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ABSTRACT

972010 POLYMER SCIENCE PROGRAM
KEY WORDS  Shear Fracture/ Slip/ Desorption/ Disentanglement

Ms. Montara Thammachart: Shear Fracture of High
Density Polyethylene Melts. Thesis Advisors: Prof. Ronald G. Larson and
Assoc. Prof. Anuvat Sirivat, 67 pp. ISBN 974-331-925-5

Surface smoothness s one of the critical requirements In plastic
processing of small-scale products, which require accurate manufacturing.
Therefore skin roughness posses a challenging problem for micron-size
manufacturing. The rheological properties of HDPE were measured using
cone-and-plate rheometer in dynamic mode in order to study the slippage on a
solid surface. Critical frequencies and critical stresses, which are the
frequencies and stresses that slippage occur, increase with the strain imposed.
Our data can be divided into linear viscoelastic regime (LVR) and nonlinear
viscoelastic regime (NVR). The mechanisms of slip in both regimes are
different depending on temperature. For the NVR at the temperatures of 160
and 180°c, decay in 6* was caused by desorption between polymer chains
and solid wall, while in the LVR desorption and voids formation were
observed. Different results were obtained at 200°c, in which 6* rose and
decayed. Rising in 6* was caused by cross-linking while the decay in 6 * was
caused by voids formation.
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