CHAPTER 1

THEORETICAL ~ DEVELOPMENT
2.1 Perturbation Expansion

In quantum mechanics, we work with operators HQ = grr A
where HQ is the time independent Hamiltonian operator, are the
eigenstates of HQ and e| 0 are the eigenvalues. We can define an
operator G (E) = - . This operator is called the Green's
function. 12113 The eﬁp'emtion value of the Green* function is calculated

as follows.
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So  (2.1.1) becomes

S R | IO R EAHET +72 +.% 4 A

< L= L-(0) I *1>

e el ) (2.13)

where j are the eigenvectors of HQ with the eigenvalues EM°A,

Let us now consider a system which is described by the Hamiltonian
H=Hy+ XV, where Vis a time independent perturbation operator, Us a
real parameter to be set equal to one at a later time, and HQ is the time
independent Hamiltonian operator for a system without perturbation. The

eigenvectors are no longer | >and the eigenvalues are no longer EMOM
but Ej.
(A - i A
Ei = EiO) + <Lyll> + T Ad 2 e (2.1.4)

Of interest to US now are the two resolvents

<il-rbrl i> Go (E)

T (2.1.5)
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L (2.1.6)

where EM is the new energy of the system in the presence of the
perturbation V.

E®) + all perturbative corrections to the energy
fo) +E (2.1.7)

where E is the self energy correction. From (2.1.5), (2.1.6) and (2.1.7),
we get

o) E" Ei
1
E- E*0*- E
G"1(E) = E-elp)-E
G1(E) - G/CE) -

Equation (2.1.8) is called Dyson' equation.Thus the self energy 4
is the difference in the reciprocal of the two Green’s functions. From
Dyson' equation G\ e) = G~\e) - E, multiply from the right by G(E) and
the left by GO(E), we get
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G (B . Q@) + () E GE) (2.1.9)

and substitutingG(E) by (2.1.9) into G(E) of the right in (2.1.9)
GE) =Q(E) +A(E) e &GE) + DE) e &(E) E GE)
By iteration, we get
GE) =G(E) + AE) e GaE) + QAE) E QUE) E A(E)
+ A(E) EGq(E)E &(E) e A(E) +... (2.1.10)

which is the development of G(E) in terms of the self energy E

We shall now develop G(E) in terms of the perturbation V.
CE> - <

<A@ T T %>
- f1Irh?2Ji> 1”11 Floi
(since™ Ij><jl=1) (2.1.11)
Because of
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(2.1.11)  becomes
GE) - <ilE-XiTP<JI= TV-1 o0

E-E(O) {Hl-éﬂ__'_blb
|

, \
E'Eto) 1 1'ET\_/H11I/
< 1 1 B3
E-H
AE) < | xy o> (2.1.12)
E-H
If Xis small and E « ILwe can expand L in geometrical series,
"E-H

G(E) A (E) <1I<1+E E-

(Exr] \I-/lj)l) + o) i> 1 (2.1.13a)

G <ili

the first term
(2.1.13b)

the second term 8 @F X<ifpvpli>
3  @E X:. < i< ET-1- 1>
2 @B X <iWlj> @F LU

@E) x<i|v] i> O(E (2.1.13c)



20

the third term (E) <1 | 2 I
(E) (Ey «0)'

With this term, we have to be careful how we arrange terms. Let US look

at the third term in the expamsion <i {— 29>
2 <€-H
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X <] IE-H

It makes no difference how we rearrange the operators V, Vap .
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<77y )-
If we replace J?by lg ﬁ_j + JL , we will get

E-v LS 1WID2 G t(ifi ruorL > 96
|
therefore,

. the third term - GQE) v2<i |v 1i>2 GR(E) + GYE) X

A "EL I%> 12 A(E) (2.1.13d)
thefourth term = QYE) ¥\ i | >
QE) |(E «0)-
Let’s look at
E - H)-
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therefore |
the fourth term @(E) A<i IVIi>3 & (E)
: : |<i!lv1j0
F@E) x <i v [i>GoE) Bl <'EY SJ(O) G (E)
. . VIV
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+ G (E) AS

@D (E)
(2.1.130)

If ~is equal to one and keeping only the first four terms, we have
the perturbative series expansion from (2. .1sa~e)

Vit lylis
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From (2.1.10) 5 we have the self energy expansion.
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<ile= hl*> - QE) {1+ EGE) + GF) )
tE@(E) | GE) EGaE) *... }
- QE {1+ E+:QEZ+EQE ZAE e
+.)GE ) (2.1.15)

Comparing the perturbative expansion (2.1,14)and the self energy, expansion
(2.1.15) we get the self energy

Self energy - E- <iIVIi> + 300 Myl |-

4 -1 IVII2< LIV Iis
1 (E-E<®>)2
Z IV ijd Ixjvliyo, [VIi"

< 1E - EY)) E- E))

plus terms coming from the higher order perturbative correction (2.1.16)
In perturbative expansion, if we compared with self energy expansion, we
will find that

<iIVI1i>2G(E) comes from G (E) E where
EGQE) e = (ilVIi>+..) @E (<ilVIi> +..)

<i| V| i>3@ (E) comes from e GYE) G (E) E where
EQE) e@E) e - (<i] v[ > +...) QE) (<0 jv|i>+...)
X &@E) (<1 1VIi>+...)

2<i IV 1> GO(E) 7l .x,k’}' "(' 7" comes from EG (E) 1 by



25
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2.2 Diagram Expansion

We will represent perturbative expansion with diagram expansion.
Let us adopt the following convention.

