MISCIBLE BLENDS FROM ESCOR® TERPOLYMER

Ms. Worakanya Visitsart

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic of Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2001

ISBN 974-13-0729-2

Thesis Title:

Miscible Blends from $ESCOR^{\tiny\textcircled{1}}$ Terpolymer

By:

Worakanya Visitsart

Program:

Polymer Science

Thesis Advisors:

Assoc. Prof. Brian P. Grady

Dr. Manit Nithitanakul

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

K. Bunya hint.

College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Commitee:

(Assoc. Prof. Brian P. Grady)

(Dr. Manit Nithitanakul)

(Dr. Pitt Supaphol)

ABSTRACT

4272017063: POLYMER SCIENCE PROGRAM

Worakanya Visitsart:

Thesis Advisors: Assoc. Prof. Brian P. Grady, and Dr. Manit

Nithitanakul, 63 pp ISBN 974-13-0729-2

Keywords: Miscibility/ ESCOR® terpolymer / EAA copolymer/ blends/

mechanical / rheological /dynamic mechanical properties

The mechanical, thermal, rheological and dynamic mechanical properties of blends of ESCOR® terpolymers and EAA copolymers were studied after blending in various proportions in a twin screw extruder. The mechanical properties of these blends increased with increasing EAA content. There was a direct relationship between the mechanical property values of the blend and the relative amounts of the two components of the blend. However, some ratios were found to have values below a linear relationship and were thought to blends that were not miscible. Young's modulus slightly increases with increasing EAA content. EAA1 and EAA4 behaved better than the other two materials in blends with all three grades of ESCOR®, suggesting that these two copolymers are chemically more closely matched with ESCOR®s and/or miscibilities were better. For most blends, the gloss dropped upon blending, which indicated phase separation. From rheological properties, the blends of ESCOR®320 with EAA2 at 60wt% EAA content was considered the most suitable for used as the damper material due to its high storage modulus and good mechanical properties. Blends of ESCOR®320/EAA1 at 80wt% EAA1, ESCOR®320/EAA2 at 90, and 95wt % EAA2, ESCOR®320/EAA4 at 20 wt % EAA4, and ESCOR®320/EAA5 at 80 wt % EAA5 showed single T_g resulting from dynamic mechanical properties, suggesting completely miscibility.

บทคัดย่อ

วรกัญญา วิสิทธิ์ศาสตร์ : การศึกษาการผสมเข้าเป็นเนื้อเคียวกันระหว่าง ESCOR no ร์พอลิเมอร์และEAA โคพอลิเมอร์ (Miscible Blends from ESCOR Terpolymer) อาจารย์ที่ปรึกษา: รศ. ใบรอัน แกรดี้, คร.มานิตย์ นิธิธนากุล 64 หน้า ISBN 974-13-0729-2

