set.

Conversely, assume X is a finite set. By Theorem 4,2, Tx is
factorizable and so Tx = (Tx)“ To show % = GMEf*"), let a G
Then af£ T . Because Tx = GXE(TX), a = gy for some gG G* y£E(Tx).



Then Y =3 But A3 =V3=Xand Aa = X. Therefore
Ay = A3 1a) = (V3 VI Aa)3= (X X)3=X Hence YE E( ;), and so
a =3 £ GXE( ;). This show that ;= GXE( ;) as required. #

Let X'be a set. It is clearly seen that Ty = Gy if and only
if X=¢(), and ;= Gx if and only if IXI < 1. Therefore by Theorem
4.2, 4.3 and Corollary 2.6, we have the following corollary

4.4 Corollary. Let Xbe a finite set. Then Tx is -simple if and
only if X=9; andc is -simple if and only if IXI <1

For any finite set X, the symmetric inverse semigroup on the
set X, |, is factorizable. It is clearly seen that Ix = Gx if and
only if X=4. By Corollary 2.7, we also have the following T For
a finite set X, | is -simple ifand only if X = if,

For the case of infinite sets, | and Tx can be -simple, as
shown in the following : Let Xbe a denumerable set. Then X can be
written as X = {x1, x2, x3, ..}, x. *x, if i *j. Letaand 3 be
maps on X defined by x"a = x2" and x"3 = Xai+q r all
le , 2,3 ... Then'a, 3£ IxC Tx but a ™ Gx and 3" Gx
Moreover, aa * = 33 * which is the identity map on X. Let and
be the minimum sem ilattice congruenceson Tx and Ix; respectively.

By lemma 2.2, 1 and In' are the smallest filters of T containing 1
and of Iy containing 1; respectively, where 1 denotes the identity of
T. Thus aa” = 33 1 andaa 1=331£f In".Thena, a 3

3 In anda, a 1f, 3, 3 ™G In*. Because In and In* are



subsemicroups of T, and 1.L respectively, 0 =06 G 11 and
0 = at 111 '-'here 0 denotes the zero of Tv. Th-aS on = 11and
0.:* = lii".  Therefore for any A T., Al = (Al)) = (Ail) (In)

(An) 0.y = (AQ)n = ou, and similarly, for any Aln . , An" On’.

hence, Tv and !.. are n-simple.
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