£IVIi> (2.2.1)

XML j "I <i| v %><JE1AVJ i (2.2.2)

| |”\_ Z <PV V| j2><j2|V] i>
V31010321 IA) A E- ) E- E0) )

(2.2.3)
ﬂl u .
o N <I|V|3><]|\“Xj M«
| 3TTi E.E
|0
(2.2.4)
etc.
1
We will represent the free exciton propagator , .(:) by a

horizontal solid line as was done by Chatuporn. 5 Each \E/erteE>'< B
associated with a polynomial Pn(c) (where equals to the number of
interaction lines V which represented by a dash line) connecting the
impurity (represented by a cross) and the exciton propagator line.
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A horizontal solid line can be inside or partially inside. If it is
inside, it must be summed over.

We shall now going to look at the diagrammatic interpretation
of the perturbative series.™ Perturbative series beyond the first term
can be rewritten as GQYE) Q(E). The first term of £0(E) E G (E) is
QE) A |v [i*> G(E). Perturbative series beyond the first term can
be represented by the diagrams (or graphs)

*

641 @) <i IV1i> QF) (2.2.5)
G G G G(E)<i v ji> Q(E)<i |v |i> Q)
(2.2.6)
(< IV Lis)
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X<j2V 1i> Q(F) (2.2.8)
R 1<t Vtiy 2
o & o OEfy e e T CE
X<i|VI]i> Q) (2.2.9)
X
e - @EKI VI QF I* 1
GGy & j

X GO(E) (2.,2.10)
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<il oyl i><il vl jXjl oy li
G"J—"‘-G' - @(F) 319 E - Ej0))2
- X G (E) (2.2.11)
G:%;:GOEGO » @(E)<i| V [i> @(E)<i IV j& Q(E)
x<i IVji> Qf(E) (2.2.12)
etc.

We now attempt to generalize to higher orders. The n - th order correction
has interaction V ( ;) lines and it has + 1 propagators of the type

----- "k V at least two of these are G.(E). The total number of terms
E- E(0) 0()

arising in the n - th order perturbative series is the total number of
distinct pictures having - interaction lines and the correspondence is
one - to - one. e obtain the n - th order correction when we write down

the analytic expressions for all the distinct graphs we can draw with
- interaction lines.

If we représentai IE Hj i"> by sim (fat line) and

<NCIEW HIE> Dby - (thin line), the perturbative series is graphically
represente(? as
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o i o 25+ higher order terms
2.2.13)

The graphs can be divided into two groups.

1. Reducible graphs these are the graphs which can be
separated into two parts by cutting
one propagation line (horizontal line).

2. Irreducible graphs  these are the graphs which cannot be
separated into two parts by cutting one
propagation line.

The self energy Eare the sunmation of all irreducible graphs in (2.2.13)
by cutting co at the first and the end of graphs thus
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(2.2.1V)

The self energy = Monomer series + Dimer series + Trimer series +...
(2.2.15a)

Z \ + 0+ BArF (2.2.15h)

where EM is the monomer series, 2 is the dimer series,... which are
the summation of all irreducible graphs have one vertex, two vertex,...
respectively.

v L0 (2.2.17)

W shall discuss B and E* in the next section
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2.3 Monomers

From the monomer aeries expansion by diagram approach of the
self - energy in previous section, the analytical expression can be
expressed as  ( where A is equivalent to V)

71 = (ANNPL(c) + ( AIN)NP2(c) £,GQ(K)
+(AIN)INP3(C) £4*, @(K) Q(K) +... (2.3.1)

N is the total number of molecules or states, p”(c) is a polynomial
given by the following generating function
® P(c) a
In(l - c+cea) = 24— (2.3.2)

Hong and Kopelman's result is obtained when ¢ is substituted for p”(c)
in (2.3.1). This substitution leads to

S ANNC{L+AQE) +A2Q B) +__ ) (2.3.3)

where GQ(E) ~N  GgOO* Notice that  has no k dependence. Using
the geometric power Series expansion

1. x = L+ X+X 4. (2.3.4)
So (2.3.3) can be written as
cA
1 - AGq(E) (235)

It has been shown by Hong and Robinsion that, within the
restricted Frenkel limit, the mixed crystal Green's function can be
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written in Dyson's form as
<G(K)> = @K + Gk E (K <G(k)> (2.3.6)
or it can be written as
<G(K)> = OL(E) - E (k)L
or <G(k)> = (E- f'(f) - EGDT1 (2.3.7)

By taking the imaginary part of each side in (2.3.7) . we get

Im<G(k)> 3 —Im E(lg , (2.3.8)
{E- EKk) -RE(E)}2+ {Imlit)} 2

since if X= n > ImX =
( A- 1B A + B2
Since at low concentration (k) is very small, we can put

Im<G(k)> = {EI £ ) (2.3.9)

In other words, the poles of <G(itj> outside the band are the same as the
poles of E(2) and the residues of these two functions at their common

poles are related through (2.3.9)

It follows immediately from (2.3.5) and (2.3.9) that the monomer
energy, E(I), must satisfy (E E 1)

1 - AGE) !
0 (N
OrJ(OE(g) . E |1 (2.0

which is the familiar Roster and Slater equation.
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The optical spectrum can also be obtained by using the following

relationship
i£(E) - | Iffi <G&+=10)>
and  1° (E) =1-1® <G(k" = 0)> (2.3.11)

where b and ac refer to the branches of the spectrums. For convenience,
Hong and Kopelman worked with Lp{ E(I)} and 1y, { E(I)}, defined as the
total intensity attributable to the monomer impurity integrated over the
neighborhood e of E(I) defined as

