STUDY ON THE BENZOXAZINE MONOMERS AND THEIR APPLICATION FOR ION EXTRACTION MATERIAL

Ms. Suttinun Phongtamrug

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University

in Academic Partnership with

The University of Michigan, The University of Oklahoma

and Case Western Reserve University

1998

ISBN 974-638-444-9

Thesis Title : Study on the benzoxazine monomers and their

application for ion extraction material

By : Ms. Suttinun Phongtamrug

Program : Polymer Science

Thesis Advisors: Prof. Hatsuo Ishida

Dr. Suwabun Chirachanchai

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

X. Director of the College

(Prof. Somchai Osuwan)

Thesis Committee

(Prof. Hatsuo Ishida)

(Dr. Suwabun Chirachanchai)

Ratana Rujuavanit

(Dr. Ratana Rujiravanit)

บทคัดย่อ

สุทธินันท์ พงษ์ธรรมรักษ์ : การศึกษาเบนซอกซาซีนมอนอเมอร์และการประยุกต์สำหรับ การเป็นวัสคุจำแนกไอออน (Study on the Benzoxazine Monomers and Their Application for Ion Extraction Material) อ.ที่ปรึกษา : ศ. ฮัทสุโอะ อิชิคะ (Prof. Hatsuo Ishida) และ คร. สุวบุญ จิรชาญชัย 42 หน้า ISBN 974-638-444-9

อนุพันธ์ของเบนซอกซาซีนสามประเภท ได้แก่ 3-เมธิล-3,4-ไดไฮโดร-6,8-ไดเมธิล-2เอช-1.3-เบนซอกซาซีน (3-methyl-3,4-dihydro-6,8-dimethyl-2H-1,3-benzoxazine, 3-เมธิล-3,4-ไดไฮโดร-6-เมธิล-8-โบรโม-2เอช-1,3-เบนซอกซาซีน (3-methyl-3,4dihydro-6-methyl-8-bromo-2H-1,3-benzoxazine, Bm2) และ 3-เมธิล-3,4-ไคไฮโคร-6-เมธิล-2เอช-1,3-เบนซอกซาซีน (3-methyl-3,4-dihydro-6-methyl-2H-1,3-benzoxa zine, Bm3) ซึ่งมีหมู่ฟังก์ชั่นต่างกันที่ตำแหน่งออโท (ortho) ของวงเบนซีน ได้ถูกสังเคราะห์ขึ้น และวิเคราะห์ด้วยโปรตอนนิวเคลียร์แมกเนติกเรโซแนนซ์ (¹H-NMR) คาร์บอนนิวเคลียร์แมก เนติกเรโซแนนซ์ (13C-NMR) และฟเรียร์ทรานฟอร์มอินฟราเรคสเปกโตรสโคปี (FT-IR) การ ศึกษาสมบัติของสารประกอบหลัก-รอง (Host-guest compound) โดยการจำแนกใอออน พบ ว่า Bm1 ซึ่งเป็นเบนซอกซาซีนที่มีหมู่เมธิลที่ตำแหน่งออโท มีการจับไอออนสูงกว่า Bm3 ซึ่งไม่มี หมู่ฟังก์ชั่นใด ๆ ที่ตำแหน่งนั้น อันเป็นผลกระทบของสเตอริก (Steric effect) โดยที่โมเลกุลเบน ซอกซาซีนประเภท Bml มีการจัดเรียงกลุ่มของโมเลกุล (Molecular assembly) แบบหลวม (flexible) ในขณะที่โมเลกลของเบนซอกซาซีนประเภท Bm3 มีการจัดเรียงแบบแน่น (rigid) จึงทำให้เกิดความแตกต่างในการรับไอออน

ABSTRACT

##962013 : POLYMER SCIENCE PROGRAM

KEYWORDS: Benzoxazine monomer/ Ion extraction / Inclusion properties /

Structurally controlled benzoxazine derivatives

Suttinun Phongtamrug: Study on the benzoxazine monomers and their application for ion extraction material. Thesis Advisors: Prof. Hatsuo Ishida and Dr. Suwabun Chirachanchai, 42 pp. ISBN 974-638-444-9

Structurally controlled benzoxazine derivatives, i.e., 3-methyl-3,4-dihydro-6,8-dimethyl-2H-1,3-benzoxazine (Bm1), 3-methyl-3,4-dihydro-6-methyl-8-bromo-2H-1,3-benzoxazine (Bm2) and 3-methyl-3,4-dihydro-6-methyl-2H-1,3-benzoxazine (Bm3) with different functional group at ortho position on the phenol ring were successfully prepared as determined from ¹H-NMR, ¹³C-NMR, FTIR spectra as well as elemental analysis. Bm1, which has the bulky group of methyl at ortho position, gives higher ion extraction percentage than Bm3, which has no functional group at ortho position. In the case of Bm1, the steric effect of benzoxazine structure leads to the loosely packed molecular assembly which induces the higher ion affinity.

ACKNOWLEDGMENTS

The author would like to give special thanks to her U.S. advisor, Prof. Hatsuo Ishida who gave some recommendation on the research. She is also deeply indebted to her Thai advisor, Dr. Suwabun Chirachanchai, who not only originated this thesis work, but also gave her intensive suggestion, invaluable guidance, constructive advice and vital help throughout this research work.

She greatly appreciates all professors who have tendered invaluable knowledge to her at the Petroleum and Petrochemical College, Chulalongkorn University. It is also a great pleasure to thank the National Research Council of Thailand (NRCT) for partially funding this research.

She would like to express her thanks to Asst. Prof. Sujitra Wongkasemjit, not only for her help in the use of Mass Spectroscopy, but also her precious suggestion in synthesis part.

