CHAPTER IV ## TRANSFORMATION SEMIGROUPS The purpose of this section is to study the factorizabilities of full transformation semigroups and partial transformation semigroups. It is shown that the full transformation semigroup on a set X is factorizable if and only if X is finite and the partial transformation semigroup on a set X is factorizable if and only if X is finite. Throughout this chapter for any set X, let G_X , I_X , T_X and \mathcal{T}_X denote the permutation group, the symmetric inverse semigroup, the partial transformation semigroup and the full transformation semigroup on the set X; respectively. Then, for any set X, $I_X \subseteq T_X$, $\mathcal{T}_X \subseteq T_X$ and G_X is the group of units of T_X , also of I_X and of \mathcal{T}_X . For any set X, let 0 and 1 denote the zero and the identity of T_X ; respectively. Partial transformation semigroups and full transformation semigroups are regular semigroups. Moreover, for any set X, $\alpha \in T_X$, $\alpha \in E(T_X)$ if and only if $\nabla \alpha \subseteq \Delta \alpha$ and $\mathbf{x}\alpha = \mathbf{x}$ for all $\mathbf{x} \in \nabla \alpha$, and $\alpha \in E(I_Y)$ if and only if α is the identity map on $\Delta \alpha$. Let S be a semigroup. For $a \in S$, let the map $\rho_a : S \to S$ defined by $x\rho_a = xa$ for all $x \in S$. If $a, b \in S$, then for each $x \in S$, $x\rho_a\rho_b = (xa)b = x(ab) = x\rho_{ab}$. Therefore the set $\{\rho_a \mid a \in S\}$ is a subsemigroup of \mathcal{T}_S . Let $\psi: S \to \mathcal{T}_S$ be defined by $a\psi = \rho_a$ for all $a \in S$. Then ψ is a homomorphism from S into \mathcal{T}_S . Suppose S has a left identity e. Then, if a, $b \in S$ such that $\rho_a = \rho_b$, we have $a = ea = e\rho_b = eb = b$. It follows that ψ is an isomorphism. From Lemma 1.1, every factorizable semigroup has a left identity. Hence the following proposition follows: 4.1 <u>Proposition</u>. Every factorizable semigroup can be embedded in a full transformation semigroup. It has been proved by Chen and Hsieh in [3] that for any set X, the symmetric inverse semigroup I_X is factorizable if and only if X is finite. Hence, for any finite set X, $I_X = G_X E(I_X)$ by Theorem 3.1(3) and (5). Using this result, we show in the two following theorems that for any set X, the partial transformation semigroup on X is factorizable if and only if X is finite; and the full transformation semigroup on X is factorizable if and only if X is finite. 4.2 Theorem. Let X be a set. Then the partial transformation semigroup on the set X, T_{X} , is factorizable if and only if X is finite. $X = \nabla \alpha = \nabla \beta \gamma = (\nabla \beta \cap \Delta \gamma) \gamma = (X \cap \Delta \gamma) \gamma = (\Delta \gamma) \gamma = \nabla \gamma$. Because $\gamma \in E(T_X)$, $x^{\gamma} = x$ for all $x \in \nabla \gamma$. But $\nabla \gamma = X$. It follows that γ is the identity map on X. Hence $\alpha = \beta \in G_X$, it is a contradiction since $\Delta \alpha \neq X$. Conversely, assume X is finite. Then I_X is factorizable and $I_X = G_X E(I_X)$. To show that $T_X = G_X E(T_X)$, let $\alpha \in T_X$. For each $a \in \nabla \alpha$, choose one element from the set $a\alpha^{-1}$ and call it x_a . Let $K = \{x_a \mid a \in \nabla \alpha\}$. Then $K \subseteq \Delta \alpha$, $x_a \neq x_b$ if $a, b \in \nabla \alpha$, $a \neq b$, and $|K| = |\nabla \alpha|$. Define the map β from K onto $\nabla \alpha$ by $x_a\beta = a$ for all $a \in \nabla \alpha$. Therefore $\beta \in I_X$ and $\nabla \alpha = \nabla \beta$. Because $I_X = G_X E(I_X)$, $\beta = \lambda \gamma$ for some $\lambda \in G_X$, $\gamma \in E(I_X)$. Define the map γ from $(\Delta \alpha)\lambda$ into X as follows: First, we show $\nabla \bar{\gamma} \subseteq \nabla \gamma$; that is, to show $((\Delta \alpha)\lambda)\bar{\gamma} \subseteq \nabla \gamma$, let $\mathbf{x} \in (\Delta \alpha)\lambda$. If $\mathbf{x} \in \Delta \gamma$, then $\mathbf{x}\bar{\gamma} = \mathbf{x}\gamma \in \nabla \gamma$. Assume $\mathbf{x} \not\in \Delta \gamma$. Then $\mathbf{x}\bar{\gamma} = (\mathbf{x}\lambda^{-1})\alpha \in \nabla \alpha$. Since $\nabla \alpha = \nabla \beta$, there exists $\gamma \in \Delta \beta$ such that $(\mathbf{x}\lambda^{-1})\alpha = \gamma\beta$. But $\beta = \lambda\gamma$, so $(\mathbf{x}\lambda^{-1})\alpha = \gamma\lambda\gamma = (\gamma\lambda)\gamma \subseteq \nabla\gamma$. Hence $\mathbf{x}\bar{\gamma} \in \nabla \gamma$. Therefore $\nabla \bar{\gamma} \subseteq \nabla \gamma$. Next, we show that $\nabla \gamma \subseteq \Delta \gamma$. Let $\mathbf{x} \in \nabla \gamma$. Because $\nabla \gamma \subseteq \nabla \gamma$ and $\nabla \gamma = \Delta \gamma$, $\mathbf{x} \in \Delta \gamma$. Therefore $\mathbf{x} \lambda^{-1} \in (\Delta \gamma) \lambda^{-1} = (\mathbf{X} \cap \Delta \gamma) \lambda^{-1} = (\nabla \lambda \cap \Delta \gamma) \lambda^{-1} = \Delta \lambda \gamma = \Delta \beta \subseteq \Delta \alpha$ and hence $\mathbf{x} = (\mathbf{x} \lambda^{-1}) \lambda \in (\Delta \alpha) \lambda = \Delta \gamma$. To show that $\mathbf{y} = \mathbf{y}$ for all $\mathbf{y} \in \nabla \gamma$, let $\mathbf{y} \in \nabla \gamma$. Because $\nabla \gamma \subseteq \Delta \gamma$, $\mathbf{y} \in \Delta \gamma = (\Delta \alpha) \lambda$. Since $\nabla \gamma \subseteq \nabla \gamma$, $\mathbf{y} \in \nabla \gamma$. But $\nabla \gamma = \Delta \gamma$, so $\mathbf{y} \in \Delta \gamma$. Therefore $\mathbf{y} \in (\Delta \alpha) \lambda \cap \Delta \gamma$. Hence $\mathbf{y} = \mathbf{y} = \mathbf{y}$. This proves $\gamma \in \mathbf{E}(\mathbf{T}_{\mathbf{X}})$. We claim that $\alpha = \lambda \bar{\gamma}$. Since $\nabla \lambda = X$ and $\Delta \bar{\gamma} = (\Delta \alpha) \lambda$, $\Delta \lambda \bar{\gamma} = (\nabla \lambda \prod \Delta \bar{\gamma}) \lambda^{-1} = (X \bigcap \Delta \bar{\gamma}) \lambda^{-1} = (\Delta \bar{\gamma}) \lambda^{-1} = ((\Delta \alpha) \lambda) \lambda^{-1} = \Delta \alpha$. Next, let $X \in \Delta \lambda \bar{\gamma} = \Delta \alpha$. Then $X \in (\Delta \alpha) \lambda = \Delta \bar{\gamma}$. If $X \in \Delta \gamma$, then $X \in (\Delta \gamma) \lambda^{-1} = (X \bigcap \Delta \gamma) \lambda^{-1} = (\nabla \lambda \bigcap \Delta \gamma) \lambda^{-1} = \Delta \beta$, which implies that $X = X \beta = X \lambda \gamma = (X \lambda) \bar{\gamma} \text{ since } X \in \Delta \gamma$. Assume $X \notin \Delta \gamma$. Then $(X \lambda) \bar{\gamma} = ((X \lambda) \lambda^{-1}) \alpha = X \alpha$. Therefore $\alpha = \lambda \bar{\gamma}$. Hence the proof of Theorem is completely proved. # 4.3 Theorem. Let X be any set. The full transformation semigroup on X, T_X , is a factorizable semigroup if and only if X is finite. Proof: Assume \mathcal{T}_X is a factorizable semigroup. Decause G_X is the group of units of \mathcal{T}_X , by Theorem 1.7, $\mathcal{T}_X = G_X E$ for some subset E of $E(\mathcal{T}_X)$. Then $\mathcal{T}_X = G_X E(\mathcal{T}_X)$. Suppose that X is infinite. Let $a \in X$. Then there exists a one-to-one map α from X onto $X - \{a\}$. Therefore $\alpha \in \mathcal{T}_X$ but $\alpha \notin