E(l) +E
Ib{E(I)> Ib (E)dE,
Ey - e
and 1 (E(1)} :f(l) "1 (e (23.12)
E(l) - ¢

By using (2.3.9),(2.3.11), and (2.3.12), we get

1 f telmEL(k+ - 0)dE/

IB{EU» - i '
E() -e e o)
res B(e'= E(I) } (2.3.13)
{E(l) -eb}

where ey =€ (kh = 0). Since LI Is k independent (and branch
independent), & (E* =0) * £ (k" =0). Similarly we get
res £/ {E/= E(l) }

l5c LE)} (4 - w00 (2.3.14)
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where E. = E(k =0). The polarization ratio p(b/ac), which is simply
equal to **1 . can be rewritten as

*ac*| "acl
P(blac) = L E(1) - £a0>2-1 u j2 (2.3.15)

<« -5 ol 4] 2
where and Pac are the transition moments to the two Davydov

components. This result has come to be known as the Rashba effect.
Furthermore, the residue of at E(l) can be evaluated from (2.3.5) and
substituted into (2.3.13) and (2.3,14). We find that

b EMY: g
U

2 dE(1)
(E() -¢ b dA
) eny2 A (340
| P(E) dE/ 1
Since
{E() - E}2*
and similarly

B {E(l)}lc{E(l)C-Acac)z ' a3



These results were also derived by Craig and Philpott, based on the
Koster and Slater formalism.

From these results Hong and Kopelman were able to explain someof
the  observed properties of mixed naphthalene crystal.

Later Chatuporn and Tang""'b extend the theory to crystals
containing the higher concentrations of impurities. The modification
consists essentially of replacing the approximation Pn(c) = ¢ for all nby
aformof Pn(c) used by Leath and Goodman for treating lattice vibration
in disordered binary system.

Leath and Goodman pointed out that PR(c) can be written as

PH(C) :m"_ ](_-I)m' I'm-08 ( ,m cm (2.3.18)
where ( ,m) are Stirling numbers of the second kind. A combinatorial
interpretation is that ( ,m) is the number of ways that distinct
objects can be put into mindistinguishable hoxes with no box empty.
Or it is the number of ways of partitioning a set of elements into m

non - empty subset.

Stirling numbers of the second kind can be defined in terms of
the binomial coefficient as®

(,m = A (notation in the Handbooks)

* ok, <o»m' kC)K” <2-3-19>
Substitution of (2.3.19) into (2.3.18) gives
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_ m- 1 N om | r [ lvm -k mi . ,
Pn(c) _m?:(i!) ( mk “0' " (m- k)T k’

(2.3.20)

The coefficients of the Nth power of cin the function ?n(c) can
be obtained by the relationship

Coefficient of CN'in Pn(c) = NIAN Pn(c) Ic - 0 (2.3.21)

where >N

Substituting (2.3.20) into (2.3.21), we get the coefficient of C* in
Pn(c) equal to

1 M -1, IN ml - N
N oo ("D S CtVAIOT ¢ 10

X=p g £ (I =k 1—=SHeyra

"els ((Dm 1! | oI

AN L N b To (VK g K e

-w - 1110 <k+ 1 -h0Tk, <2-3-22>

Again it should be emphasized that the appearing in (2.3.22) is the

subscript of p(c) function while Nis the power of C in p (C)

We are now in a position of being able to the self - energy
arising from the monomer contribution. The summing of is accomplished

! 173/17002
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by summing those contribution from each diagram which are proportional
to ¢, then summing those parts which are proportional to ¢ ~ then those
proportional to ¢ and so forth. For example, the contribution of the
Lt diagram to the series which is proportional to ¢ is

S TAT 0 <)k + WNOTKF - (2-3'23)

Equation (2.3.23) is the product of (2.3.22) and the Green' function
equivalent of L interactions connected to the impurity with the
propagator G(E) without the probability factor £1l(c) present.

Putting everything together, we find that the self-energy is
£l - CAA(l+i@+aV +L+ Ag'+..D)+ ¢2 (2.3.24)

where

-1 -1
) 4] 2NJ n  -»'Jo (-1)k+“1<(NA|()!k!C0

(2.3.25a)
The first summation in z* represents summation over all the
orders of ¢, the second summation represents the summing of all the
contributions which are proportional to ¢*, while the last summation

arises from the definition of | contribution. By rearranging the
terms in the last two summations, we get

n N N ) i
2@ AN'ZZ | » k£0(~|)k+1<k>knﬂ bon- 1

(2.3.25b)
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where® Jis the binomial coefficient. If we now adopt a convention
that J= 0 for k>N, the summation over k can be extended to infinity.

This allow US to interchange the two summation over and k. The

summation over can now be carried out as follows.

E kn An-1G1 1= A-lg"l? kn An ¢*

N =N

A-1 ¢g"1 kNAN G kn An

KNAN - 16N - 1
1-KAG (2.3.26)

where k AGQ< 1

Thus the second part of the self-energy becomes

k/1- kAG.
(2.3.27a)
« NAAN gN e N\
C Vo oof N
G’OH NE= g N K@ 0( A '\}IV k§/ '"1'"-'"JI<AG
(2.3.27h)
2 @ @2 (@2 = (2.3.28)
El +E2 + 3 + 4
where
o 1MV AN
E1 = Gol NE: ) N Vil ~ AG (2.3.29a)
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- o . if NNzc 2 o) (2.3.29b)
8'2'|”I'W -1-2 a go
7 () ! Ng 1A (3¢ A Go) (2.3.29¢)

and where the general expression is

. % RN J,(.VLC AV (2.3.200)
X'L A Go
By writting out the binomial coefficient, (2.3.29a) to (2.3.29d) become
(2) 2 A2 G
1 - AG 1-cAG (2.3.30a)
(2)
TH i %)0 (2¢ A GQ)n (2.3.30D)
(2) _
=M AG PR N LR
(2.3.30c)
2)