งานวิจัยนี้มุ่งถึงการศึกษาคุณสมบัติการผสมเข้าเป็นเนื้อเคียวกัน, คุณสมบัติเชิงกล ได้แก่ ความแข็ง, ความต้านทานต่อการคึงยืด (Tensile strength) และ ค่าความใส (Gloss) พฤติกรรมการ ใหล (Rheological properties) และคุณสมบัติเชิงกลทางใคนามิกส์ (Dynamic mechanical properties) ของพอลิเมอร์ผสมระหว่าง ESCOR ® เทอร์พอลิเมอร์และ EAA โคพอลิเมอร์ ค่าคุณ สมบัติเชิงกลของพอลิเมอร์ผสมนี้ พบว่ามีค่าเพิ่มขึ้นเมื่อเพิ่มอัตราส่วนของ EAA และเป็นความ สัมพันธ์เชิงเส้น อย่างไรก็ตามบางอัตราส่วนได้มีค่าต่ำกว่าความสัมพันธ์นี้ ค่า Young's modulus มีค่าเพิ่มขึ้นเมื่ออัตราส่วนของ EAA เพิ่มขึ้น และ EAA1 และ EAA4 มีค่าสูงกว่าอีกสองชนิดของ EAA มาก อาจสรุปได้ว่าโคพอลิเมอร์สองชนิดนี้สามารถจับเข้าคู่กับเทอร์พอลิเมอร์ทั้งสามชนิดได้ ์ ดีกว่าและ/หรือ การผสมเข้าเป็นเนื้อเดียวกันได้ดีกว่า ในพอลิเมอร์ผสมส่วนใหญ่ ค่าความใสจะลด ลงเมื่อพอลิเมอร์ผ่านขบวนการการผสมกัน คังนั้นพอลิเมอร์ผสมส่วนใหญ่แสดงการไม่ผสมเป็น เนื้อเคียวกัน สำหรับพฤติกรรมการไหล สามารถสรุปได้ว่าพอลิมอร์ผสมระหว่าง ESCOR ® 320 และ EAA2 ที่อัตราส่วน 60% โดยน้ำหนัก EAA2 เหมาะสมที่สดที่จะนำมาใช้เป็นตัวหน่วง (Damper materials) เนื่องจากที่อัตราส่วนนี้มีค่า storage modulus สูงที่สุด และค่าคุณสมบัติเชิงกล ค่อนข้างสูง พอถิเมอร์ผสมในอัตราส่วนที่แสคงพีกของ T ูเป็นพีกเดี่ยว ซึ่งแสคงว่าที่อัตราส่วน นั้นๆ พอลิเมอร์ผสมได้ผสมเข้าเป็นเนื้อเดียวกัน ได้แก่ ESCOR [®] 320/EAA1 ที่ 80% โดยน้ำหนัก EAA1, ESCOR [®] 320/EAA2 ที่ 90 และ 90% โดยน้ำหนัก EAA2, ESCOR [®] 320/EAA4 ที่ 20 % โดยน้ำหนัก EAA4, และ ESCOR [®] 320/EAA5 ที่ 80 % โดยน้ำหนัก EAA5

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to U.S. advisor, Assoc. Prof. Brain P. Grady who gave recommendations and suggestions for the lab planning and problems solving. And also deeply appreciated Dr. Manit Nithitanakul who gave the intensive suggestion, invaluable guidance, constructive advice and vital help throughout the research work.

I am grateful to Mr. John W. Ellis and Dr. Pitt Supaphol for providing technical knowledge and very helpful suggestions.

I would like to extend my thanks to the New Faculty Development Fund for the financial support.

I wishes to give a sincere thank to all of my friends and staffs of PPC, Chulalongkorn University for their assistance.

Ultimately, I am also indebted to my family for their love, understanding, encouragement and advice.

TABLE OF CONTENT

		PAGE
	Title Page	i
	Abstract (English)	iii
	Abstract (Thai)	iv
	Acknowledgement	v
	Table of Contents	vi
	List of Tables	viii
	List of Figures	x
CHAPTER		
I	INTRODUCTION	1
	1.1 Materials	3
	1.2 Mechanical Properties	5
	1.3 Rheological Properties	7
	1.4 Dynamic Mechanical Properties	8
II	LITERATURE SURVEY	11
	2.1 Miscibility of polymer Blends Having Acrylic Acid	11
	2.2 Miscibility and Other Properties of Other Polymer Blends	13
	2.3 Damping Properties of Polymer Blends	15
III	EXPERIMENTAL	17
	3.1 Materials	17
	3.2 Experimental Procedure	18
	3.2.1 Polymer Blend Preparation	18

CHAPTER		
	3.2.2 Characterization	19
	3.2.3 Mechanical Properties of Polymer	20
	Blends	
	3.2.4 Rheological Properties	21
	Measurement	
	3.2.5 Dynamic Mechanical Properties	21
IV	RESULTS AND DISCUSSION	22
	4.1 Thermal Analysis	22
	4.2 Mechanical Properties	24
	4.3 Rheological Properties	35
	4.4 Dynamic Mechanical Properties	37
V	CONCLUSION	41
	REFERENCES	42
	APPENDICES	46
	CURRICULUM VITAE	65