G_X$. Because $\mathcal{T}_X = G_X E(\mathcal{T}_X)$, $\alpha = \beta \gamma$ for some $\beta \in G_X$, $\gamma \in E(\mathcal{T}_X)$. Since $\alpha = \beta \gamma$, $\nabla \alpha \subseteq \nabla \gamma$. But $\nabla \alpha = X - \{a\}$. Then either $\nabla \gamma = X$ or $\nabla \gamma = X - \{a\}$. If $\nabla \gamma = X$, then γ is the identity map on X which implies $\alpha = \beta \in G_X$, a contradiction. Assume $\nabla \gamma = X - \{a\}$. Then $a\gamma \neq a$. Since $\nabla \beta = X$, there exist b, $c \in X$ such that $b\beta = a$ and $c\beta = a\gamma$. It then follows that $b\alpha = b\beta \gamma = a\gamma = a\gamma \gamma = (a\gamma)\gamma = (c\beta)\gamma = c\alpha$. But α is a one-to-one map. Then b = c, so $b\beta = c\beta$ which implies that $a = a\gamma$. It is a contradiction. Hence X is a finite set. Conversely, assume X is a finite set. By Theorem 4.2, T_X is factorizable and so $T_X = G_X E(T_X)$. To show $\mathcal{T}_X = G_X E(\mathcal{T}_X)$, let $\alpha \in \mathcal{T}_X$. Then $\alpha \in T_X$. Because $T_X = G_X E(T_X)$, $\alpha = \beta \gamma$ for some $\beta \in G_X$, $\gamma \in E(T_X)$. Then $\gamma = \beta^{-1}\alpha$. But $\Delta\beta = \nabla\beta = X$ and $\Delta\alpha = X$. Therefore $\Delta\gamma = \Delta(\beta^{-1}\alpha) = (\nabla\beta^{-1}\bigcap\Delta\alpha)\beta = (X\bigcap X)\beta = X. \text{ Hence } \gamma \in E(\overline{X}), \text{ and so } \alpha = \beta\gamma \in G_XE(\overline{X}).$ This show that $\overline{X}_X = G_XE(\overline{X})$ as required. # Let X be a set. It is clearly seen that $T_X = G_X$ if and only if $X = \phi$, and $G_X = G_X$ if and only if $|X| \le 1$. Therefore by Theorem 4.2, 4.3 and Corollary 2.6, we have the following corollary: 4.4 Corollary. Let X be a finite set. Then T_X is η -simple if and only if $X = \varphi$; and T_X is η -simple if and only if $|X| \le 1$. For any finite set X, the symmetric inverse semigroup on the set X, I_X , is factorizable. It is clearly seen that $I_X = G_X$ if and only if $X = \phi$. By Corollary 2.7, we also have the following: For a finite set X, I_X is η -simple if and only if $X = \phi$. For the case of infinite sets, I_X and T_X can be n-simple, as shown in the following: Let X be a denumerable set. Then X can be written as $X = \{x_1, x_2, x_3, \ldots\}$, $x_i \neq x_j$ if $i \neq j$. Let α and β be maps on X defined by $x_i \alpha = x_{2i}$ and $x_i \beta = x_{2i+1}$ for all $i \in \{1, 2, 3, \ldots\}$. Then α , $\beta \in I_X \subseteq T_X$ but $\alpha \notin G_X$ and $\beta \notin G_X$ Moreover, $\alpha \alpha^{-1} = \beta \beta^{-1}$ which is the identity map on X. Let η and η' be the minimum semilattice congruences on T_X and I_X ; respectively. By lemma 2.2, 1η and $1\eta'$ are the smallest filters of T_X containing 1 and of I_X containing 1; respectively, where 1 denotes the identity of T_X . Thus $\alpha \alpha^{-1} = \beta \beta^{-1} \in 1\eta$ and $\alpha \alpha^{-1} = \beta \beta^{-1} \in 1\eta'$. Then α , α^{-1} , β , $\beta^{-1} \in 1\eta$ and α , α^{-1} , β , $\beta^{-1} \in 1\eta'$. Because 1η and $1\eta'$ are subsemigroups of T_X and I_X ; respectively, $0 = \alpha \beta^{-1} \otimes -1\eta$ and $0 = \alpha \beta^{-1} \in -1\eta^*$ where 0 denotes the zero of T_X . Thus $0\eta = 1\eta$ and $0\eta^* = 1\eta^*$. Therefore for any $\lambda \in T_X$, $\lambda \eta = (\lambda 1) \eta = (\lambda \eta) (1\eta) = (\lambda \eta) (0\eta) = (\lambda 0) \eta = 0\eta$, and similarly, for any $\lambda^* \oplus I_X$, $\lambda^* \eta^* = 0\eta^*$. Hence, T_X and I_X are η -simple.