E (-1 (-2..( -L+2 (Le AGQ)n
x -0 - 11

(2.3.300)
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The summation over in (2.3*30 ) to (2.3.30d) can be carried out by

noting that
7 kx (2.3.31)
(=0 (- X"
Dividing both sides of eq. (2.3.31) By X, we get
B -G 2.3.32
k —0 (1 A X)II ( )
By differentiating (2.3.32) with respect to X, we get
« kik-1xk~2 = == 2.3.33
k=0 -1 - Xr ( )

Again by differentiating (2.3.33)with respect to x,we get

2 kk-1) (k-2 xk~3 = — ¥V 2.3.34
O R R R R (23.34)

Repeating, the differentiation N- 2 times , we get

Jo KD k- 2) k- N+ 2) K (NF D) e i

Multiplying (2,3.35) the both sides by x> ~ | we get

« k(k-1) (k-2)..(k-N+2xk = (N~ —eeme

Putting the general result (2.3.36) in (2.3.30d) , we find that

y (2 Il ca (LeA Gk =1 (3 .3.37)
L Ao L-LAG = TLT &



Summing over all values of the variables L of (2.3.37) and replacing
1 +AGQ + ANGg + ...by its sum, we find that the self-energy due to the

monomer contribution is

¢ A °0
1« 1.a + (L-Ag) (1-cChc)

+ ¥ 1L+ ¢ A (LcA Go>
L = 2 {1 LAGo (L - LcA Gg)L
L/ R (LcAG)L 1
c A 1 (- 1L 1 = -- :
t:i L-tlagg (}. (eabpt

(2.3.38)

It should be noted that as ¢ a4 0, (2.3.38) reduces to the self-energy,
(2.3.5), derived by Hong and Kopelman on the basis of the substitution

p (¢c) 1 ¢ for all wvalues of

2.4 Dimers

In the two-impurity problem, we are interested in the so-called
translationally equivalent pairs and interchange pairs. As we have
already mentioned, the nature of a lattice structure implies that,
corresponding to any arbitrary molocule, there is a molecule in every
other unit cell with exactly the same orientation and exactly the same
relative position in the unit cell. These molecules are called

translationally equivalent pairs. Interchange molecules have different
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crystal orientations, that is, different translationally equivalent
pairs.

2.4.1 Hong and Kopelman’s results?

Let us now consider the pair problem. 2 is k dependent and much
more complicated to derive. The following procedure is an adaptation of

Yonezawa and Matsubara* methoa®t0 the multiple branched exciton band.

We first define

f.X(R) - exp(ik - R) G (k+) + {,( exp(ik . r) G (k)
(2.4.12)
f2 (R) = £+ exp(ik = r) G(kt) - exp(ik . r) G (k~)
(2.4.1b)
and  p> (E) = N_ir £ exp(ik+. R) 6{r - E(k*>
b b exp(ik". R) & (e'- E(k)> (2.4.2)

where p”™ (E) is the off-diagonal density of states function. The
R
upper sign must be used for the translationally equivalent pair and the

lower sign must be used for the interchange equivalent pair.

The diagonal density of states function P(E) for naphthalene

crystal in its 2, state can bhe written as



u

00 (E) = w11 oE- Bk ¢ SHE - E(6)
(2.4.3)

and the density of states PQ(E) is connected to the Green's function for

the pure crystal

& (E) UNLS @(T>+1- G« > (2.4.4)

by the relationship
ft> (E)

& 1 E-E & (2.4.9)

From (2.4.1a), (2.4.1b), (2.4.2), (2.4.3), (2.4.4) and (2.4.5) we
have

fx(0)N & (E)

V] E-ENGE (2.4.82)
AN =) o & (2.4.6b)
v RO (2.4.6¢)

where is the pair distance between two translationally equivalent
molecules and  is the pair distance between two interchange equivalent
molecules.

We must define a new type of delta function which is peculiar
to the problem of « multiple-branched exciton bands. As
was stressed by Hong and Robinson the "selection rules” for exciton
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scattering by imparities in multiple-branched exciton bands contain not
only the conservation of quasimomentum (associated with translational
symmetry) but also the retention of interchange symmetry (associated
with factor group symmetry). Mathematically, we have

(PL+P2+pg3+..+ Pg) = 6 (V1 +p2+P3+ .+ pd H{(-)m}
(2.4.7)

where p* = k - ky ?2 = k- k, etc., are the momentum transfers between
the impurities and the “exciton” in each encounter. H {(-1)m} is the
Heaviside step function and mis the number of times an exciton is
scattered from one branch of the band to the other; so

H{(-Dm}= 0 , if m=odd
H{(-Nma}= 1, if m=even

It is noted that only those scattering routes included in Fig. 2.4.1a
are to be summed over all the routes would be legitimate from a simple

momentum conslygerat‘gln ()
} KK K K K K
L l. Tk
G g K Ky
] (b)

Ko ("\Q.K Ks" X
K- K k.
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Fig. 2.4.1 Possible scattering routes given by %(;- iz/" + k2 - ﬂ3>
X§" - &+ & - according to our definition of the
delta functions. Terms to be summed are those in (a) and
terms not to be summed are those in (b)

We will now examine the diagrams in Fig. 2.4,2

b
27

’ ’ \ T TR e B ¢ ¥
. \ ) \‘ KA & p P v
z = — . $ 4 N — <+ ) + R T e &
2 \ ' ] 84 \‘ ¢ \‘ » '
‘ ,

Fig.2.4.2 Diagrams included in the second-order self-energy part

>
2 (k) which yields the resonance pair levels.