LIST OF TABLES

TABLE		
1 The characteristics of ESCOR® terpolymer	17	
2 The composition of ESCOR® terpolymer	17	
3 Composition of ESCOR® terpolymer and EAA copolymer	18	
4 Melting temperature (T _m ,°C) and crystallization temperature	23	
(T _c ,°C) of materials		
A1 Hardness values of ESCOR® 310/EAAs	46	
A2 Hardness values of ESCOR® 325/EAAs	46	
A3 Hardness values of ESCOR® 320/EAAs	47	
A4 Maximum stress of ESCOR® 310/EAAs	47	
A5 Maximum stress of ESCOR® 320/EAAs	48	
A6 Maximum stress of ESCOR® 325/EAAs	48	
A7 Young's modulus of ESCOR® 310/EAAs	49	
A8 Young's modulus of ESCOR® 320/EAAs	49	
A10 Young's modulus of ESCOR® 325/EAAs	50	
All Gloss value at 20° of ESCOR® 310/EAAs	50	
A12 Gloss value at 20° of ESCOR® 320/EAAs	51	
A13 Gloss value at 20° of ESCOR® 325/EAAs	51	
A14 Gloss value at 60° of ESCOR® 310/EAAs	52	
A15 Gloss value at 60° of ESCOR® 320/EAAs	52	
A16 Gloss value at 20° of ESCOR® 325/EAAs	53	
B1 Rheological properties (G', dyn/cm ²) of ESCOR®	54	
320/EAAs		

-	ΓABLE	PAGE
B2	Rheological properties (G", dyn/cm ²) of ESCOR® 320/	55
	EAAs	
В3	Rheological properties (tan δ , dyn/cm ²) of ESCOR [®]	56
	310/EAAs	
D1	General properties of ESCOR® 310 (acid terpolymer	61
	for adhesive and polymer modification)	
D2	General properties of ESCOR® 320 (acid terpolymer	62
	for film and extrusion coating applications)	
D3	General properties of ESCOR® 325 (acid terpolymer	63
	for speciality and polymer modification)	

T.

9

.

LIST OF FIGURES

FIGURE		
1 Damping the vibration using a high loss plastic layer plus a stiff metal skin	9	
2 Processing conditions of twin screw extruder	19	
3 TGA thermograms of ESCOR®terpolymers and EAA copolymers	23	
4a Shore D hardness of blends of ESCOR® 310/EAAs	24	
4b Shore D hardness of blends of ESCOR® 320/EAAs	25	
4c Shore D hardness of blends of ESCOR® 325/EAAs	25	
5a Maximum stress of blends of ESCOR®310/EAAs	27	
5b Maximum stress of blends of ESCOR®320/EAAs	27	
5c Maximum stress of blends of ESCOR®325/EAAs	28	
6a Young's modulus of blends of ESCOR® 310/EAAs	29	
6b Young's modulus of blends of ESCOR® 320/EAAs	30	
6c Young's modulus of blends of ESCOR® 325/EAAs	30	
7a Gloss of blends at 20° of ESCOR® 310/EAAs	31	
7b Gloss of blends at 60° of ESCOR® 310/EAAs	32	
7c Gloss of blends at 20° of ESCOR® 320/EAAs	32	
7d Gloss of blends at 60° of ESCOR® 320/EAAs	33	
7e Gloss of blends at 20° of ESCOR® 325/EAAs	33	
7f Gloss of blends at 60° of ESCOR® 325/EAAs	34	
8 Storage modulus, G', of ESCOR®320 terpolymer and	35	
EAA2 copolymer blends		
9 Rheological properties, tan δ, of ESCOR®320 terpolymer	36	
and EAA2 copolymer blends		

FIGURE	
10 Dynamic mechanical properties, tan δ, of ESCOR	®320/ 37
EAA1 blends	
11 Dynamic mechanical properties, tan δ, of ESCOR	®320/ 38
EAA2 blends	
12 Dynamic mechanical properties, tan δ, of ESCOR	2®320/ 39
EAA4 blends	
13 Dynamic mechanical properties, tan δ, of ESCOR	®320/ 40
EAA4 blends	
C1 Dynamic mechanical properties (G' and G") of E	SCOR®320/ 57
EAA1 blends	
C2 Dynamic mechanical properties (G' and G") of E	SCOR®320/ 58
EAA2 blends	
C3 Dynamic mechanical properties (G' and G") of E	SCOR®320/ 59
EAA4 blends	
C4 Dynamic mechanical properties (G' and G") of E	SCOR®320/ 60
EAA5 blends	

- 2 -