She wishes to extend her appreciation to Assoc. Prof. Hiromori Tsutsumi from Department of Applied Chemistry & Chemical Engineering, Faculty of Engineering, Yamaguchi University for NMR measurement. She also thanks the National Metal and Material Technology Center (MTEC) for running NMR for characterization.

In addition, she would like to thank the entire college members, staff, and all her best friends at the Petroleum and Petrochemical College who gave her warm supports throughout this research.

Finally, sincerest appreciation is to her family for their love, understanding and financial support her education.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract	iii
	Acknowledgments	v
	List of Tables	ix
	List of Figures	X
	List of Schemes	xii
CHAPTER		
I	INTRODUCTION	1
II	LITERATURE SURVEY	
	2.1 Phenolic Resin and Polybenzoxazine	2
	2.2 Chemistry of Inclusion Compound	3
	2.3 Applications of Inclusion Compounds	4
	2.4 Inclusion Compound for Separation and Retrieval	5
	Application	
	2.5 Inclusion Compound, from Calixarene to Benzoxazine	6
	2.6 Benzoxazine as a Novel Type of Inclusion Compound	8
	2.7 Scope of the Present Work	8
III	EXPERIMENTAL SECTION	
	3.1 Materials	9
	3.2 Instruments and Equipments	9

CHAPTER	J	PAGE
	3.2.1 Fourier Transform Infrared Spectrophotometer	9
	(FTIR)	
	3.2.2 Nuclear Magnetic Resonance Spectrometer	10
	(¹ H-NMR, ¹³ C-NMR)	
	3.2.3 Vortex Mixer	10
	3.2.4 Ultraviolet-Visible Spectrophotometer	10
	3.2.5 Density Determination Kit	10
	3.2.6 Atomic Absorption Spectrophotometer	10
	3.3 Methodology	11
	3.3.1 Preparation of Benzoxazine Monomer	11
	3.3.2 Preparation of Ion Solution and Benzoxazine	14
	Solution	
	3.4 Monomer Characterization	14
	3.4.1 Fourier Transform Infrared Spectroscopy (FTIR)	14
	3.4.2 Density Measurement	15
	3.5 Ion Extraction Observation	16
	3.5.1 Pedersen's Technique	16
	3.5.2 Titration Technique	16
	3.5.3 Quantitative Analysis by Atomic Absorption	17
	Technique	
IV	RESULTS AND DISCUSSION	
	4.1 Characterization of benzoxazine monomers	18
	4.1.1 Structural Characterization of 3-methyl-3,4-dihydr	ro- 18
	6,8-dimethyl-2H-1,3-benzoxazine (Bm1)	

CHAPTER	PA	GE
	4.1.2 Structural Characterization of 3-methyl-3,4-dihydro-	21
	6-methyl-8-bromo-2H-1,3-benzoxazine (Bm2)	
	4.1.3 Structural Characterization of 3-methyl-3,4-dihydro-	24
	6-methyl-2H-1,3-benzoxazine (Bm3)	
	4.2 Ion Extraction Study	27
	4.2.1 Pedersen's Technique	28
	4.2.2 Titration Technique	31
	4.2.3 Atomic Absorption Technique	34
v	CONCLUSIONS	36
	REFERENCES	37
	CURRICULUM VITAE	42

LIST OF TABLES

TABLE		PAGE
4.1	¹³ C-NMR Chemical Shifts of Bm1	20
4.2	¹³ C-NMR Chemical Shifts of Bm2	23
4.3	Average Sodium Ion Concentration Measured by Atomic	35
	Absorption Spectrophotometer (after leaving the mixture for	
	one day)	

LIST OF FIGURES

FIGURE	;	PAGE
2.1	Formation of an inclusion compound (a) concave host;	4
	(b) convex guest component; (c) host-guest compound	
2.2	Structures of benzoxazine and calixarene	7
4.1	FTIR spectrum of Bm1	19
4.2	¹ H-NMR spectrum of Bm1	19
4.3	¹³ C-NMR spectrum of Bm1	20
4.4	Proposed structure of Bm1	21
4.5	FTIR spectrum of Bm2	22
4.6	¹ H-NMR spectrum of Bm2	22
4.7	¹³ C-NMR spectrum of Bm2	23
4.8	MS spectrum of Bm2	24
4.9	Proposed structure of Bm2	24
4.10	FTIR spectrum of Bm3	25
4.11	¹ H-NMR spectrum of Bm3	26
4.12	Proposed structure of Bm3	26
4.13	Extraction percentage of lithium picrate, 0.0002 M, in various	29
	concentration of Bm1 as a function of time	
4.14	Extraction percentage of metal picrate by Bm1,	30
	picrate ion concentration = 0.0002 M	
4.15	Extraction percentage of metal picrate by Bm3,	30
	picrate ion concentration = 0.0002 M	
4.16	Schematic diagram for 2 steps in titration study (a) step 1:	32
	picrate salt formation between picric acid and hydroxide meta	1
	species; (b) step 2: complex formation of benzoxazine and	
	picrate salt	

FIGURE		PAGE
4.17	Titration technique for ion entrapment quantitative analysis	33
4.18	Sodium ion extraction and pH dependence of Bm1 and Bm3	33
4.19	Schematic molecular assembly of Bm1 and Bm3	34

LIST OF SCHEMES

SCHEME		PAGE
3.1	Preparation of benzoxazine monomer	11
3.2	Synthesis of 3-methyl-3,4-dihydro-6,8-dimethyl-2H-1,3-	11
	benzoxazine (Bm1)	
3.3	Synthesis of 3-methyl-3,4-dihydro-6-methyl-8-bromo-2H-1,3-	12
	benzoxazine (Bm2)	
3.4	Synthesis of 3-methyl-3,4-dihydro-6-methyl-2H-1,3-benzoxazia	ne 13
	(Bm3)	