The first diagram in Fig. 2.4.2 can be rewritten in terms of
M an™ 12 { putting p (¢) =c¢ for small ¢ }

(a/lN)Vea |1 | (k- kt +k2- k3). (ki - k2 + ks -k)
kI k2 k3

X6 ") @k) Gk = (AN)de:{g * (k" R

X f1(Re) |fx(Re) 12

+1 (- k" , R) £2R ) If2(Re>[2> (214.8)

The upper sign should be used if the initial states are in the plus
branch ( [k+">' ) and the lower sign should be used if they are in the
minus branch (|k >'s). In deriving this, we have used the following
equality



oo [k k ek k)R )

t(-ImE ep {-i(k-£1+£2-£3) . Ry}
Ri
= N6 (E-£1+£2-£3) 5 (2.4.9)

where 5 and m have been defined in (2.4.7)

Next we consider the third diagram in Fig. 2.4.2 (the second and
forth diagrams are actually variations of the same type, genetalized
from the first diagram). This term can also be rewritten in terms of f1(R )

and ' f2 (Ri) {again Pn(c) = ¢ }

iti |t2 3
Y
k3 “ V/ @ (k3) G (k)
LH A+E (F2R1) 4} (2.4.10)
Re R

easy to see that terms represented by diagrams of the
type in Fig. 2.4.3 (these would include, for example, the second and fourth
diagrams of Fig. 2.4.2) can be written as { until p (¢) = ¢ }



k6

Fig.2.4.3 Typical diagrams included in £2 (fc)» For convenience,
diagrams of this type were summed up to form the partial
sum that is represented by the first diagram in Fig.2.4.2

( AIN)4 tfc2{ E exp. (- ik" . Re) f1(£6)1 f1(£6) I2
Re

| exo (- k" . $1) £2(81) 152(81)! 2H( AN) f1()} s 1 2
Ri

x{ (AN) f1( > t"' 2 (2.4.11)
where 1 1+ 2, t=t1+12 (in reference to Fig.2.4.3) are the total

numbers of interaction lines associated with each guest. Similarly, for
diagrams of the type given in Fig.2.4.4, we have

Fig.2.4.4 Typical diagrams included in £2(k). For convenience,
diagrams of this type were summed up to form the partial
sum that is represented by the third diagram in Fig,2.4.2

(Amysnez {1 TELRE)14 +80 F2($0)143{( AIN) f1( p® 1 3
Re Ri

X {(AIN) £1(0)} ¢ ~ 2% (2.4.12)



(k¥

where = 1+ 2+ 3, andt =fi +t2° these expressions can be
derived from (2.4.1), (2.4.6) and (2.4.9)*

It is appearent that diagrams with the same values of and t
but different values of 1, 2, 3, tl1, t2»etc., are actually equal
and can be lumped together. The problem is, then to calculate the number
possible partitions of and t, interaction lines into two or .three
groups. This general problem was treated by Yonezawa and Matsubara.
We will use their results here. If we denote the number of all possible

partitions of interaction lines into r groups as B ., we have

Bt = (-0 ( -3l (r- )t (2.4.13)

or alternatively, B, , can be given by a generating function

r
(2 g B x° (2.4.14)

Infinite sums over all diagrams of the type represented in Fig.2.4.3
or Fig.2.4.4 can now be performed with the aid of (2.4.13) and (2.4.14).
Denoting these sums as 2 2 or 3 2 (subscripts referring to the number
of groups of interaction lines associated with the first and the second
guest, repectively), we have, from (2.4.11)

$2,2 = (An>dnc2 { exn (- ik" eV v v " flI(V* 2

| exp (- ik" . Rt) f2(R.)] f2R1)! 2}

*i



X 7 2BSt2f<AN) f1()) - 2

(1] B2 ((,,) fi() b2

Ne2{ E exp(- iiT” %) f1(%) 1 f1(it6) |2
N
e

Fl exp(- litx . ALy £2(itl) [ 272 1 %
(Al') 1 (1 - (AIN) EL( )} (2.4.15a)
Similarly, from (2.4.12)

32 - (AIN)S Ne2{Z (&1 )14+ E (E2(D) 1* )

bs>3 {< AN) £1( )} t|zBmzuAM)ﬂwnt'2

He2{ | M1 )t +1 (£2(R1)[4} ( AIN)I (1 -( alN) £1( )}
(2.4.15D)

These two partial sums are represented by the first two diagrams in
Fig.2.4.5 where the second-order self-energy, 22, is written as a sum
of these partial sums (each one of them, in turn, is an infinite sum).

» o
IIA'




Fig.2.4.5 Diagrams representing the expansion of internis of
partial sums.

From the above discussion, a generalization can now be made concerning
other partial sums in Fig.2.4.5. In general, the odd - numbered
partial sums (i.e.,the (2r-3) th diagram in Fig.2.4.5, for r >2 }
contain terms of the type

( AIN)2r Ne2f 1 exp(-ik*. RE) f1(Rg)1 10 y|2(r " 1)
Re

£ exp(- ik~ Re) foi)| foRy AT - L}

X1 f Byr{(aN) fi()}str
=r

B AT (L

(2.4.16a)

which are summed to give

srr 3 NCZ(I'-‘(e “Pra o fl(RFEL(M I 2<r~ 1

UoSlexp(- VO f2(V lv v 12 DH 1. (' )<1(0)

(2.4.16b)

Similarly, the even-numbered partial sums{ corresponding to the (2r-2)
th diagram in Fig.2.4.5 } contain terms of the type;

»
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(AIN)2r + 1 Nc{E IEL(R6) |2r + 1 'F2(RL)pr )

3-1-1
3:r+ 1B,r +1« A™M 'V 0»

Bt>r{( AN) E1( )3t T (2.4.17a)

which are summed, again, to give

r+1
sr+lt - He 1 2r+ £1 1 2 X Nl\\‘l) f1(0)

(2.4.17h)

We are now in a position to perform the summation in
Fig.2.4.5. So, finally, we have

£2do (r’r+ r+i1’r)

(AIN)4 Ne2
C{1- (AN F1(0))3

X (-0 R)flel|fL(e)dl - (4/N) &1 tQ iM iiO

Be (L~ (4/K) EL()}2- I(4IN) £1( ) I

exp(- it". RL) F2(P1) [F2RL) {1 -(AIN) £L( )}+ (iIN) If2(R1)4,
[1- (AN) fL(0)}2 - 1(AIN) F2(RL) I2
(2.4.18)
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It can be seen that for general k+ and k , the second-order
self-energy contains poles which correspond to the energy states of
resonance pairs with varying separations (Rg and R”™). Furthermore,
these pairs are equally probable (c2 dependence).

At the poles, the following equations are satisfied
For translationally equivalent pairs,

(1 - (AN)yo)}2- L(AIN) fLeB)I = 0 (2.4.19)
and for interchange equivalent pairs,
{1- (AN) f1( )}2 - I(AIN) f2(«1) =0 (2.4.19b)

As we noted earlier, f (RE) and f2 (itl) are usually real. The
solutions to (2.4.19a) and (2.4.19b) are then

E1() N - {f2(R6)IN} 5 (2.4.20a)
and

(FLO)m T (F2<EL)IN } ! (2.4.20b)
As for the optical spectrum, we simply put k~ =0. Thus for

translationally equivalent pairs, we have from (2.4.18)

12 (kt=0) v=* .y
( AIN)4 Nc2f1(R6) |f1(R6)|:
1L - (VN)fX(0)R3[{I - ( AIN)x(0)}- {(AIN)fL(«6)}]
(2.4.21a)



90 that only one state Et is optically allowed. Again  is real and
at the pole, we have

>+ Ac?
2 (k =0) =22 (k *0) - {1_ (AINL(0)}- { (AINYEL(RE)}

(2.4.21h)

The spectral functions  and lac which have been discussed before in
connection with the optical properties of the monomer can also be

found.
-1
* Eovy E ) Exe
] 2 O(E) + pg (E) dE.-|
{Po(El)TP§) \E -1
where é — dE.
] )§ &
i dE.
<51+ > (2.4.22a)
<=+
Similarly,
JaCc V 2 & (ga) (2.4.22b)
(E+ - Eac>2

For interchange equivalent pairs, the situation is slightly
different. £2 (k+ = 0) and £2 (k =0) are, in this case, no longer
the same. From (2.4,18) we note that £2 (k+ * 0) has a pole at Et,
whereas 2 (k “ 0) has a pole at E . In other words, both Bt and E
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are optically allowed and uniquely and oppositely polarized. We have

Foxo0) [1- (AN )} (AINRRY

(2.4.23a)

%) {1- (AN)L() + (AIN)R(RY)

(2.4.23b)

The corresponding spectral functions Ib’ Iac are found to be

{ CU(E+ B)2 )

i
¥\ 2
(E, - E")

{po(E') + og (E') } dE' 7
X
c2R | (Bt - BD)2 >(-5—-) (2.4.24a)

cUE_ - B)2 )

i
& - B’

{ o (E") = o7 (') } cE'
x[j

te2RI(E_-E, )25} ) (2,4.24)



2.4.2 Suporn* Results. 19

In her research, she replaces ¢ in (2.4.16a) by
Pg(c) pl(c), and she gets

rr (AIN)2r Npg(c) Pt(c)
X {t e (k7Re> f1R6) [f1(%6) » 20~ D)
£ E exp (KTRY) f2R1) 1f2RL) 12(0r " 0}
By 1 { (AN) £1(0) } T

E Btér { (AN) f1() 3T (2.4.25a)

0O B (AN ) s

| PL(c) Btjr { (AIN) £1() " r(4IN)2r N
X {1 exp (-ik7Re) FLRO) IfLRE) J2¥ A

t FE exp (-ifjfex) f2(R1) I f2(RL) 1 2(r “ 0
) (2.4.25h)
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Nw E B ,rops(c) { (AINjfrO)}8 “ r E Pt<c>Bt> { (AINJFAO) }t"r

iy'2r ' "1 1 ) Ba,rVe)y' Bttpt(c)yt > (2.4.25¢)

where y = (A/N)fj(0)

and P8(c) Pt(c) ={ E (-)m" Im- 1)! emi k1 0 -nm-k(“‘)ks}
‘k

X{ E_(-n®1( - 1)kn E0(-1)n" g “)qc
= i

1
t
* E E DZE~\-1)m1 'ml Mo
m = 1
X © & (-1)'(q+k)(m3<n>ksqt} (2.4.250)
k=0 q:O k q
. ; 8 =1
and B ,r‘ (3 i()l’(rl 1)| = {\ r-1> (24259)
t -1 \
B = (t-r)f(s-nt T (L, (2.4.25)

Substituting (2.4.25d), (2.4.25) and (2.4.25f) into (2.4.25¢C), we get
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=\zl{ v ® - I\t - I _— TP
y_z{zrtgr(r-u\r-l?: G hm-d ez
bee 7 vy (+k)( bt syt
k = q:O k/\ql
2r .
Y sgr t’?r(r'-Yll\r-I/m?:ln?»lmlnc»cn

ke g=0 1T (oo (Y )E - (24250)

\k /\4)

The summations over and t in (2.4.25 g) can be summed by using the
fact that?

9=r\r- 1/(ky 1ULW 1t| C'I)\/)t (“A
(2.4.259) becomes
VB RS- g V@yr
r t ¥_ol.r

7
=y m

< 1m

r

? (- 1)-Uu+ [*® A .
k=0 »0(') \k q“lgky 'Ayf}

" t-r
LB PO YTy B ps(e) y
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0 )
m=t frmn kS0 qho (- K () (;
(L= ky)tL - ) (2.4.250)

| P ©o 0
(Ao I vEQ me g Fgulccmn

\

E (-ir(g+k) 1

k=0 g %o ey o (A7

X | exp(- ik~ . Re)fL1(Re) [fL(R6)|2(r ' 1}
Re

| exp(- ik7 RL) £2(RL) jE2(RL) I 2(r " 1} } <2.4.251)
Rl

We also have

- y 1 omn m E 1 oc /n
mbd o =artee (g m=1 =180 \ki(.-q) gl

E

0 oy M.l -1\
E Ek(ﬁcnﬁ/:;
m=1 =1Mg gvg- 1/
Eok(mi0* i L-i-y»

m

o/l =1k ko)

qI-c)q ﬁ‘qA-L'c X
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q+k .
'qI\Q F.0) (2.4.25))
Substituting (2.4.25j) into (2.4.25i) , (2.4.251) becomes
E =N (g + k) + K
r=2 0f J J 0 (- © Tk Vrrwﬂ

Also

lv v I

Ty oexp(- ik RX) E2RL) IR 2(r v 1) )

"2 exp(- 1?7 . Re)EL(RE) ifL1(Re)|2<r = 1}

(2 2r
(- kg ¥



| expe-lii&;/, V

R

exp(- ik-. Rj)
£1%.'

exp(- ik . R)

r kg A2jfL(K6) i?

r=° (1 kylt

t y exp(- ik-. R)
Ri

A R
r=2(1- ky)l -qyN2

kgs [f20RY 12

12,

.}
r=2 (Lxky;(l - gyN?

Ckq42)f1 6) 12 2
(L - ky)(1 - qy)N2

- Qy)N2

kg R12 2 1 2
(1 - ky) (1 - gy)N2

» RIE2 )12 r

r=0 (1-ky)l

exp(- ik . R)
R A

- Qy)N2

t f1(\) 2 A
(1 - ky)(L - qy)N2

kq A2 1f2(R) 7"
(L - ky)(L -qy)N2

r

59
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+ exp(-. IIZyt ]%") kg RIf2iey 12 2
BRSO 1k g

koA2 |f2(Ri)| 2
(1 - ky)(L - qy)N2

I exp(- 171. Re) IEI(Re) 13 <vr»>*< (1 . ky&

{1 kg A™got,)!2
(1 - ky)(L -qy)N2

nA A 1 C + k
r:ZSr»r N(A/n)4 q:1(- N"rg + k qk(l-(:’g
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exp(- ik”. Re) If1(R6) I + 5 exp(- ik“. Ri)|f2(RL)]3

R®{1 koA2 If1(Re) 12 No1okgqljf2RA) P~ 3
(1 - ky) (1 - qy)r (1 - ky)(L - qy)N
+k
N(AIN)4{ | (- 1)"(q + k(1 JF)

exp(r- ik". Re>If1CPe>13 £ exp(- ik". RAIf2(R1)|3

el kg iZlf1(Re) 2 AR kqA2 (E2 (R1) I

2 {1- W
(1 - ky)(L - qy)N (L - ky) (L - qy)iy
P-1
N(A/N) (- Dpalp - 9)f ¢ 2 1
P=2 as L_o {1 (p- a)yr(l - qy)2
x j E exp(- i£". R)if (R)]3 t -> 1
..................... : 1 exp(- ik % JIf (R.)I3
L e - (p - q)d2|f (1)]2 1 — e |
| - e T J— 2 0V <-1)6MI> |

Next by replacing ¢2 by Pg(c) Pt(c) in (2.4.177), we get

sr+ L.r = (AIN)2r + LNp (c) pt(c){JR-elfi(V I Zr + hIfZ(V | 2r }
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S -r+1

co (BT AN TI(0))

7 B> r{(Afi)fL(0)}

-1 -1
r+l,r | r+ 1 Bs,r + | Ps(c>{(4/« £1(0)}i
t Btlr Pt(c)((Aln)fL<opnt =T
X(AINJ2r + 1N 9 (1 (Reytar + 1 H2(V 12r } (2.4.27a)

Since n1Bs. + 1ps(){ (AN) FLO 1

I Bt,r Ft(c){ (AIN) fI(O)}t

=y“2r~ 1 z +1 E Bs,;r+ip(c)pt(c)ySyt } <2-4*27h)

where y = (A/N) f1C0)

and B r o+t (5o - D)I(r+l- 1)

r+1-1,
t -1
t - 11
Beor (t - r)(i (r ) 1)! - g (2.4.27d)

We get after substituting (2.4.25d), (2.4.27c¢) and (2.4.27d) into
(2.4.27h)
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0 1
S e+ 1V o> (Al flconre
1)
A E L BLropt<) I(4ls> £1(0) 1 1
% gl L
s=r+1 t=r\r+1~1 r—l,/
s t ,
: 5 (- I)Zm -1 (= 1)2n - 1(_ 1)Zn -1 _mi_ ;L
m=1 n=1 R
x ¥} 1)"“”"(“‘};’“\(@)5 @* ) 2. .20e)
k=0gq=0 k\q/
e g =1 r+1
Since I \(k)s [
s=r+l<r+l—1/‘ = (l-ky)
© t__l\ r
L ¢ vl Al
t=r(r-1/) ia (1"%')
(2,4.27s) becomes
E 1Pa(c)y3'r'1 t-r
Fr4 1 Bort Bt,r V.c>y
E E H'Y ’Cm
m=1 :flﬁ(ﬁ
r+i
» © mymy (K -
X = E 1)-(q+|<><k)<q)(1_ky) )

(2.4.271)
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1) 1)
k=1 q’ltl(' e q]k/llf VIRV gl T gl
(2.4.27q9)
Db i
caqg et _tlkﬁlqgl( 1) -
KN
Xohg ¥ (19qy}
L(1)2t "1 e [ o+] If2<viar (2.4.27h)
Since S (rH ) M) <V o2+ 1
X{1 IfL(Re)|2r + i if2(RL)I2r>
-0 (rrjo VoA * +1
2r
+ 1L ri ! + 41S2r+ 1< 1
ll-kky'J(A/N) | 1, <(rthF><r?V«< !f1<v|§1>r

+ L L {(rhry>-rV 2N
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(1 ) (/)"1 ( teqa2 If1CRe)a 1, fctA2 1A (y R r
1 - ky “Re (1 - ky)(l -qy)N2 r =0 (1-ky)(l - qy)ii2
+ ] ;o s L o xor”

P (I - ky)(1 - qy)N2 r=0 (I - kyAl ayN2

2r+|
1 * *
0 flpe) FEOf2(0) 1>
H
k2q
§ 1 XATH) I
(- ky: (1 - q) g 5 1
(I - ky)(L - qy)Nc
, (2. 271)

L1 kM glV8i>[g ~ 1.
(1 - ky)(l -gy)N2

(2. .27h) becomes,

E A 150 = N(A IN)3{ 1 | (D)~ (q+K)(i ¢ ) +k
k
(1 - ky) (I - qy)
J 112 . 112
y 1 | (g KeAZRR2(K) g )
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(p - q)yd(: . qy)

"
Yo - derliiee)
(Lo - gl - gy) 2

: 1fA > 12
R M (p - Q)gA2If2(EL) 2

(2. .28)
Summing (2A .26) and (2.1+2-3),  get
1
2(k) = N An)3 E B {- )% - q (9
[ pE
{L-(-q)yr(l - ay)
|*A>|a Lo A2
Ry B0 REERE R (o - dgA [f2(E)
- (p - qy}(I - ay)NE {L1-(p- g)yHl “ gy\2

exn(- ihA B))f1( 6)1
18T (p- oJuA2 If(EO)
- (p- q)yKl -qy)N2
exp(-ik" k1) f2(rl)
R (p- quoA™f2(it)
(L- (p~ay} a- ay)f
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NwER 2 PR ez

WER 8y g2 BP0 iy i)
®)2(! + - qy) exp(- iit” j$6)f1n$6)}

y 1 (p - QA2 IFIR3) 1 2

(- (- qy}( - ¥

‘7 fARN2 g - (AN)g/l - qy) exp(- Ik~ .R™ fg( 1)}
| (- Gk [f2(id) B
{1-(p- qyXI- gy

= A3Nz 2 v Z D-p(p - q)(_Js |

IMRG6)2{l + (an)(q/l - qy) exp(- ik~ ,Rg) fAR" }
Mefl (0 - q)yg2 (1= qyN2 - L-(p - alv} (p-g)g “fF*Re) |2

ji2RL)pa - (An)(q/l--gy) exp(- k" . R) f2( 1)}
Si (- (a)yha(l - ayN2 - {L(p - q)y Kp - a)gA2 [f2(RL" |2

(2. .29)

v

Z2(k~) is the second - order self energy part.

The poles of (2. .29) are detemined by the following

gquations For translationally equivalent pairs,
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{L- (- a)yjp(l - qy)N2 -{1 - (p - g)y}p - q)gA2[fL(Re) |2 =0

(2. 30a)
For interchange equivalent pairs,
(1= (b - alyy2(l - gyN2 -{ 1 -(p - a)y} (p - Q)gA2|f2(Ri) 2= 0
(2. .30)
From  (2.U.3)a)
{1-(p-ayr2(l- gyN2={1- (p - qly }p - alA2 [f- (") )2
{1-(p-ay} (- N = (p- qoACj"(£6) ]2
L-py +a(p - q)y2 (P - Q)a(AN)2 [f1(£6)2
G(p - Q)y2 - py - (p - Q)q(AIN)2 }1‘1(z€6)|2+ 1=10

vel|2. _ l(Re) } a° fl(o)

{alp - 9 gt 3o p ot 8 #2120
fi() A
since N .......
fi (0)12 fl(;e) [ £0) 4 4 2
q(p q){ ] - D T -Z +-\-2 = (]



Similarly, from (2.1%.30 ), we get

g

(p

q.) t

f1<0)l
N1

f2(Bi)
'!
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I
+
el Lo
11
o

o>
na

(2.0%31 )
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